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1. Introduction
In this paper, the optimization of linear and nonlinear systems are discussed. The problems
involving only the crisp values are inevitable with inexactness and uncertainty when using
real-world problems. Zadeh [18] introduced the Fuzzy sets in 1965, it plays an important
role and deals with vagueness and dissimilarities. Bellman and Zadeh [3] put forward
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the approach of making a decision in a fuzzy environment in 1970. Intuitionistic fuzzy set
was introduced by Atanassov in 1983 [2]. Chalco-Cano et al. [4] deliberated Newton’s method
for solving optimization problems in 2015. “A comparative solution of fuzzy unconstrained
optimization problems with a triangular fuzzy number” was established by Umamaheshwari
and Ganesan [16]. Throughout most of the recent decades, many researchers have designed
optimization problems with fuzzy valued objective problems ([1, 5–7, 14, 15]). Moreover, the
unconstrained problems are solved by differential calculus. Vidhya and Hepzibah [17] introduced
“A comparative study on interval arithmetic operations with intuitionistic fuzzy numbers”.
“A Newton method for nonlinear unconstrained optimization problems with two variables”
was proposed by Porchelvi and Sathya [12]. This paper, deals with fuzzy Newton’s method
with triangular coefficient, trapezoidal coefficient, triangular intuitionistic, and trapezoidal
intuitionistic coefficient to solve unconstrained optimization problems. Moreover, a comparison
between crisp Newton’s method with fuzzy and intuitionistic unconstrained optimization
problems have been made. This paper is organised as follows. The second portion covers
some preliminary information about this study project. In Section 3, various techniques for
solving unconstrained optimization problems in a fuzzy and intuitionistic fuzzy environment are
proposed. In Section 4, some illustrative cases are offered to demonstrate the method’s resilience.
In Section 5, there is a comparative study of the present approaches. Section 6 concludes with
some concluding remarks.

2. Preliminaries
This section provides an introduction to fuzzy unconstrained optimization models and stressed
the importance to consider the topics like linear and nonlinear optimization problems in fuzzy
environment using arithmetic operations and provides certain definitions which are related to
this research work.

2.1 Basic Concepts of Fuzzy Sets and Fuzzy Numbers
Definition 2.1 ([9]). A fuzzy set Ã is defined by Ã = {x,µÃ(x) : x ∈ µÃ(x) ∈ [0,1]}. In the pair
(x,µÃ(x)) the first element X belongs to the classical set A, the second element µÃ(x), belongs
to the interval [0,1] called membership function, denoted by Ã = {µÃ(x)\x : x ∈ A,µÃ(x) ∈ [0,1]}.

Definition 2.2 ([9]). Let R be the set of real numbers and Ã :R→ [0,1] be a fuzzy set then we
say that Ã is a fuzzy number that contains the following properties:

(i) 0 is normal, i.e., there exist x0 ∈R such that Ã(x0)= 1;

(ii) Ã is convex, i.e., Ã(tx+ (1− t)y≥min
{
Ã(x), Ã(y)

}
, where x, y ∈R and t ∈ [0,1].

(iii) Ã(x) is upper semi-continuous on R, i.e.,
{

x
Ã(x)

≥α
}

is a closed subset of R for each
α ∈ [0,1].

Definition 2.3 ([9]). Let us take a fuzzy number Ã on R is said to be a triangular fuzzy
number (TFN) or linear fuzzy number if its membership function Ã :R→ [0,1] has the following
characteristics. It is a fuzzy number represents with three points as follows Ã= (a1,a2,a3). This
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representative is interpreted as membership functions and holds the following conditions:
(i) a1 to a2 is increasing function

(ii) a2 to a3 is decreasing function.

(iii) a1 ≤ a2 ≤ a3.

µÃ(x) :=


0, for x < a1
x−a1

a2−a1
, for a1 ≤ x ≤ a2,

a3−x
a3−a2

, for a2 ≤ x ≤ a3,

0, otherwise.

The triangular fuzzy number is diagrammatically shown below.

Figure 1. Triangular fuzzy number

Let F(R) to denote the set of all TFNs. The α level set of Ã is defined as Ãα = [(a2 −a1)α+
a1,a3 − (a3 −a2)α].

