Research Article

Pendant Total Domination Polynomial of Some Families of Standard Graphs

Jyoti Rani* ${ }^{*}$ and Seema Mehra ${ }^{2}$ ©
Department of Mathematics, Maharshi Dayanand University, Rohtak 124001, Haryana, India
*Corresponding author: jyotihooda01992@gmail.com

Received: January 24, 2023
Accepted: March 22, 2023

Abstract

In this article, our aim is to determine the pendant total domination polynomial of some families of standard graphs and obtain some properties of coefficients and nullity of the pendant total domination polynomial of a connected graph \mathcal{G}. Consider \mathcal{G} as a simple connected graph and its vertex and edge sets are defined as $\mathcal{V}_{\mathcal{G}}$ and $\mathcal{E}_{\mathcal{G}}$, respectively. A set $\mathcal{T} \subseteq \mathcal{V}_{\mathcal{G}}$ is said to be a total dominating set of graph \mathcal{G} if all the vertices of the graph must attached with some vertex of \mathcal{T}. A set $\mathcal{T} \subseteq \mathcal{V}_{\mathcal{G}}$ is said to be a PTDS if \mathcal{T} is a $T D S$ and $\langle\mathcal{T}\rangle$ contains at least a single pendant vertex.

Keywords. Dominating Set (DS), Total Dominating Set (TDS), Pendant Total Domination (PTD), Pendant Total Dominating Set (PTDS), Pendant Total Domination Number (PTDN)
Mathematics Subject Classification (2020). 05C69
Copyright © 2023 Jyoti Rani and Seema Mehra. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this work graph \mathcal{G} is considered as an undirected graph which does not contain loops and parallel edges. Vertex and edge sets are defined by $\mathcal{V}_{\mathcal{G}}$ and $\mathcal{E}_{\mathcal{G}}$, respectively. The concept of domination polynomial first defined by Arocha and Llano [3] in their research paper and then Alikhani and Peng [2] gave the definition for domination polynomial of a graph of order n which is given as: $D(\mathcal{G}, x)=\sum_{i=\gamma(\mathcal{G})}^{n} d(\mathcal{G}, i) x^{i}$, where $d(\mathcal{G}, i)$ shows the total number of dominating sets of graph \mathcal{G} of cardinality i.

Cockayne et al. [5] introduced the definition of total domination, and later in 2014 Chaluvaraju and Chaitra [4] defined the total domination polynomial which is given as: "A total
domination polynomial of graph \mathcal{G} of order n is the polynomial $D_{t d}(\mathcal{G}, x)=\sum_{t=\gamma_{t d}(\mathcal{G})}^{n} d_{t d}(\mathcal{G}, t) x^{t}$, where $d_{t d}(\mathcal{G}, t)$ is the number of total dominating sets of graph \mathcal{G} of cardinality t ".

After that Nayaka [7,8] initiated the concept of pendant domination in graph and then pendant domination polynomial of a graph. Motivated by this concept, we introduced a new parameter called pendant total domination in graph and determined the pendant total domination number of some generalized graphs (Rani and Mehra [9]). Likewise, here we define the pendant total domination polynomial of a graph which is stated as follows: A pendant total domination polynomial is a polynomial which is defined as $D_{p t}(\mathcal{G}, x)=\sum_{k=\gamma_{p t}(\mathcal{G})}^{n} d_{p t}(\mathcal{G}, k) x^{k}$, where $d_{p t}(\mathcal{G}, k)$ represents the total number of pendant total dominating sets of cardinality k.

For the notion of nullity we refer Gutman and Borovićanin [6], and Chaluvaraju and Chaitra [4], "The number of eigenvalues of \mathcal{G} that are equal to zero is called the nullity of the graph \mathcal{G} and the multiplicity of the zero in $D(\mathcal{G}, x)$ is called the nullity of domination polynomial. It is denoted by $\eta=\eta(D(\mathcal{G}, x))$ ".

