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Abstract. In a graph G with point set V a mapping f is said to be an odd prime labeling if f is a
one-to-one function from point set V to {1,3,5,2|V |−1} satisfying the condition that for each line uv
in G the greatest common divisor of the labels of the end points f (u), f (v) is one. Investigated in this
paper the odd prime labeling of circular ladder related graphs and we prove that the graphs such as
CL(n), SCL(n), CL(n)

⊙
K1,CL(n)

⊙
K̄2, CL(n)

⊙
K̄3 are all odd prime graphs.

Keywords. Odd prime graph, Circular ladder, Subdivision, Corona product

Mathematics Subject Classification (2020). 05C78

Copyright © 2022 S. Meena and G. Gajalakshmi. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

1. Introduction
In this paper, we consider only simple and finite graphs with point set V (G) and line set E(G).
For graph theoretical notations we refer Bondy and Murthy [1].

For entire survey of graph labelling we refer [4]. Several variations of graph labeling has
been developed including prime labeling. Many researchers have studied about prime graphs
[2,3,8]. Meena and Kavitha in [5] proved that some star related graphs are prime graphs (cf.
Meena and Vaithilingam [6].
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The concept of odd prime labeling was introduced by Prajapati and Shah [7] and they
have proved that the many class of graphs are odd prime graphs. Investigate in this paper
the existence of odd prime labeling for some new types of graphs CL(n), SCL(n), CL(n)

⊙
K1,

CL(n)
⊙

K̄2, CL(n)
⊙

K3 are all odd prime graphs.

Definition 1.1. For a graph G, a one-to-one mapping f : V (G) → O|V | is said to be odd prime
labeling if for each line uv ∈ E, greatest common divisor ( f (u), f (v)) is one. A graph is called an
odd prime labeling if which admits odd prime graph. Here O|V | = {1,3,5, . . . 2|V |−n}.

Definition 1.2. Let S1 and S2 be any two graphs. The corona product of S1
⊙

S2 is got by one
copy of S1 and |V (S1)| copies of S2 and by joining each vertex of the k-th copy of S2 to the k-th
vertex of S1 where 1≤ k ≤ |V (S1)|.

Definition 1.3. The circular ladder graph CLn is the Cartesian product Cn ×P2, where P2 is
the path on two nodes and Cn is the cycle on n nodes.

2. Main Results
Theorem 2.1. The circular ladder CL(n) is an odd prime graph for all n.

Proof. Let V (CL(n))= {uk,vk/1≤ k ≤ n}.
E(CL(n))= {uk,vk/1≤ k ≤ n}∪ {ukuk+1,vkvk+1/1≤ k ≤ n−1}∪ {u1un,v1vn}.
Here |V (CL(n)| = 2n and |E(CL(n)| = 3n.
Define a mapping f from V (G) to O2n as follows:

f (uk)= 4k−3 for 1≤ k ≤ n,

f (vk)= 4k−1 for 1≤ k ≤ n.

If n ≡ 1(mod 3) then interchange the labels of u1 and v1 so that f (u1)= 3 and f (v1)= 1.
Clearly, point labels are different with this labeling for each line e ∈ E if gcd( f (u), f (v))= 1.
If n ̸≡ 1(mod 3) then for

(i) e = ukvk, gcd( f (uk), f (vk))= gcd(4k−3,4k−1)= 1 for 1≤ k ≤ n.

(ii) e = ukuk+1, gcd( f (uk), f (uk+1))= gcd(4k−3,4k+1)= 1 for 1≤ k ≤ n−1.

(iii) e = vkvk+1, gcd( f (vk), f (vk+1))= gcd(4k−1,4k+3)= 1 for 1≤ k ≤ n−1.

(iv) e = v1vn, gcd( f (v1), f (vn))= gcd(3,4n−1)= 1.

(v) e = u1un, gcd( f (u1), f (un))= gcd(4k−3,4k−1)= 1.
If n ≡ 1(mod 3) then

(vi) e = v1vn, gcd( f (v1), f (vn))= gcd(1, f (vn))= 1.

(vii) e = u1un, gcd( f (u1), f (un))= gcd(3,4n−3)= 1.

(viii) e = u1u2, gcd( f (u1), f (u2))= gcd(3,5)= 1.
Thus CL(n) is an odd prime graph.
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Figure 1

Theorem 2.2. The Subdivision graph of a circular ladder SCL(n) is an odd prime graph for all
n ≥ 3.

Proof. Let G be the subdivision graph of circular ladder S(CL(n)).

V (SCL(n))= {uk,vk, rk, sk, tk/1≤ k ≤ n},

E(SCL(n))= {ukrk, rkvk,vksk,uktk/1≤ k ≤ n}.