Definition 2.4 ([9]). Let us consider fuzzy number Ã on R is said to be a trapezoidal fuzzy
number (TrFN) or linear fuzzy number if the membership function Ã : R → [0,1] has the
following characteristics. It is a fuzzy number represents with four points Ã = (a1,a2,a3,a4)
such that a1 ≤ a2 ≤ a3 ≤ a4 with the membership function defined as

µÃ(x)=



x−a1
a2−a1

, for a1 ≤ x ≤ a2,

−1, for a2 ≤ x ≤ a3,
a4−x

a4−a3
, for a2 ≤ x ≤ a3,

0, otherwise.

The trapezoidal fuzzy number diagrammatically is shown below.

Figure 2. Trapezoidal fuzzy number
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2.2 Arithmetic Operations on Fuzzy Numbers
2.2.1 Arithmetic Operations for Triangular Fuzzy Numbers
Let us consider Ã= (a1,a2,a3) and B̃= (b1,b2,b3) are two triangular fuzzy numbers. Then the
arithmetic operations are:

Addition [9]. Ã+ B̃= (a1 +b1,a2 +b2,a3 +a3).

Subtraction [9]. Ã− B̃= (a1 −b1,a2 −b2,a3 −a3).

Multiplication. Ã · B̃= (a1 ·R(B̃),a2 ·R(B̃),a3 ·R(B̃)), where R(B̃)= (b1 +4b2 +b3)/6.

Division. Ã/B̃= (a1/R(B̃),a2/R(B̃),a3/R(B̃)), where R(B̃)= (b1 +4b2 +b3)/6.

2.2.2 Arithmetic Operation for Trapezoidal Fuzzy Numbers
Suppose Ã= (a1,a2,a3,a4) and B̃= (b1,b2,b3,b4) are two TrFN. Then the arithmetic operations
are:

Addition [9]. Ã+ B̃= (a1 +b1,a2 +b2,a3 +b3,a4 +b4)

Subtraction [9]. Ã− B̃= (a1 −b4,a2 −b3,a3 −b2,a4 −b1)

Multiplication. Ã·B̃= (a1 ·R(B̃),a2 ·R(B̃),a3 ·R(B̃),a4 ·R(B̃)), where R(B̃)= (b1+2b2+2b3+b4)/6

Division. Ã/B̃= (a1/R(B̃),a2/R(B̃),a3/R(B̃),a4/(B̃)), where R(B̃)= (b1 +2b2 +2b3 +b4)/6.

Definition 2.5 ([2]). Let the set X = {x1, x2, x3, . . . xn} an intuitionistic fuzzy set (IFS) is defined
as A = (xi, tA(xi), fA(xi) : xi ∈ X ) which assigns to each other element xi a membership degree
tA(xi) and a non-membership degree fA(xi) under the condition 0 ≤ tA(xi)+ fA(xi) ≤ 1, for all
(xi) ∈ X in [2].

Definition 2.6 ([8]). A Triangular Intuitionistic Fuzzy Number (TIFN) ÃI is an intuitionist
fuzzy set in R with the following membership function µÃ(x) and non-membership function
VÃ(x)

µÃ(x)=


x−a1

a2−a1
, a1 ≤ x ≤ a2,

x−a3
a2−a3

, a2 ≤ x ≤ a3,

0, otherwise,

VÃI (x)=


a2−x

a2−a′
1
, a′

1 ≤ x ≤ a12,
x−a2

a3−a′
3
, a2 ≤ x ≤ a′

3,

1, otherwise.

The intuitionistic triangular fuzzy number is diagrammatically shown below.

Figure 3. Triangular intuitionistic fuzzy number
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Here a′
3 ≤ a2 ≤ a2 ≤ a3 ≤ a3 and µÃI (x)+VÃI (x)≤ 1, or µÃI (x)=VÃI (x) for all x ∈ R. This TIFN

is denoted by ÃI = (a1,a2,a3;a′
1,a2,a′

3)= {(a1,a2,a3); (a′
1,a2,a′

3)}.

2.2.3 Arithmetic Operation for Triangular Intuitionistic Fuzzy Numbers
Let ÃI = {(a1,a2,a3); (a′

1,a2,a′
3)} and B̃I = {(b1,b2,b3); (b′

1,b2,b′
3)} are two TIFN,

Addition. ÃI + B̃I = (a1 +b1,a2 +b2,a3 +b3); (a′
1 +b′

1,a2 +a2,a′
3 +b′

3) is also a TIFN.