Let the vertex set of graph \mathcal{G} is $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ in which we add n new vertices $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and join each u_{i} to v_{i}. This represents the graph of $\mathcal{G} \circ K_{1}$ whose order is $2 n$ and for corona of any two graphs refer [1].

If we add an edge between a complete graph k_{n} and path P_{1} then the resulted graph is said to be the lollipop graph $L_{n, 1}$.

2. Main Results

Definition 2.1. Let $D_{p t}(\mathcal{G}, k)$ is the set of pendant total dominating sets of graph \mathcal{G} of cardinality k and suppose $d_{p t}(\mathcal{G}, k)=\left|D_{p t}(\mathcal{G}, k)\right|$. Then a polynomial is said to be a pendant total domination polynomial of a graph of order n which is defined as $D_{p t}(\mathcal{G}, x)=\sum_{k=\gamma_{p t}(\mathcal{G})}^{n} d_{p t}(\mathcal{G}, k) x^{k}$, where $d_{p t}(\mathcal{G}, k)$ denotes the total number of pendant total dominating sets of cardinality k in $D_{p t}(\mathcal{G}, k)$.

Example 2.2. Let \mathcal{G} be a graph as in Figure 1

Figure 1. Graph \mathcal{G}

Since PTDS does not contain any isolated vertex, then clearly there is no PTDS of cardinality one.

Therefore, $d_{p t}(\mathcal{G}, 1)=0$,

$$
D_{p t}(\mathcal{G}, 2)=\{\{b, c\},\{b, e\},\{c, f\},\{e, f\}\} .
$$

Therefore, $d_{p t}(\mathcal{G}, 2)=\left|D_{p t}(\mathcal{G}, 2)\right|=4$

$$
\begin{aligned}
D_{p t}(\mathcal{G}, 3)= & \{\{a, b, c\},\{a, b, e\},\{a, b, f\},\{a, c, f\},\{a, e, f\},\{b, c, d\},\{b, c, f\},\{b, e, f\},\{b, d, e\},\{b, c, e\}, \\
& \{c, d, e\},\{c, e, f\},\{c, d, f\},\{d, e, f\}\} .
\end{aligned}
$$

Therefore, $d_{p t}(\mathcal{G}, 3)=\left|D_{p t}(\mathcal{G}, 3)\right|=14$

$$
D_{p t}(\mathcal{G}, 4)=\{\{a, b, c, d\},\{a, b, d, e\},\{a, c, d, f\},\{a, d, e, f\}\} .
$$

Therefore, $d_{p t}(\mathcal{G}, 4)=\left|D_{p t}(\mathcal{G}, 4)\right|=4$

$$
D_{p t}(\mathcal{G}, 5)=\{\{a, b, c, d, e\},\{a, c, d, e, f\},\{a, b, d, e, f\},\{a, b, c, d, f\}\} .
$$

Therefore, $d_{p t}(\mathcal{G}, 5)=\left|D_{p t}(\mathcal{G}, 5)\right|=14$.
According to definition of PTDS, there is no PTDS of cardinality 6. Therefore, $d_{p t}(\mathcal{G}, 6)=0$,

$$
\begin{aligned}
D_{p t}(\mathcal{G}, x) & =\sum_{k=\gamma_{p t}(\mathcal{G})}^{n} d_{p t}(\mathcal{G}, k) x^{k} \\
& =\sum_{k=2}^{5} d_{p t}(\mathcal{G}, k) x^{k} \\
& =d_{p t}(\mathcal{G}, 2) x^{2}+d_{p t}(\mathcal{G}, 3) x^{3}+d_{p t}(\mathcal{G}, 4) x^{4}+d_{p t}(\mathcal{G}, 5) x^{5} \\
& =4 x^{2}+14 x^{3}+4 x^{2}+4 x^{5} .
\end{aligned}
$$

