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Abstract. Knowledge discovery is the course of absorbing facts and relations from immense amounts
of data. Algorithms like Apriori let an experimenter locate the hidden pattern within a dataset.
However, numerous applications do not utilize the Apriori technique because it takes a prolonged time
to discover the frequent itemset. If the largest frequent itemset with length k exists, the algorithm
accomplishes a k scan to deal with the time-consuming difficulty caused by the k number of scans.
Rajeswari and Vaithiyanathan (A novel method for frequent pattern mining, International Journal of
Engineering and Technology 5(3) (2013), 2150 – 2154) devised a Novel algorithm for frequent pattern
mining that uses a single scan to discover a frequent itemset of length k by constructing a subset of
transactions. In this work, the Novel algorithm’s performance is embellished by generating powersets
for unique records. Powerset generation is a costly operation that takes exponential time to compute.
So, avoidance of unnecessary computation results in performance enhancement. To accomplish used
two mechanisms to improve the performance of the Novel method viz Transaction Subset Plus Cache
(TSPC) and Transaction Subset Without Duplicate Record (TSWDR). Finally, performance analysis
is done between four algorithms Apriori for frequent pattern generation, Novel method for frequent
pattern generation, TSPC and TSWDR.
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1. Introduction
In a transactional database, the challenge of creating large frequent itemset for the development
of association rules is discussed. Numerous algorithms such as algorithms, such as Apriori,
FP growth, and their variants, have already been proposed in this subject. To find association
rules between items, classic Apriori algorithms involve two major phases: (a) frequent pattern
generation, (b) rules creation.

Several applications, however, are unable to employ the Apriori approach because of the
lengthy time it takes to discover the common itemset and build rules. Most of the time is
spent in Apriori looking for common patterns. By establishing a power set of items present
in transactions, in [11] Rajeswari and Vaithiyanathan suggested a novel way for computing
frequent itemset with a single database scan. With a single database scan, their method can
yield all levels of the candidate set as well as the support count. In the case of the Apriori
approach, we need to search the database k times if there exists a frequent itemset of length k
in the given dataset for the given lowest support. As the number of scans grows, so does the
computation time. The time necessary to calculate the frequent pattern grows as the number of
scans increases, i.e., the time required by the conventional Apriori technique for discovering a
frequent itemset is equal to the time required for a single scan multiplied by k.

The following paragraph confers some of the elements that influence the Apriori algorithm’s
complexity. Because the number of database checks essential to identify frequent item sets grows
exponentially as the number of attributes rises, the time required to construct the nth frequent
itemset rises exponentially. The average transaction width in a dense relational database can
be quite significant. Because more computation time is needed to handle the dense transactions,
this influences the Apriori algorithm’s complexity.

Itemset will be developed during the candidate generation process where n signifies the
number of different items in the dataset and k the length of each itemset.

2. Equations
2.1 Existing Method
Rajeswari and Vaithiyanathan [11] devised a method for locating frequent itemset of any
length that does not generate candidate sets. They generated frequent itemset with a single
database scan by using a power set of items present in a particular transaction of transactional
database D. Suppose database D contains n transactions {p1, p2, p3, . . . , pn}, each transaction
pi is a subset of i = {i1, i2, i3, . . . , in} i.e., i is a universal set of items in the dataset. To find
frequent itemset of length k example and algorithm of novel frequent pattern mining using
powerset [11] given below:
Step 1: Examine the database D.

Step 2: For per transaction, pi contains a width ‘wth’ (number of items) where pi ∈ D perform
below step:

• Record all the 2w−1 combinations i.e., (powerset of items present in transactions
except empty set) in Table 1 and increase the occurrence count for each element of
power set.
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• If the element e is already available in the list, increment its occurrence counts.
• Otherwise, create a new record in Table 1 and set its occurrence count to 1.
• Sort data in descending order based on the length of itemset and finally select

itemset, which qualifies minimum support criteria.

Table 1. Example given dataset

Transaction ID Itemset

1 A, B, C
2 B, D
3 A, B, C

Table 2. Proposed algorithms

Transaction 1: A, B, C
Itemset Occurrence Count Length of Itemset

A 1 1
B 1 1
C 1 1

A, B 1 2
A, C 1 2
B, C 1 2

A, B, C 1 3

Table 3. Second transaction table

Transaction 2: B, D
Itemset Occurrence Count Length of Itemset

A 1 1
B 1+1 1
C 1 1

A, B 1 2
A, C 1 2
B, C 1 2

A, B, C 1 3
D 1 1

B, D 1 1

Table 4. Third transaction table

Transaction 3: A, B, C
Itemset Occurrence Count Length of Itemset

A, B, C 2 3
D 1 1

B, D 1 1
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Table 5. Sorting transaction table