Here |V (SCL(n))| = 5n and |E(SCL(n))| = 6n.
Define a mapping f from V (G) to O5n as follows:

f (uk)= 10k−9 for 1≤ k ≤ n,

f (vk)= 10k−5 for 1≤ k ≤ n,

f (sk)= 10k−3 for 1≤ k ≤ n,

f (rk)= 10k−7 for 1≤ k ≤ n,

f (tk)= 10k−1 for 1≤ k ≤ n.

Clearly, the point labels are different with this labeling for each line e ∈ E. The greatest common
divisor ( f (u), f (v))= 1.

(i) e = ukrk,gcd( f (uk), f (rk))= gcd(10k−9,10k−7)= 1 for 1≤ k ≤ n.

(ii) e = vkrk,gcd( f (vk), f (rk))= gcd(10k−5,10k−7)= 1 for 1≤ k ≤ n.

(iii) e = vksk,gcd( f (vk), f (sk))= gcd(10k−5,10k−3)= 1 for 1≤ k ≤ n.

(iv) e = uktk,gcd( f (uk), f (tk))= gcd(10k−9,10k−1)= 1 for 1≤ k ≤ n.

(v) e = skvk+1, gcd( f (sk), f (vk+1))= gcd(10k−3,10k+5)= 1 for 1≤ k ≤ n−1.

(vi) e = tkuk+1, gcd( f (yk), f (uk+1))= gcd(10k−1,10k+1)= 1 for 1≤ k ≤ n−1.

(vii) e = u1tn, gcd( f (u1), f (tn)= gcd(1, f (tn)= 1.
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(viii) e = v1sn, gcd( f (v1), f (sn)= gcd(5, f (sn)= 1.
Thus SCL(n) is an odd prime graph.

Figure 2

Theorem 2.3. The carona product of circular ladder CL(n)
⊙

K1 is an odd prime graph for
all n.

Proof. Let V (CL(n))= {uk,vk, xk, yk/1≤ k ≤ n}.
E(CL(n))= {ukvk,ukxk,vk yk/1≤ k ≤ n}∪ {ukuk+1,vkvk+1/1≤ k ≤ n−1}.
Define a mapping f from V (G) to O4n as follows:

f (uk)= 8k−7 for 1≤ k ≤ n,

f (vk)= 8k−3 for 1≤ k ≤ n,

f (xk)= 8k−5 for 1≤ k ≤ n,

f (yk)= 8k−1 for 1≤ k ≤ n.

Clearly, the point labels are different with this labeling for each line e ∈ E.
The greatest common divisor ( f (u), f (v))= 1.

(i) e = ukvk,gcd( f (uk), f (vk))= gcd(8k−7,8k−3)= 1 for 1≤ k ≤ n.

(ii) e = ukxk,gcd( f (uk), f (xk))= gcd(8k−7,8k−5)= 1 for 1≤ k ≤ n.

(iii) e = vk yk,gcd( f (vk), f (yk))= gcd(8k−3,8k−1)= 1 for 1≤ k ≤ n.

(iv) e = ukuk+1,gcd( f (uk), f (uk+1))= gcd(8k−7,8k+1)= 1 for 1≤ k ≤ n−1.

(v) e = vkvk+1,gcd( f (vk), f (vk+1))= gcd(8k−3,8k+5)= 1 for 1≤ k ≤ n−1.
Thus CL(n)

⊙
K1 is an odd prime graph.

Communications in Mathematics and Applications, Vol. 13, No. 4, pp. 1307–1315, 2022



Odd Prime Labeling of Graphs Related to Circular Ladder: S. Meena and G. Gajalakshmi 1311

Figure 3

Theorem 2.4. The carona product of circular ladder CL(n)
⊙

K̄2 is an odd prime graph for
all n.

Proof. Let V (CL(n))= {uk,vk, xk, yk, pk, qk/1≤ k ≤ n}.
E(CL(n))= {ukvk,ukxk,vk yk,vk pk,vkqk/1≤ k ≤ n}∪ {ukuk+1,vkvk+1/1≤ k ≤ n−1}.
Define a mapping f from V (G) to O6n as follows:

f (uk)= 12k−11 for 1≤ k ≤ n,

f (vk)= 12k−5 for 1≤ k ≤ n,

f (xk)= 12k−9 for 1≤ k ≤ n,

f (yk)= 12k−7 for 1≤ k ≤ n,

f (pk)= 12k−3 for 1≤ k ≤ n,

f (qk)= 12k−1 for 1≤ k ≤ n.

Clearly, the point labels are different with this labeling for each line e ∈ E.
The greatest common divisor ( f (u), f (v))= 1.

(i) e = ukvk, gcd( f (uk), f (vk))= gcd(12k−11,12k−5)= 1 for 1≤ k ≤ n.

(ii) e = ukxk, gcd( f (uk), f (xk))= gcd(12k−11,12k−9)= 1 for 1≤ k ≤ n.

(iii) e = vk yk, gcd( f (vk), f (yk))= gcd(12k−5,12k−7)= 1 for 1≤ k ≤ n.