Now, we find the $T D$ polynomial of same graph \mathcal{G}. Since $T D S$ does not contain any isolated vertex then there is no $T D S$ of single vertex.
Therefore, $d_{t d}(\mathcal{G}, 1)=0$

$$
D_{t d}(\mathcal{G}, 2)=\{\{b, c\},\{b, e\},\{c, f\},\{e, f\}\}
$$

Therefore, $d_{t d}(\mathcal{G}, 2)=\left|D_{t d}(\mathcal{G}, 2)\right|=4$

$$
\begin{aligned}
D_{t d}(\mathcal{G}, 3)= & \{\{a, b, c\},\{a, b, e\},\{a, b, f\},\{a, c, f\},\{a, e, f\},\{b, c, d\},\{b, c, f\},\{b, e, f\},\{b, d, e\},\{b, c, e\}, \\
& \{c, d, e\},\{c, e, f\},\{c, d, f\},\{d, e, f\}\} .
\end{aligned}
$$

Therefore, $d_{t d}(\mathcal{G}, 3)=\left|D_{t d}(\mathcal{G}, 3)\right|=14$

$$
\begin{aligned}
D_{t d}(\mathcal{G}, 4)= & \{\{a, b, c, d\},\{a, b, c, f\},\{a, b, e, f\},\{a, b, d, e\},\{a, c, d, f\},\{a, d, e, f\},\{b, c, d, e\}, \\
& \{b, c, e, f\},\{c, d, e, f\}\} .
\end{aligned}
$$

Therefore, $d_{p t}(\mathcal{G}, 4)=\left|D_{p t}(\mathcal{G}, 4)\right|=9$

$$
D_{t d}(\mathcal{G}, 5)=\{\{a, b, c, d, e\},\{a, c, d, e, f\},\{a, b, d, e, f\},\{a, b, c, d, f\},\{a, b, c, e, f\},\{b, c, d, e, f\}\}
$$

Therefore, $d_{p t}(\mathcal{G}, 5)=\left|D_{p t}(\mathcal{G}, 5)\right|=6$

$$
D_{t d}(\mathcal{G}, 6)=\{\{a, b, c, d, e, f\}\} .
$$

Therefore, $d_{p t}(\mathcal{G}, 6)=\left|D_{p t}(\mathcal{G}, 6)\right|=1$

$$
D_{t d}(\mathcal{G}, x)=\sum_{k=\gamma_{t d}(\mathcal{G})}^{n} d_{t d}(\mathcal{G}, k) x^{k}
$$

$$
\begin{aligned}
& =\sum_{k=2}^{5} d_{t d}(\mathcal{G}, k) x^{k} \\
& =d_{t d}(\mathcal{G}, 2) x^{2}+d_{t d}(\mathcal{G}, 3) x^{3}+d_{t d}(\mathcal{G}, 4) x^{4}+d_{t d}(\mathcal{G}, 5) x^{5}+d_{t d}(\mathcal{G}, 6) x^{6} \\
& =4 x^{2}+14 x^{3}+9 x^{2}+6 x^{5}+x^{6} .
\end{aligned}
$$

Remark 2.3. For the given graph \mathcal{G} in Figure 1, $T D$ polynomial and $P T D$ polynomial are not same. In fact, $P T D$ polynomial is a five degree polynomial and $T D$ polynomial is a six degree polynomial.