Subtraction. ÃI − B̃I = (a1 −b3,a2 −b2,a3 −b1); (a′
1 −b′

3,a2 −b2,a′
3 −b′

1) is also a TIFN.

Multiplication. ÃI ·B̃I = (a1 ·R(B̃I ),a2 ·R(B̃I ),a3 ·R(K̃ I )); (a′
1 ·R(B̃I ),a2 ·R(B̃I ),a′

3 ·R(ãI )) is also

a TIFN, where R(K̃ I)= b1+4b2+b3+b′
1+4b2+b′

3
12 .

Division. ÃI /B̃I = (a1/R(B̃I),a2/R(B̃I),a3/R(K̃ I)); (a′
1/R(B̃I),a2/R(B̃I),a′

3 ·R(ãI)) is also a TIFN,

where R(K̃ I)= b1+4b2+b3+b′
1+4b2+b′

3
12 .

Definition 2.7 ([11], Trapezoidal Intuitionistic Fuzzy Number [8]). Let trapezoidal intuitionistic
fuzzy number (TrIFN) ÃI is an intuitionistic fuzzy set in R with the following membership
function µÃI (x) and non-membership function VÃI (x).

µÃI (x)=


0, x < a1
x−a1

a2−a1
, a1 ≤ x ≤ a2, a2 ≤ x ≤ a3,

x−a4
a3−a4

, a3 ≤ x ≤ a4,

0, otherwise,

and



1, x < a′
1

x−a1
a′

2−a′
1
, a′

1 ≤ x ≤ a′
2,

VÃI (x)= 0, a′
2 ≥ x ≥ a′

3,
x−a′

4
a′

3−a′
4
, a3 ≤ x ≤ a′

4,

1, otherwise.

The trapezoidal intuitionistic fuzzy number is diagrammatically shown below.

Figure 4. Triangular intuitionistic fuzzy number

2.2.4 New Modified Arithmetic Operations for Trapezoidal Intuitionistic Fuzzy Numbers
The following are the modified operations that can be performed on trapezoidal intuitionistic
fuzzy numbers:

Let ÃI = {(a1,a2,a3,a4); (a′
1,a2,a′

3,a′
4)} and B̃I = {(b1,b2,b3,b4); (b′

1,b2,b′
3,b′

4)}.

Addition. ÃI + B̃I = {(a1 +b1,a2 +b2,a3 +b3,a4 +b4); (a′
1 +b′

1,a′
2 +b′

2,a′
3 +b′

3,a′
4 +b′

4)}.

Subtraction. ÃI − B̃I = {(a1 −b4,a2 −b3,a3 −b2,a4 −b1); (a′
1 −b′

4,a′
2 −b′

3,a′
3 −b′

2,a′
4 −b′

1)}.

Multiplication. ÃI · B̃I = {(a1 ·R(B̃I),a2 ·R(B̃I),a3 ·R(B̃I),a4 ·R(B̃I)); (a′
1 ·R(B̃I),a′

2 ·R(B̃I),a′
3 ·

Communications in Mathematics and Applications, Vol. 13, No. 4, pp. 1295–1305, 2022



1300 On Comparison of Crisp, Fuzzy, Intuitionistic Fuzzy Unconstrained. . . : R.I. Hepzibah and S.S.I. Emimal

R(B̃I), j′4 ·R(B̃I))}, where R(B̃I)= (b1 +2b2 +2b3 +b4 +b′
1 +2b′

2 +2b′
3 +b′

4)/12.

Division. ÃI /B̃I =
{

a1
R(B̃I )

, a2
R(B̃I )

, a3
R(B̃I )

, a4
R(B̃I ))

; (a′
1/R(B̃I),a′

2/R(B̃I),a′
3/R(B̃I),a′

4/R(B̃I))
}
, where

R(K̃ I)= (k1 +2k2 +2k3 +k4 +k′
1 +2k′

2 +2k′
3 +k′

4)/12.

3. Proposed Algorithms to Solve Unconstrained Optimization Problems
Newton’s Method ([13]). Gradient search can be viewed as pursuing the move direction
suggested by the first order Taylor’s series approximation.