Sort according to itemset length

Itemset Occurrence Count Length of Itemset

A, B, C 2 3

A, B 2 2

A, C 2 2

B, C 2 2

A 2 1

B 3 1

C 2 1

D 1 1

B, D 1 1

Table 6. Transaction with min_supp= 2

Minimum Support = 2

Itemset Occurrence Count Length of Itemset

A, B, C 2 3

A, B 2 2

A, C 2 2

B, C 2 2

A 2 1

B 3 1

C 2 1

D 1 1

B, D 1 1

Analysis of the Existing Method. This method determines the transaction’s power set.
Calculating a powerset is a time-consuming process. Calculating the powerset of a set containing
n items requires O(2n) time. As a result, the time it takes to calculate powerset for ‘m’
transactions is (m∗2n/2). It requires less time than performing k scans to locate a frequent
itemset in Apriori, which takes O(2d), where d is the number of unique items in the database.

2.2 Proposed Method
To give rise to frequent item sets, a novel method for frequent pattern generation takes
O(m∗2n/2). The entire number of transactions in the database is represented by ‘m’. Calculating
the power set for unique transactions only reduces time complexity. The same result was
produced by using the value of several repetitions(cache), as well as by eliminating duplicate
rows from the dataset and creating a single column that reflects the number of times the
transaction occurred. By multiplying the number of repetitions by the occurrence count of each
element of a transaction’s powerset.
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As a result, the temporal complexity of the new method was decreased to (u∗2n/2) where ‘u’
denotes the number of distinct transactions.

Table 7. Existing method algorithms

Apriori Algorithm

1. Assume that k is equal to one
2. Identify the most common L1-length

itemset
3. Continue until no new frequent itemset

are discovered
4. From the length k-frequent itemset,

create a length k+1 candidate itemset
5. Prune infrequent subgroups of length

k from the candidate itemset
6. Scan the database production to

determine each candidate’s support
7. Eliminate infrequent candidates and

maintain only those who are regular

A Two-Step Process

1. Create itemset on a regular basis –
Create all itemset whose support is less
than minimum support

2. Formulation of rules – Create high-
confidence rules for each often-
occurring item collection

Novel Method

1. Make an FP map to keep track
of objects and their frequency of
recurrence

2. Continue with the remaining rows
(a) Take a look at a database record
(b) Make a ‘S’ set for items that appear in

a row
(c) Make a ‘P ’ power set for ‘S’
(d) Verify whether each set of ‘P ’ is already

present in FP or not
If yes, increase the number of times it
occurs. If no, enter it into the FP with
an occurrence count of one

3. Select elements from FP that have an
occurrence count more than or equal to
the lowest support

4. From an individually common item set,
create high confidence rules

As a result, the Novel technique dramatically lowered the time complexity of generating frequent
patterns. The authors, however, have discovered that the Novel technique generates a power
set for each row. This can be avoided by eliminating all duplicate entries from a dataset and
simply adding a ‘repeated count’ column. It takes more time to produce a powerset. Various
permutations and combinations of items must be performed to produce a power set algorithm.
The number of elements/attributes present in the transaction is exactly commensurate to the
number of elements/attributes present in the transaction. For power set creation, it is obvious
that the time complexity is O(2n) and the space complexity is O(2n).

3. Algorithm
So instead of calculating the power set for all rows authors used the technique so that this
calculation is done for unique rows/transactions only. To accomplish this, they used two methods.

(1) Removing duplicate rows from the dataset and adding one more column for the repeat
count in such a way that the result will not get affected (TSWDR). The time complexity of
grouping rows is O(n) if data is sorted then it gets reduced to n (logn).
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(2) By creating a cache-like system (novel method with additional storage) in this method
(TSWDR) algorithm calculates the power set for a row and stores it into the cache. So,
whenever the same row came for computation of the power set. It first checks whether a
precalculated powerset is present in the cache for this row. If yes, then return the powerset
from the cache. If not, calculate the power set and store it into the cache for future use.