Theorem 2.4. Let us consider a connected graph \mathcal{G} (order $n \geq 2$) and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be its vertex set, then
(i) $d_{p t}(\mathcal{G}, n)= \begin{cases}1, & \text { if } \mathcal{G} \text { has a pendant vertex, } \\ 0, & \text { if } \mathcal{G} \text { has no pendant vertex } .\end{cases}$
(ii) For any connected graph $\mathcal{G}, d_{p t}(\mathcal{G}, 1)=0$.
(iii) $d_{p t}(\mathcal{G}, i)=0$ iff $i<\gamma_{p t}(\mathcal{G})$ or $i>n$.
(iv) $D_{p t}(\mathcal{G}, x)$ has no constant term and no first degree term.
(v) If \mathcal{G} contains a pendant vertex, then $\operatorname{deg}\left(D_{p t}(\mathcal{G}, x)\right)=n$.
(vi) If \mathcal{G} does not contain any pendant vertex, then $\operatorname{deg}\left(D_{p t}(\mathcal{G}, x)\right)<n$.
(vii) 0 is the zero of $D_{p t}(\mathcal{G}, x)$ of order $\gamma_{p t}(\mathcal{G})$.
(viii) If \mathcal{G} contains a pendant vertex, then $\operatorname{deg}\left(D_{t d}(\mathcal{G}, x)\right)=\operatorname{deg}\left(D_{p t}(\mathcal{G}, x)\right)$.
(ix) If \mathcal{G} does not contain any pendant vertex, then $\operatorname{deg}\left(D_{t d}(\mathcal{G}, x)\right)>\operatorname{deg}\left(D_{p t}(\mathcal{G}, x)\right)$.
(x) $D_{p t}(\mathcal{G}, x)$ is a strictly increasing function.

Proof. (i) There is only one way to select n vertices because \mathcal{G} has n vertices and degree of at least one vertex is one. Thus, there is only one PTDS of cardinality n. But if \mathcal{G} has no pendant vertex then by definition there is no PTDS of cardinality n.
(ii) As PTDS does not contains an isolated vertex. Therefore, $d_{p t}(\mathcal{G}, 1)=0$.
(iii) $d_{p t}(\mathcal{G}, i)=0$ since $\gamma_{p t}(\mathcal{G})$ is a minimum $P T D N$ so there is no PTDS exist whose cardinality is less than $\gamma_{p t}(\mathcal{G})$ and also the order of graph is n so maximum cardinality of PTDS is n . Hence $d_{p t}(\mathcal{G}, i)=0$.
(iv) A single vertex can not totally dominates itself. So, at least two vertices needs to totally dominate the vertices of \mathcal{G}. Hence, the $T D$ polynomial has no constant term as well as no first degree term. Therefore, PTD polynomial also has no constant term as well as no first degree term.
(v) Since graph contains a pendant vertex, then by (i) it is clear that $d_{p t}(\mathcal{G}, n)=1$ and by definition of PTD polynomial a term x^{n} must present in the polynomial. Thus degree of $P T D$ polynomial is n.
(vi) If \mathcal{G} has no pendant vertex, then there is no PTDS of cardinality n. Thus $d_{p t}(\mathcal{G}, n)=0$. Hence $\operatorname{deg}\left(D_{p t}(\mathcal{G}, x)\right)<n$.
(vii) It is obvious by definition of PTD polynomial.
(viii) Since \mathcal{G} has no pendant vertex, then by (iii) there is no PTDS of cardinality n but in case of TDS the vertex set of graph is always a $T D S$. This shows that $\operatorname{deg}\left(D_{t d}(\mathcal{G}, x)\right)>$ $\operatorname{deg}\left(D_{p t}(\mathcal{G}, x)\right)$.
(ix) Since \mathcal{G} has a pendant vertex, then from (i) the vertex set is always a $T D S$ as well as $P T D S$ of \mathcal{G}. Hence $\operatorname{deg}\left(D_{t d}(\mathcal{G}, x)\right)=\operatorname{deg}\left(D_{p t}(\mathcal{G}, x)\right)$.
(x) According to definition of $P T D$ polynomial $D_{p t}(G, x)$.

Lemma 2.5. The PTDN of corona of two graphs \mathcal{G} (any connected graph of order n) and K_{1} is as

$$
\gamma_{p t}\left(\mathcal{G} \circ K_{1}\right)= \begin{cases}n, & \text { if } \mathcal{G} \text { has a pendant vertex } \\ n+1, & \text { if } \mathcal{G} \text { has no pendant vertex } .\end{cases}
$$

Proof. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set of a graph \mathcal{G} and degree of at least one vertex is one. Now let $\mathcal{T}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, then \mathcal{T} will be the PTDS of $\mathcal{G} \circ K_{1}$ as vertices of \mathcal{T} totally dominates itself and $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Also, the subgraph induced by \mathcal{T} has a pendant vertex. Hence $\gamma_{p t}\left(\mathcal{G} \circ K_{1}\right)=n$.