Aligning ∆ with gradient ∇ f (x(t)) produces the most rapid improvement in this first order
approximation to f (x).

To improve on the slow, zigzagging progress characteristic of gradient search requires more
information. An obvious possibilities in extending to the second order Taylor approximation.

Newton Step ([13]). Until the first order Taylor approximation, which is linear in directional
components ∆x j , the quadratic second order version may have a local optimum of the second
order approximation, we may fix λ= 1 and differentiable f2 with respect to components of ∆x
with λ= 1, the scalar notation form of f2 is

f2(x(t) +∆x≜ f (x(t))+
n∑

i=1

(
∂ f
∂xi

)
∆xi + 1

2

n∑
i=1

n∑
j=i

(
∂2 f

∂xi∂x j

)
∆xi∆x j .

The partial derivatives with respect to move components are
∂ f2

∂∆xi
=

(
∂ f
∂xi

)
+

n∑
j=i

(
∂2 f

∂xi∂x j

)
∆xi, i = 1,2,3, · · ·

or in matrix format ∇ f2(∆x)=∆ f (x(t))+H(x(t))∆x.
Either way, setting ∇ f2(x)= 0 to find a stationary point produces the famous Newton Step.
Consider H(x(t))∆x =−∇ f (x(t)), when Newton step ∆x, which move to a stationary point (if

there is one) of the second order Taylor series approximation to f (x) at current point X (t) can be
obtaining by solving the linear equation system.

3.1 Algorithms

Algorithm 3.1 Newton Method [13]
Step 1: Initialization: Choose any starting solution (x(0)), pick stopping tolerance ε< 0, and the
solution index t ← 0.

Step 2: Derivatives: Compute objective function gradient ∇ f (x(t)) and Hessian matrix H(x(t)) at
current point (x(t)).

Step 3: Stationary point: If ∥∇ f (x(t))∥ < ε, stop. Point (x(t)) is sufficiently close to a stationary
point.

Step 4: Newton move: Solve the linear system. H(x(t))∆x =−∇ f (x(t)) for Newton move ∆(x(t+1)).

Step 5: New point: (x(t+1))← (x(t))+∆(x(t+1)).

Step 6: Increment t ← t+1, and return to Step 1.
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Algorithm 3.2 Fuzzy Newton Algorithm
Step 1: Initialization: Choose any starting solution (x̃(0)), pick stopping tolerance ∈< 0, and the
solution index t ← 0.

Step 2: Derivatives: Compute objective function gradient ∇ f̃ (x̃(t)) and Hessian matrix H̃(x̃(t)) at
current point (x̃(t)).

Step 3: Stationary point: If ∥∇ f̃ (x̃(t))∥ <∈, stop. Point (x̃(t)) is sufficiently close to a stationary
point.

Step 4: Newton move: Solve the linear system. H̃(x̃(t))∆x̃ =−∇ f̃ (x̃(t)) for Newton move ∆(x̃(t+1)).

Step 5: New point: (x̃(t+1))← (x̃(t))+∆(x̃(t+1)).

Step 6: Increment t ← t+1, and return to Step 1.

Algorithm 3.3 Intuitionistic Fuzzy Newton Algorithm
Step 1: Initialization: Choose any starting solution (x̃I (0)), pick stopping tolerance ∈< 0, and the
solution index t ← 0.

Step 2: Derivatives: Generate the gradient of both the objective function ∇ f̃ (x̃(t))I as well as the
Hessian matrix H̃ I(x̃I (t)) well at current point (x̃I (t)).

Step 3: Stationary point: If ∥∇ f̃ I(x̃I (t))∥ <∈, stop. Point (x̃I (t)) is sufficiently close to a stationary
point.

Step 4: Newton move: The linear system should always be computed. For the Newton move
∆(x̃I (t+1)), H̃ I(x̃I (t))∆x̃ =−(∆ f̃ (x̃(t)))I .

Step 5: New point (x̃I (t+1))← (x̃I (t))+∆(x̃I (t+1)).

Step 6: Increment t ← t+1, and return to Step 1.

4. Numerical Illustrations
Some numerical examples are provided here to check the robustness of the proposed algorithms.

Illustrative Example 4.1. Case (i): Let us consider the unconstrained optimization problem
with triangular fuzzy coefficients, T (x, y)= (0.5,1,1.5)x3− (2,3,4)xy+ (0.5,1,1.5)y3. Solving this
problem by using Algorithm 3.2, the MATLAB outputs are tabulated here.