Table 8. Proposed algorithm

Novel Method With Cache (TSPC)

1. Create map FP to store items with
their occurrence count and map ‘PS’
to store powerset

2. Repeat for all rows
(a) Read database row
(b) Create a set ‘S’ for items, which are

present in row
(c) Check if the power set of ‘S’ is available

in ‘PS’ or not if yes then get the
powerset from PS. If not, then compute
the power set and store it in PS

(d) Get every set of the power set and
increment its occurrence count of that
set in FP

3. Select only, sets that have occurrence
count ≥min support

Novel Method After Removing Dupli-
cate Rows (TSWDR)

1. Create map FP to store items with
their occurrence count

2. Remove all duplicate rows using the
panda’s library and add an additional
column that will hold a repeated count
of row

3. Repeat for all rows
(a) Read database row
(b) Create a set ‘S’ for items, which are

present in row
(c) Generate power set ‘P ’ of ‘S’
(d) Get every set of the power set ‘P ’

and update its occurrence count with
previous occurrence Count repeated
row count

4. Select only, sets that have occurrence
count ≥min support

The authors then compared the performance of these four algorithms in various scenarios such
as unique rows, duplicate rows with only a few frequent items among all attributes, and so on.
Following that, we reach the following conclusions.

(1) When the dataset contains more unique rows then the Novel Apriori algorithm is the best
choice.

(2) When repeated rows are present in large quantities, Novel Apriori with removing duplicate
rows (TSWDR) or by storing an already calculated power set into cache like system (TSPC),
we can improve the algorithm.

(3) If a single element meets the minimum support criteria in the candidate set 1, normal
Apriori will provide the quickest solution among algorithms, but Novel Apriori will remove
duplicate rows. Because the database does not need to be rescanned in the Novel Apriori
/Novel Apriori cache, we must generate a powerset, which takes longer.
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Results

Table 9. Comparison table

ANALYSIS
Repeated Rows Attributes Algorithm Min Total Remark

count support time
required

0 30 5 Novel Apriori 0.2 32.6

0 30 5 Novel Apriori with
additional storage (Cache
to get precalculated
powerset) to avoid
repeated work (TSPC)

0.2 36.6

0 30 5 Novel Apriori after
removing duplicate rows
using panda (TSWDR)

0.2 35.8

0 30 5 Apriori 0.2 78.4

0 7 3 Novel Apriori 0.5 18

0 7 3 Novel Apriori with
additional storage (Cache
to get precalculated
powerset) to avoid
repeated work (TSPC)

0.5 18

0 7 3 Novel Apriori after
removing duplicate rows
using panda (TSWDR)

0.5 18.1

0 7 3 Apriori 0.5 25.4

0 99 8 Novel Apriori 0.1 124

0 99 8 Novel Apriori with
additional storage (Cache
to get precalculated
powerset) to avoid
repeated work (TSPC)

0.1 143

0 99 8 Novel Apriori after
removing duplicate rows
using panda (TSWDR)

0.1 161

0 99 8 Apriori 0.1 468

125 129 3 Novel Apriori 0.7 170

125 129 3 Novel Apriori with
additional storage (Cache
to get precalculated
powerset) to avoid
repeated work (TSPC)

0.7 133

Table Contd.
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ANALYSIS
Repeated Rows Attributes Algorithm Min Total Remark

count support time

required

125 129 3 Novel Apriori after
removing duplicate rows
using panda (TSWDR)

0.7 33.6

125 129 3 Apriori 0.7 233

868 875 11 Novel Apriori 0.7 19400

868 875 11 Novel Apriori with
additional storage (Cache
to get precalculated
powerset) to avoid
repeated work (TSPC)

0.7 11600

868 875 11 Novel Apriori after
removing duplicate rows
using panda(TSWDR)

0.7 254

868 875 11 Apriori 0.7 1030 Only one candidate set of
size 1 qualify min support

868 875 11 Novel Apriori 0.1 12400

68 75 1 Novel Apriori with
additional storage (Cache
to get precalculated
powerset) to avoid
repeated work (TSPC)

0.1 11100 Because no of elements
present in each row is less
than 6, so time required
to generate powerset and
storing it in dictionary
(cache) is same

68 75 1 Novel Apriori after
removing duplicate rows
using panda (TSWDR)

0.1 354

68 75 1 Apriori 0.1 0000

Table 10. Parameter comparison

Serial Parameter Apriori Novel Apriori TSPC and

Number Algorithm Algorithm TSWDR

1 Number of combination generated t*2**n t*2**(n/2) u*2**(n/2)

2 Number of comparisons t*2**n*k t*k u*k

3 Number of passes 2**n 1 1

Notes: t = number of transactions,

n = number of items,

k = number of frequent itemset or stages,

u = number of unique records/rows
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4. Conclusions
The authors discovered that the powerset generation step in the novel method for frequent
pattern generation consumes the most time because power set generation has space and
time complexity O.(2n). Based on that observation, the authors created an algorithm that
prevents the generation of power sets from being repeated for identical/duplicate rows. They
then compared performance and discovered that when a dataset contains many duplicate rows,
the performance of the novel method for frequent pattern generation is significantly improved
after generating a powerset for unique transactions only, which is normal in the case of an
Apriori algorithm.
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