If the graph \mathcal{G} has no pendant vertex, then \mathcal{T} must be a $T D S$ but not a PTDS as we know the subgraph $\langle\mathcal{T}\rangle$ has no pendant vertex. Thus to construct a PTDS we required to add a vertex with vertices of \mathcal{T} which is attached with any vertex of \mathcal{T} then there will be $n+1$ vertices in PTDS. Hence $\gamma_{p t}\left(\mathcal{G} \circ K_{1}\right)=n+1$.

Theorem 2.6. The PTD polynomial of corona of two graphs \mathcal{G} (any connected graph of order n) and K_{1} is as

$$
D_{p t}\left(\mathcal{G} \circ K_{1}, x\right)= \begin{cases}x^{n}(1+x)^{n}, & \text { if } \mathcal{G} \text { has a pendant vertex }, \\ x^{n}\left[(1+x)^{n}-1\right], & \text { if } \mathcal{G} \text { has no pendant vertex } .\end{cases}
$$

Proof. Let $\mathcal{G} \circ K_{1}$ is a graph of order $2 n$ where \mathcal{G} is a graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and at least one of them is a pendant vertex. Let $\mathcal{T}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ then by using Lemma 2.5 \mathcal{T} will be the PTDS of \mathcal{G} and $\gamma_{p t}\left(\mathcal{G} \circ K_{1}\right)=n$. If we consider an another set $\mathcal{T}_{1}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ then this will not be a PTDS as it contains all isolated vertices. Thus there is only one PTDS of cardinality n and the PTD polynomial contains a term x^{n}. Now to construct PTDS of cardinality $n+1, n+2, \ldots, 2 n$ add vertices of \mathcal{T}_{1} in \mathcal{T} one by one. Hence there are $\binom{n}{k-n}$ ways to select $(k-n)$ vertices from n vertices of \mathcal{T}_{1}. Then the PTD polynomial of $\mathcal{G} \circ K_{1}$ will be

$$
\begin{aligned}
D_{p t}\left(\mathcal{G} \circ K_{1}, x\right) & =\sum_{k=n}^{2 n} d_{p t}\left(\mathcal{G} \circ K_{1}, k\right) x^{k} \\
& =x^{n}+\binom{n}{1} x^{n+1}+\binom{n}{2} x^{n+2}+\ldots+\binom{n}{n} x^{2 n} \\
& =x^{n}\left[1+\binom{n}{1} x^{1}+\binom{n}{2} x^{2}+\ldots+\binom{n}{n} x^{n}\right] \\
& =x^{n}\left[(1+x)^{n}\right] .
\end{aligned}
$$

Now consider graph \mathcal{G} has no pendant vertex. Then by Lemma 2.5, $\gamma_{p t}\left(\mathcal{G} \circ K_{1}\right)=n+1$ such that for $k \leq n, d_{p t}(\mathcal{G}, k)=0$. Similarly to construct PTD sets of cardinality $n+1, n+2, \ldots, 2 n$ add vertices of \mathcal{T}_{1} in \mathcal{T} one by one. Hence there are $\binom{n}{k-n}$ ways to select $(k-n)$ vertices from n vertices of \mathcal{T}_{1}. Then, the PTD polynomial of $\mathcal{G} \circ K_{1}$ will be

$$
\begin{aligned}
D_{p t}\left(\mathcal{G} \circ K_{1}, x\right) & =\sum_{k=n+1}^{2 n} d_{p t}\left(\mathcal{G} \circ K_{1}, k\right) x^{k} \\
& =\binom{n}{1} x^{n+1}+\binom{n}{2} x^{n+2}+\ldots+\binom{n}{n} x^{2 n} \\
& =x^{n}\left[\binom{n}{1} x^{1}+\binom{n}{2} x^{2}+\ldots+\binom{n}{n} x^{n}\right] \\
& =x^{n}\left[(1+x)^{n}-1\right] .
\end{aligned}
$$