Iteration (xi, yi) (xi+1, yi+1)
1 (0.5000000,1.0000000,1.5000000) (0.21500000,1.1428000,2.0718000)

(1.5000000,2.0000000,2.5000000) (−0.1901000,1.2860000,2.7648000)

2 (0.2150000,1.1428000,2.0718000) (0.0601000,1.0279000,2.0010000)
(−0.1901000,1.2860000,2.7648000) (−0.5543000,1.0428000,0.6427000)

Case (ii): Let us consider the following unconstrained optimization problems with trapezoidal
fuzzy coefficients T̃ (x, y) = (0.5,0.75,1,1.75)x̃3 − (1.5,2.25,3,5.25)x̃ ỹ + (0.5,0.75,1,1.75) ỹ3.
Solving this problem by using Algorithm 3.2, the MATLAB outputs are tabulated here.
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Iteration (xi, yi) (xi+1, yi+1)
1 (0.5000000,0.7500000,1.0000000,1.7500000) (0.7500000,0.8928570,1.1071430,0.8214290)

(1.500000,1.7500000,2.0000000,2.7500000) (0.2500000,1.0357140,1.4642860,2.3928570)
2 (0.7500000,0.8928570,1.1071430,0.8214290) (0.5476810,0.7772468,1.0204350,1.7636240)

(0.2500000,1.0357140,1.4642860,2.3928570) (−0.1723400,0.7943750,1.2832820,2.272157)

Case (iii): Let us consider the following unconstrained optimization problem with triangular
Intuitionistic fuzzy coefficients T̃ (x, y) = (0.5,1,1.5);(0.4,1,1.6)x3 − (2.5,3,3.5)(2.4,3,3.6)xy+
(0.5,1,1.5); (0.4,1,1.6)y3. Solving this problem by using Algorithm 3.3, the MATLAB outputs are
tabulated here.

Iteration (xi, yi) (xi+1, yi+1)
1 (0.5,1,1.5); (0.4,1,1.6) {(0.4285714,1.1428571,1.8571428);

(1.5,2,2.5); (1.4,2,2.6) (0.3857142,1.1428571,1.9000000)}
{(1.1904761,1.2857142,1.3809523);
(1.2714285,1.2857142,1.3000000)}

2 {(0.4285714,1.1428571,1.8571428); {(0.3360231,1.0274955,1.7189679);
(0.3857142,1.1428571,1.9000000)} (−0.1723400,0.7943750,1.2832820,2.272157)}
{(1.1904761,1.2857142,1.3809523); {(1.0674437,1.042438,1.0174337);

(1.271428,1.2857142,1.300000)} (1.1714973,1.0427136,0.9139298)}

Case (iv): Let us consider the following unconstrained optimization problem with
trapezoidal Intuitionistic fuzzy coefficients T̃ (x, y)= {(0.5,0.75,1,1.75);(0.25,0.50,1,2.25)}x3−
{(1.5,2.25,3,5.25)(0.75,0.50,3,6.75)}xy+ {(0.5,0.75,1,1.75);(0.25,0.50,1,2.25)}y3. Solving this
problem by using Algorithm 3.3, the MATLAB outputs are tabulated here.

Iteration (xi, yi) (xi+1, yi+1)
1 {(0.5,0.75,1,1.75); (0.25,0.50,1,2.25)} (0.7500000,0.8928571,1.1071428,1.8214285);

(0.8214285, 0.8928571, 1.0714285, 1.7857142)
{(1.5,1.75,2,2.75); (1.25,1.50,2,3.25)} (0.2500000,1.0357142,1.46428572.3928571);

(−0.107142,1.0357142,1.64285714,2.5714285)
2 {(0.750000,0.8928571,1.1071428,1.8214285); {(0.5277777,0.7658730,1.0119047,1.7579365);

(0.8214285, 0.8928571, (0.5992063,0.7658730,0.976190,1.7222222)}
1.0714285,1.7857142)}

{(0.2500000,1.0357142,1.4642857,2.3928571); {(−0.1590909,0.8019480,1.2889610,2.2759740);
(−0.107142,1.0357142, (−0.5162337,0.8019480,1.4675324,2.4545454)}
1.6428571,2.5714285)}

Illustrative Example 4.2. Case (i): Consider the unconstrained optimization with triangular
fuzzy coefficients as follows:
T̃ (x, y) = (0.5,1,1.5)x− (0.5,1,1.5)y+ (1.5,2,2.5)xy+ (1.5,2,2.5)x2 + (0.5,1,1.5)y2. Solving this
problem by using Algorithm 3.2, the MATLAB outputs are tabulated here.