(iv) e = vk pk, gcd( f (vk), f (pk))= gcd(12k−5,12k−3)= 1 for 1≤ k ≤ n.

(v) e = vkqk, gcd( f (vk), f (qk))= gcd(12k−5,12k−1)= 1 for 1≤ k ≤ n.

(vi) e = ukuk+1, gcd( f (uk), f (uk+1))= gcd(12k−11,12k+1)= 1 for 1≤ k ≤ n−1.
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(vii) e = vkvk+1, gcd( f (vk), f (vk+1))= gcd(12k−5,12k+7)= 1 for 1≤ k ≤ n−1.
Thus CL(n)

⊙
K̄2 is an odd prime graph.

Figure 4

Theorem 2.5. The carona product of circular ladder CL(n)
⊙

K̄3 is an odd prime graph.

Proof. Let V (CL(n))= {uk,vk, xk, yk, zk, pk, qk, rk/1≤ k ≤ n}.
E(CL(n))= {ukvk,ukxk,vk yk,ukzk,vk pk,vkqk,vkrk/1≤ k ≤ n}∪ {ukuk+1,vkvk+1/1≤ k ≤ n−1}.
Define a mapping f from V (G) to O8n as follows:

f (uk)= 16k−15 for 1≤ k ≤ n, k ̸≡ 0(mod 3)

f (uk)= 16k−13 for 1≤ k ≤ n, k ≡ 0(mod 3)

f (vk)= 16k−5 for 1≤ k ≤ n,

f (xk)= 16k−13 for 1≤ k ≤ n, k ̸≡ 0(mod 3)

f (xk)= 16k−15 for 1≤ k ≤ n, k ≡ 0(mod 3)

f (yk)= 16k−11 for 1≤ k ≤ n,

f (zk)= 16k−9 for 1≤ k ≤ n,

f (pk)= 16k−7 for 1≤ k ≤ n,

f (qk)= 16k−3 for 1≤ k ≤ n,

f (rk)= 16k−1 for 1≤ k ≤ n.
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Clearly, the point labels are different with this labeling for each line e ∈ E.
The greatest common divisor ( f (u), f (v))= 1.

(i) e = ukvk, gcd( f (uk), f (vk))= gcd(16k−15,16k−5)= 1 for 1≤ k ≤ n, k ̸≡ 0(mod 3).

(ii) e = ukvk, gcd( f (uk), f (vk))= gcd(16k−15,16k−5)= 1 for 1≤ k ≤ n, i ≡ 0(mod 3).

(iii) e = ukxk, gcd( f (uk), f (xk))= gcd(16k−15,16k−13)= 1 for 1≤ k ≤ n, i ̸≡ 0(mod 3).

(iv) e = ukxk, gcd( f (uk), f (xk))= gcd(16k−13,16k−15)= 1 for 1≤ k ≤ n, i ≡ 0(mod 3).

(v) e = uk yk, gcd( f (uk), f (yk))= gcd(16k−15,16k−11)= 1 for 1≤ k ≤ n, i ̸≡ 0(mod 3).

(vi) e = uk yk, gcd( f (uk), f (yk))= gcd(16k−13,16k−11)= 1 for 1≤ k ≤ n, i ̸≡ 0(mod 3).

(vii) e = ukzk, gcd( f (uk), f (zk))= gcd(16k−15,16k−9)= 1 for 1≤ k ≤ n, i ̸≡ 0(mod 3).

(viii) e = ukzk, gcd( f (uk), f (zk))= gcd(16k−13,16k−9)= 1 for 1≤ k ≤ n, i ≡ 0(mod 3).

(ix) e = vk pk, gcd( f (vk), f (pk))= gcd(16k−5,16k−7)= 1 for 1≤ k ≤ n.

(x) e = vkqk, gcd( f (vk), f (qk))= gcd(16k−5,16k−13)= 1 for 1≤ k ≤ n.

(xi) e = vkrk, gcd( f (vk), f (rk))= gcd(16k−5,16k−1)= 1 for 1≤ k ≤ n.

(xii) e = ukuk+1, gcd( f (uk), f (uk+1))= gcd(16k−15,16k+3)= 1 for 1≤ k ≤ n−1.

(xiii) e = ukuk+1, gcd( f (uk), f (uk+1))= gcd(16k−13,16k+3)= 1 for 1≤ k ≤ n−1.

(xiv) e = vkvk+1, gcd( f (vk), f (vk+1))= gcd(16k−5,16k+1)= 1 for 1≤ k ≤ n−1.
Thus CL(n)

⊙
K̄3 is an odd prime graph.

Figure 5
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3. Conclusion
The odd prime labelings of various classes of graphs such as CL(n), SCL(n), CL(n)

⊙
K1,

CL(n)
⊙

K̄2, CL(n)
⊙

K̄3 were investigated. To derive similar results for other graph families
and other graph labelings in an open area research.
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