Theorem 2.7. The PTD polynomial of complete graph k_{n} is $\binom{n}{2} x^{2}$.
Proof. Clearly, $\gamma_{p t}(\mathcal{G})=2$ and every edge of complete graph is a PTDS of cardinality 2 . Thus $d_{p t}\left(k_{n}, 2\right)=\binom{n}{2}$. Since every $T D S$ of k_{n} having cardinality $k \geq 3$ does not contain any pendant vertex, then $d_{p t}\left(k_{n}, k\right)=0$ for $k \geq 3$. Hence, $D_{p t}\left(k_{n}, x\right)=\binom{n}{2} x^{2}$.

Theorem 2.8. The PTD polynomial of a Lollipop graph $L_{n, 1}$ is $x^{2}\left[n+(1+x)^{n-1}-1\right]$.

Figure 2. Lollipop graph $L_{n, 1}$

Proof. According to definition of PTDS, it is easy to see that there is no PTDS of cardinality one and n PTDS of cardinality two namely $\left\{v_{1}, v_{n}\right\},\left\{v_{2}, v_{n}\right\}, \ldots,\left\{v_{n-1}, v_{n}\right\},\left\{v_{n}, v_{n+1}\right\}$. Similarly, for PTDS of cardinality 3 we need to select two vertices v_{n}, v_{n+1} and select one vertex from $\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$. Thus, there are $\binom{n-1}{1} P T D S$ of cardinality three. Proceeding in the same manner, we determine other PTDS of cardinality $4,5, \ldots, n+1$.
Hence,

$$
\begin{aligned}
D_{p t}\left(L_{n, 1}, x\right) & =n x^{2}+\binom{n-1}{1} x^{3}+\binom{n-1}{2} x^{4}+\ldots+\binom{n-1}{n-1} x^{n+1} \\
& =n x^{2}+x^{2}\left[\binom{n-1}{1} x^{1}+\binom{n-1}{2} x^{2}+\ldots+\binom{n-1}{n-1} x^{n-1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =n x^{2}+x^{2}\left[\sum_{k=1}^{n-1}\binom{n-1}{k} x^{k}\right] \\
& =x^{2}\left[n+(1+x)^{n-1}-1\right] .
\end{aligned}
$$

Theorem 2.9. The pendant total domination polynomial of a complete bipartite graph $K_{n, n}$ of order $2 n$ is $n^{2} x^{2}+2\binom{n}{1} \sum_{k=2}^{n}\binom{n}{k} x^{1+k}$.
Proof. Let V_{1} and V_{2} be the partite set of complete bipartite graph $K_{n, n}$. To construct PTDS, select at least one vertex from V_{1} and at least one from V_{2}. Thus $\gamma_{p t}\left(K_{n, n}\right)=2$. Now it is easy to see that there are $n^{2} P T D S$ of cardinality two. To construct PTDS of cardinality 3 we need to select one vertex from V_{1} (or V_{2}) and other two from V_{2} (or V_{1}). Therefore, there are $2\binom{n}{1}\binom{n}{2}$ PTDS of cardinality three. Similarly, to construct PTDS of cardinality 4 we need to select one vertex from V_{1} (or V_{2}) and remaining vertices from V_{2} (or V_{1}). Proceeding in the same manner, we determine other PTDS of cardinality $5, \ldots, n+1$ and $d_{p t}\left(K_{n, n}, k\right)=0$ for $\forall k>n+1$ as every $T D S$ of cardinality greater than $n+1$ does not have any pendant vertex. Thus, we have

$$
\begin{aligned}
D_{p t}\left(K_{n, n}, x\right) & =n^{2} x^{2}+2\binom{n}{1}\binom{n}{2} x^{3}+2\binom{n}{1}\binom{n}{3} x^{4}+\ldots+2\binom{n}{1}\binom{n}{n} x^{n+1} \\
& =n^{2} x^{2}+2\binom{n}{1} \sum_{k=2}^{n}\binom{n}{k} x^{1+k} .
\end{aligned}
$$

Theorem 2.10. The pendant total domination polynomial of any connected graph of order $n \geq 2$ has nullity greater than or equal to two.

