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1. Introduction
Dispersion describes the spread of particles through random motion from regions of higher
concentration to regions of lower concentration. It plays an important role in physiological
systems. For example, the knowledge of substances injected into a blood vessel is useful
for many clinical and physiological purposes. Further, it is known to balance material in
bioartificial kidney and transporting of oxygen in the human body. The fluid mechanical aspects
of hydrodynamic dispersion of a solute in a viscous fluid have received the attention of several
investigators (Taylor [22], Aris [3], Rao and Padma [16], and Gupta and Gupta [7]). Subsequently,
Chandra and Agarwal [5], Philip and Chandra [14], Alemayehu and Radhakrishnamacharya
[1,2] extended the analysis of Taylor [22] to non-Newtonian fluids.

Peristalsis is an inherent property of many tubular organs of the human body. It arises
because of progressive waves propagating along the length of a distensible tube containing
fluid. In general, a peristaltic pump is a device for pumping fluids by means of a contraction
wave traveling along a tube-like structure. In view of its importance, a number of researchers
investigated peristaltic transport of Newtonian and non-Newtonian fluids under different
conditions (Fung and Yih [6], Shapiro et al. [19], Shehawey and Sebaei [20], Takagi and
Balmforth [21], Radhakrishnamacharya [15], Rao and Mishra [17], Böhme and Müller [4], and
Sankad et al. [18]).

One non-Newtonian fluid model that received considerable attention in the recent past is
the Jeffrey fluid, which appears to be an appropriate model to describe some physiological and
industrial fluids. This model is a relatively simple linear model which uses time derivatives
instead of convective derivatives and it accounts for rheological effects of a viscoelastic fluid
(Hayat et al. [8]). Further, Jeffrey fluid model is significant because Newtonian fluid model
can be deduced from this as a special case. (Vajravelu et al. [23], Pandey and Tripathi [13],
Kothandapani and Srinivas [11], and Ravi Kiran et al. [9,10]).

The effect of combined homogeneous and heterogeneous chemical reactions in the peristaltic
motion of a Jeffrey fluid with wall properties has not received any attention. It is envisaged that
peristalsis may have significant effect on the hydrodynamic dispersion of a solute in the fluid
flow and this may lead to better understanding of the flow situation in physiological systems.
Hence, in this paper, the effect of dispersion of a solute in peristaltic flow of a Jeffrey fluid with
wall properties is investigated. Using long wavelength approximation and Taylor’s approach,
analytical expression has been obtained for the average effective dispersion coefficient, in the
presence of combined homogeneous and heterogeneous irreversible chemical reactions and the
effects of various relevant parameters on it are studied.

2. Mathematical Model
Consider the hydrodynamic diffusion of a solute in peristaltic flow of a Jeffrey fluid in an
infinite uniform channel of width 2d. The walls of the channel are flexible and are taken as
stretched membrane, on which traveling sinusoidal waves of long wavelength are imposed.
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Cartesian coordinate system (x, y) is chosen with x-axis aligned with the center line of the
channel. The traveling waves are represented by

y=±h =±
[
d+asin

2π
λ

(x− ct)
]

, (2.1)

where a is the amplitude, c is the speed and λ is the wavelength of the peristaltic wave
(Figure 1).

Figure 1. An idealized intestinal geometry

The governing equation of motion of the flexible wall may be expressed as (Mittra and
Prasad [12])

L(h)= p− p0 , (2.2)

where L is an operator which is used to represent the motion of stretched membrane with
damping forces such that

L =−T
∂2

∂x2 +m
∂2

∂t2 +C
∂

∂t
. (2.3)

Here T is the tension in the membrane, m is the mass per unit area and C is the coefficient of
viscous damping force.

This approach studies the deformability of the conduit wall allowing for fluid-structure
interaction in the peristaltic flow.

The equations governing two-dimensional motion of an incompressible Jeffrey fluid for the
present problem are given by (Kothandapani and Srinivas [11])

ρ

[
∂

∂t
+u

∂

∂x
+v

∂

∂y

]
u =−∂p

∂x
+ ∂Sxx

∂x
+ ∂Sxy

∂y
, (2.4)

ρ

[
∂

∂t
+u

∂

∂x
+v

∂

∂y

]
v =−∂p

∂y
+ ∂Syy

∂y
+ ∂Syx

∂x
(2.5)
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and the equation of continuity is
∂u
∂x

+ ∂v
∂y

= 0 (2.6)

where u, v are the velocity components in the x and y directions respectively, p is the pressure,
ρ is the density, Sxx, Sxy, Syx, Syy are extra stress components and µ is the viscosity coefficient.