Iteration (xi, yi) (xi+1, yi+1)
1 (0,0,0) (−0.5000000,−1.000000,−1.50000)

(0,0,0) (0.750000,1.50000,2.250000)
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Case (ii): Consider the unconstrained optimization with trapezoidal fuzzy coefficients shown
below.
T̃ (x, y) = (0.5,0.75,1,1.75)x − (0.5,0.75,1,1.75)y + (1.5,1.75,2,2.75)xy + (1.5,1.75,2,2.25)x2 −
(0.5,0.75,1,1.75)y2. Solving this problem by using Algorithm 3.2, the MATLAB outputs are
tabulated here.

Iteration (xi, yi) (xi+1, yi+1)
1 (0,0,0)(0,0,0) (−1.5625,−1,−0.8125,−0.625)

(1.125,1.3125,1.5,2.0625)

Case (iii): Consider the unconstrained optimization problem with triangular Intuitionistic fuzzy
coefficients that follows:
T̃ (x, y)= (0.4,1,1.6); (0.5,1,1.5)x−(0.4,1,1.6); (0.5,1,1.5)y+(1.5,2,2.5); (1.4,2,2.6)xy+(1.5,2,2.5);
(1.4,2,2.6)x2 + (0.4,1,1.6);(0.5,1,1.5)y2. Solving this problem by using Algorithm 3.3, the
MATLAB outputs are tabulated here.

Iteration (xi, yi) (xi+1, yi+1)
1 {(0,0,0)(0,0,0)} {(−0.5000000,−1.0000000,−1.5000000);

{(0,0,0)(0,0,0)} (−0.4500000,−1.0000000,−1.5500000)}

{(0.7500000,1.500000,2.250000);
(0.700000,1.5000000,2.3000000)}

Case (iv): Consider the unconstrained optimization problem with trapezoidal Intuitionistic fuzzy
coefficients that follows:
T̃ (x, y) = (0.5,0.75,1,1.75);(0.25,0.50,1,2.25)x − (0.5,0.75,1,1.75);(0.25,0.50,1,2.25)y+
(1.5,1.75,2,2.75); (1.25,1.50,2,3.25)xy+(1.5,1.75,2,2.25); (1.25,1.50,2,3.25)x2−(0.5,0.75,1,1.75);
(0.25,0.50,1,2.25)y2. Solving this problem by using Algorithm 3.3, the MATLAB outputs are
tabulated here.

Iteration (xi, yi) (xi+1, yi+1)
1 {(0,0,0,0); (0,0,0,0); } {(−0.3750000,−0.4375000,−0.500000,−0.6875000);

{(0,0,0,0); (0,0,0,0); } (−1.9375800,−1.004000,0.6202000,−0.4250200)}

{(−0.7500000,−0.8750000,−1.000000,−1.3750000);

(0.9000350,1.1204400,1.5000590,2.4375950)}

5. Comparative Study of Proposed Method with Existing Method

Number of iterations Number of iterations in proposed algorithm

Function in existing algorithm [12] Fuzzy Newton method Intuitionistic fuzzy

Newton method

x3 −3xy+ y3 8 2 2

x− y+2xy+2x2 + y2 14 1 1
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6. Conclusion
A new strategy for solving fuzzy unconstrained optimization issues was proposed in this paper.
In addition, triangular and trapezoidal fuzzy number coefficients, as well as triangular and
trapezoidal intuitionistic fuzzy number coefficients, are used. For tackling fuzzy unconstrained
optimization problems, Newton’s approach is employed, and the validity of the proposed method
is tested using numerical examples and MATLAB programme outputs. In addition, we conducted
a comparison study of crisp, fuzzy, and intuitionistic fuzzy Newton’s methods with unconstrained
optimization problems and found that our suggested method converges quickly.
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