Proof. Suppose $\mathcal{T} \subseteq \mathcal{V}_{\mathcal{G}}$ be a PTDS of \mathcal{G} then \mathcal{T} must be a $T D S$ and the subgraph induced by \mathcal{T} contains atleast one pendant vertex. Let $|\mathcal{T}|=\gamma_{p t}(\mathcal{G})$. As per definition of $T D S$, \mathcal{T} should have atleast two vertices which are adjacent to each other so that $\gamma_{t d}(\mathcal{G}) \geq 2$ and also $\gamma_{p t}(\mathcal{G}) \geq 2$. In $D_{p t}(\mathcal{G}, x), k$ ranges from PTDN to order of \mathcal{G} so that $d e g(x) \geq 2$ in $D_{p t}(\mathcal{G}, x)$. If we take $D_{p t}(\mathcal{G}, x)=0$, then $x=0$ will be the zero of order 2 or more. Hence nullity of $D_{p t}(\mathcal{G}, x)$ is greater than or equal to two.

3. Conclusion

We determined the pendant total dominating sets and pendant total domination polynomial of some standard graphs like complete graph, lollipop graph, complete bipartite graph and corona of a connected graph with k_{1}. Also, we studied some properties of pendant total domination polynomial and determined the lower bound for nullity of pandant total domination polynomial. Further, pendant total domination polynomial can also be determined for different graphs and different graph operations like total, cartesian, middle, join of graphs etc.

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

[1] S. Alikhani, On the domination polynomial of some graph operations, International Scholarly Research Notices 2013 (2013), Article ID 146595, 3 pages, DOI: 10.1155/2013/146595.
[2] S. Alikhani and Y. H. Peng, Introduction to Domination Polynomial of a Graph, Ars Combinatoria 114(2014), 257 - 266, URL: http://combinatoire.ca/ArsCombinatoria/ACgetit.php?vol=114\&paper= 26
[3] J. L. Arocha and B. Llano, Mean value for the matching and dominating polynomial, Discussiones Mathematicae Graph Theory 20(1) (2000), 57 - 69, DOI: 10.7151/dmgt.1106.
[4] B. Chaluvaraju and V. Chaitra, Total domination polynomial of a graph, Journal of Informatics and Mathematical Sciences 6(2) (2014), 87 - 92, DOI: $10.26713 /$ jims.v6i2.256.
[5] E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total domination in graphs, Networks 10(3) (1980), 211 - 219, DOI: $10.1002 /$ net. 3230100304
[6] I. Gutman and B. Borovićanin, Nullity of graphs: An updated survey, Zbornik Radova 22 (2011), 137 - 154, URL: http://elib.mi.sanu.ac.rs/files/journals/zr/22/zbr14137.pdf.
[7] S. R. Nayaka, Puttaswamy and S. Purushothama, Pendant domination in graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 112(1) (2020), 219-230.
[8] S. R. Nayaka, Puttaswamy and S. Purushothama, Pendant domination polynomial of a graph, International Journal of Pure and Applied Mathematics 117(11) (2017), 193 - 199, URL: https: //acadpubl.eu/jsi/2017-117-11-14/articles/11/23.pdf.
[9] J. Rani and S. Mehra, Pendant total domination number of some generalized graphs, Advances and Applications in Discrete Mathematics 33 (2022), 19 - 44, DOI: 10.17654/0974165822036.

Communications in Mathematics and Applications, Vol. 14, No. 2, pp. $647,654,2023$