Under long wavelength approximation, the governing equations for the present problem
reduce to,

∂p
∂x

= µ

1+λ1

∂2u
∂y2 , (2.7)

∂p
∂y

= 0 (2.8)

and
∂u
∂x

+ ∂v
∂y

= 0 (2.9)

It is assumed that p0 = 0 and the channel walls are inextensible so that only lateral motion
takes place and the horizontal displacement of the wall is zero.

The no-slip boundary conditions for the velocity is given by

u = 0 at y=±h . (2.10)

The dynamic boundary conditions at the flexible walls (Mittra and Prasad [12]) can be
written as

∂

∂x
L(h)=

(
µ

1+λ1

)
∂2u
∂y2 at y=±h , (2.11)

where ∂
∂x L(h)= ∂p

∂x =−T ∂3h
∂x3 +m ∂3h

∂x∂t2 +C ∂2h
∂x∂t .

Solving (2.7) and (2.8) under the boundary conditions (2.10) and (2.11), we get

u(y)=−
(
1+λ1

µ

)[
P ′

2
(
h2 − y2)] (2.12)

where

P ′ =−T
∂3h
∂x3 +m

∂3h
∂x∂t2 +C

∂2h
∂x∂t

(2.13)

Further, the mean velocity is defined as

ū = 1
2h

∫ h

−h
u(y)d y (2.14)

Substituting equation (2.12) in equation (2.14), we get

ū =−
(
1+λ1

µ

)
P ′ h

2

3
(2.15)

If we now consider convection across a plane moving with the mean speed of the flow, then
relative to this plane, the fluid velocity is given by (Gupta and Gupta [7], Alemayehu and
Radhakrishnamacharya [1,2])

ux = u− ū . (2.16)
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Substituting equations (2.12) and (2.15) in equation (2.16), we get

ux =−1
2

(
1+λ1

µ

)
P ′

[
h2

3
− y2

]
. (2.17)

Diffusion with Shared Homogeneous and Heterogeneous Chemical Responses
It is assumed that a solute diffuses and simultaneously undergoes a first order irreversible
chemical reaction in peristaltic transport of micropolar fluid in a channel under isothermal
conditions. Using Taylor’s approximation, i.e., ∂2C

∂x2 ≪ ∂2C
∂y2 , the equation for the concentration C

of the solute is given by (Gupta and Gupta [7])
∂C
∂t

+u
∂C
∂x

= D
∂2C
∂y2 −k1C , (2.18)

where D is the molecular diffusion coefficient and k1 is the first order reaction rate constant.
For typical values of physiologically relevant parameters of this problem, it is realized that

ū = c (Alemayehu and Radhakrishnamacharya [1,2]). Using this condition and making use of
the following dimensionless quantities:

θ = t
t̄
, t̄ = λ

ū
, η= y

d
, ξ= (x− ūt)

λ
, H = h

d
, P = d2

µc
P ′ . (2.19)

Equations (2.17) and (2.18) reduce to

ux =−d2

2µ
(1+λ1)P ′

[
H2

3
−η2

]
, (2.20)

∂2C
∂η2 − k1d2

D
C = d2

λD
ux
∂C
∂ξ

, (2.21)

where P =−ε[
(E1 +E2)(2π)3 cos(2πξ)−E3(2π)2 sin(2πξ)

]
, E1

(
=− Td3

λ3µc

)
is the rigidity,

E2 =
(

mcd3

λ3µ

)
is the stiffness and E3 =

(
Cd3

µλ2

)
is the viscous damping force in the wall.

(2.22)
It is assumed that a first order irreversible chemical reaction takes place both in the bulk

of the fluid (homogeneous) as well as at the walls (heterogeneous) of the channel which are
assumed to be catalytic to chemical reaction. Thus, the corresponding boundary conditions at
the walls (Philip and Chandra [14]) are given by

∂C
∂y

+ f C = 0, (2.23)

∂C
∂y

− f C = 0. (2.24)

If we introduce the dimensional variables (2.19), the above boundary conditions become
∂C
∂η

+βC = 0 at η= H = [1+εsin(2πξ)], (2.25)

∂C
∂η

−βC = 0 at η=−H =−[1+εsin(2πξ)], (2.26)

where β= f d is the heterogeneous reaction rate parameter corresponding to catalytic reaction
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at the walls.
Solving (2.21) under the boundary conditions (2.25) and (2.26) by assuming that ∂C

∂ξ
is

independent of η at any cross section, we get the solution for the concentration of the solute C
as

C(η)=
[

d4

2λµD
∂C
∂ξ

]
P
α2 (1+λ1)

[
cosh(αη)

L

(
2H+β

(
2H2

3
+ 2
α2

))
−

(
η2 − H2

3
+ 2
α2

)]
, (2.27)

where L =αsinh(αH)+βcosh(αH) and α=
(

k1d2

D

)1/2
.

The volumetric rate Q at which the solute is transported across a section of the channel of
unit breadth is defined by

Q =
∫ H

−H
C ux dη . (2.28)

Substituting equations (2.20) and (2.27) in equation (2.28), we get the volumetric rate Q as

Q =−2
d6

λµ2D
∂C
∂ξ

G(ξ,α,β,ε,E1,E2,E3,λ1), (2.29)

where

G(ξ,α,β,ε,E1,E2,E3,λ1)

= (1+λ1)2

α2

[(
P

3Lα3

)(
H+ βH2

3
+ β

α2

)(
3αH cosh(αH)− (3+H2α2)sinh(αH)

)+ PH5

45

]
.

(2.30)
Now comparing the equation (2.29) with Fick’s first law of diffusion, the effective dispersion

coefficient D∗ with which the solute disperses relative to a plane moving with the mean speed
of the flow, is obtained as,

D∗ = 2
d6

µ2D
G(ξ,α,β,ε,E1,E2,E3,λ1) . (2.31)

Let the average of G be G, and is defined by

G =
∫ 1

0
G(ξ,α,β,ε,E1,E2,E3,λ1)dξ . (2.32)

3. Numerical Results and Discussion
The equation (2.32) gives the dispersion coefficient D∗ through the function G, which has been
computed numerically using MATHEMATICA software and the results are presented graphically.
The key dimensionless quantities involved in the discussion are: the amplitude ratio ε, the
homogeneous reaction rate α, the heterogeneous reaction rate β, the Jeffrey parameter λ1 and
the wall parameters E1, E2, E3. Further, from the equation (2.22) we may note that E1, E2 and
E3 cannot be taken as zero simultaneously.

The effect of the rigidity parameter (E1) on the effective dispersion coefficient is shown in
Figures 2-4. It is observed that the dispersion increases with the rigidity parameter in the cases
of (i) no stiffness in the wall (E2 = 0) and perfectly elastic channel wall (E3 = 0) (Figure 2);
(ii) stiffness in the wall (E2 ̸= 0) and perfectly elastic wall (E3 = 0) (Figure 3); (iii) no stiffness in
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the wall (E2 = 0) and dissipative wall (E3 ̸= 0) (Figure 4). For all values of rigidity parameter in
the case of (i) i.e. Figure 2, the dispersion coefficient decreases as the heterogeneous reaction
rate β increases from unity to 10. Figure 3 shows that dispersion coefficient increases with
amplitude ratio ε. A nonlinear and positive influence of peristalsis on effective dispersion
coefficient is therefore evident in Figure 3. In Figure 4, dispersion coefficient, G clearly descends
as the homogeneous reaction rate α increases, demonstrating an inverse relationship. The rate
of descent of the profiles is accentuated with higher values of the rigidity parameter (E1). This
clearly demonstrates that both parameters exert a non-trivial effect on hydrodynamic dispersion
in peristaltic flow and has implications for the effectiveness of dispersion phenomena.

Figure 2. Effect of E1 on G (α = 0.5, ε = 0.2,
E2 = 0.0, E3 = 0.0, λ1 = 1)

Figure 3. Effect of E1 on G (α = 0.5, β = 5,
E2 = 4.0, E3 = 0.0, λ1 = 1)

Figure 4. Effect of E1 on G (ε = 0.2, β = 5,
E2 = 0.0, E3 = 0.06, λ1 = 1)

Figure 5. Effect of E2 on G (α = 0.5, ε = 0.2,
E1 = 0.1, E3 = 0.0, λ1 = 1)

Figures 5-7 show that the dispersion coefficient increases as the stiffness in the wall (E2)
increases for both the cases of perfectly elastic wall (E3 = 0) (Figure 5) and dissipative wall
(E3 ̸= 0) (Figures 6 and 7). In Figure 5, the dispersion coefficient values are plateau-profiles and
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remain at consistent distances from one another, as the heterogeneous reaction rate β ascends
from 1 to 10. The response to a change in amplitude ratio (Figure 6) and homogeneous reaction
rate (Figure 7) is similar to that observed in Figures 3 and 4. Dispersion coefficient sharply
ascends with an increase in the former, whereas it decays approximately linearly with a rise in
the latter.

Figure 6. Effect of E2 on G (α = 0.5, β = 5,
E1 = 0.1, E3 = 0.06, λ1 = 1)

Figure 7. Effect of E2 on G (ε = 0.2, β = 5,
E1 = 0.1, E3 = 0.06, λ1 = 1)

Figure 8. Effect of E3 on G (α = 0.5, ε = 0.2,
E1 = 0.1, E2 = 4.0, λ1 = 1)

Figure 9. Effect of E3 on G (α = 0.5, β = 5,
E1 = 0.1, E2 = 0.0, λ1 = 1)

It is seen from Figures 8-10 that the dispersion increases with viscous damping force (E3) in
the cases of (i) stiffness in the wall (E2 ̸= 0) (Figures 8 and 10) and (ii) no stiffness in the wall
(E2 = 0) (Figure 9). Distinct from earlier graphs, it is observed that a sharp monotonic decay
in hydrodynamic dispersion coefficient (Figure 8) accompanies an increase in heterogeneous
chemical reaction rate β. It is also observed that the variation of dispersion coefficient with
amplitude ratio ε (Figure 9) is similar to that observed in Figure 6. Further, Figure 10 indicates
that the effect of homogeneous reaction rate α is less pronounced for all values of viscous
damping E3, compared with the distributions in Figures 4 and 7.
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It is noticed that the effective dispersion coefficient Ḡ increases with Jeffrey parameter
λ1 (Figures 11-13). This is true for the cases of (i) stiffness in the wall (E2 ̸= 0) and perfectly
elastic wall (E3 = 0) (Figure 11); (ii) no stiffness in the wall (E2 = 0) and dissipative wall (E3 ̸= 0)
(Figures 12 and 13). It is also noticed that the hydrodynamic dispersion values are largely
invariant with alteration in the heterogeneous chemical reaction rate β (Figure 11).

Figure 10. Effect of E3 on G (ε = 0.2, β = 5,
E1 = 0.1, E2 = 4.0, λ1 = 1)

Figure 11. Effect of λ1 on G (α = 0.5, ε = 0.2,
E1 = 0.1, E2 = 4.0, E3 = 0.0)

Figure 12. Effect of λ1 on G (α = 0.5, ε = 0.2,
E1 = 0.1, E2 = 0.0, E3 = 4.0)

Figure 13. Effect of λ1 on G (β = 5, ε = 0.2,
E1 = 0.1, E2 = 0.0, E3 = 0.06)

It is seen from Figures 3, 6, 9 and 12 that the average effective dispersion coefficient
increases with amplitude ratio ε. This implies that the peristalsis enhances dispersion of a
solute in fluid flow. This result agrees with that of Alemayehu and Radhakrishnamacharya
[1,2]. Further, as discussed earlier, the hydrodynamic dispersion decreases with homogeneous
chemical reaction rate α (Figures 4, 7, 10 and 13) and heterogeneous chemical reaction rate β
(Figures 2, 5, 8 and 11). This result agrees with that of Rao and Padma [16], and Gupta and
Gupta [7].
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4. Conclusion
The effect of combined homogeneous and heterogeneous chemical reactions on dispersion in
peristaltic flow of a Jeffrey fluid with wall properties has been studied analytically under long
wavelength approximation and Taylor’s limiting condition. The model developed is relevant
to fluid transport in the human digestive system. It is observed that peristaltic motion
enhances hydrodynamic dispersion and dispersion decreases with both the homogeneous and
heterogeneous chemical reaction rates. It is also observed that the effective dispersion coefficient
increases with Jeffrey parameter, rigidity, stiffness, viscous damping.
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