Communications in Mathematics and Applications

Vol. 13, No. 4, pp. 1329–1336, 2022 ISSN 0975-8607 (online); 0976-5905 (print) Published by RGN Publications DOI: 10.26713/cma.v13i4.2171

Special Issue Recent Advances in Pure and Applied Mathematics Editors: Thangaraj Beaula, J. Joseline Manora, D. Stephen Dinagar, D. Rajan

Research Article

Product Cordial Labelling for Some Bicyclic Graphs

S. Meena ^(D) and S. Usharani^{*} ^(D)

Department of Mathematics, Government Arts College, Chidambaram 608102, India *Corresponding author: usharanisrm@gmail.com

Received: April 22, 2022 **Accepted:** July 29, 2022

Abstract. A graph *G* with lines and points is known as a product cordial graph if there occurs a labeling *g* from *V*(*G*) to {0,1} such that if every line *rt* is given the labeled g(r).g(t), then the cardinality of points with labeled zero and the cardinality of points with labeled one vary as a maximum by one and the cardinality of lines with labeled zero and the cardinality of lines with labeled zero and the cardinality of some graphs related to bicyclic graph such as $B[n,n], B[n,n] * S_m$, $B[n,n] * P_2 * S_m$ and $B[n,n] * P_3 * S_m$, $B[n,n] \odot K_2$, $B[n,n] \odot K_3$.

Keywords. Cordial labelling, Product cordial labelling, Bicyclic graph, Corona product

Mathematics Subject Classification (2020). 05C78

Copyright © 2022 S. Meena and S. Usharani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, we tend to consider graphs that are simple and finite p points and q lines. For an in-depth check of labelling of graphs, we relate to Gallain [3]; and we use Harary [5] and Bondy and Murthy [1] for all other notations. The notion of product cordial labelling presented by Sundaram *et al.* [7]. Meena *et al.* [6] investigated the existence of prime labelling of bicyclic graphs. We investigated the product cordial labelling of some bicyclic graphs. **Definition 1.1** ([6]). If B[n,n] is the bicyclic graph obtained from two point-disjoint cycles C_m and C_n by identifying two points r of C_m and t of C_n .

Definition 1.2 ([4]). A graph is called cordial if it's attainable to label its points with zeros and ones, so when the lines are labelled with the distinction of the labels at their finish points, the quantity of points (lines) labelled with ones and zeros disagree at the most by one.

Definition 1.3 ([4]). A map g from V(G) to $\{0,1\}$ is known as binary labelling of G. A binary labelling with induced line labelling g^* from E(G) to $\{0,1\}$ defined by g^* from (e = rt) equal to g(r). g(t) is called a product cordial labelling if the absolute difference of $v_f(0)$ and $v_f(1)$ is less than or equal to 1 and the Absolute difference of $e_f(0)$ and $e_f(1)$ is less than or equal to 1. A graph which admit product cordial labelling is said to be a product cordial graphs.

Definition 1.4 ([6]). The corona product of two graphs G and H is outlined as the graph got by taking one copy of G and cardinality of V(G) copies of H and attaching the *i*th point of G to every point in the *i*th copy of H.

Definition 1.5 ([6]). Complete bipartite graph $K_{1,m}$ is called star graph S_m .

2. Main Results

The product cordial labelling for some bicyclic graphs, were investigated in this paper.

Theorem 2.1. The bicyclic graph $B[n,n] * S_m$ is a product cordial graph.

Proof. Let $r_1, r_2, ..., r_n$ and $t_1, t_2, ..., t_n$ be the points of bicyclic graph B[n, n] with $r_1 = t_1$ be the common point.

Let $p_i^1, p_i^2, p_i^3, p_i^4, \dots, p_i^m$ be the pendent points of S_m attached at r_i for $1 \le i \le n$ and let $s_i^1, s_i^2, s_i^3, s_i^4, \dots, s_i^m$ be the pendent points of S_m attached at t_i for $2 \le i \le n$. Define a labelling g from V(G) to $\{0, 1\}$ as follows:

$$\begin{split} g(r_1 = t_1) &= 1, \\ g(r_i) &= 0 \quad \text{for } 2 \le i \le n, \\ g(t_i) &= 1 \quad \text{for } 2 \le i \le n, \\ g(p_i^j) &= 0 \quad \text{for } 2 \le i \le n, \ 1 \le j \le m, \\ g(s_i^j) &= 1 \quad \text{for } 2 \le i \le n, \ 1 \le j \le m. \end{split}$$

If m is even

$$g(p_1^j) = 0$$
 if $1 \le j \le \frac{m}{2}$,
 $g(p_1^j) = 0$ if $\frac{m}{2} + 1 \le j \le m$.

If m is odd

$$g(p_1^j) = 0$$
 if $1 \le j \le \frac{m+1}{2}$,

Communications in Mathematics and Applications, Vol. 13, No. 4, pp. 1329–1336, 2022

 $g(p_1^j) = 1$ if $\frac{m+3}{2} \le j \le m$.

Absolute difference of $v_f(0)$ and $v_f(1)$ is less than or equal to 1 and the absolute difference of $e_f(0)$ and $e_f(1)$ is less than or equal to 1.

Thus, g is a product cordial graph.

Theorem 2.2. The bicyclic graph $B[n,n] * P_2 * S_m$ is a product cordial graph.

Proof. Let $r_1, r_2, ..., r_n$ and $t_1, t_2, ..., t_n$ be the points of bicyclic graph B[n, n] with $r_1 = t_1$ be the common point.

Let r'_i be the point of path P_2 attached at r_i for $1 \le i \le n$ and let t'_i be the point of path P_2 attached at t_i for $2 \le i \le n$.

Let $p_i^1, p_i^2, p_i^3, p_i^4, \dots, p_i^m$ be the pendent points of S_m attached at r'_i for $1 \le i \le n$ and let $s_i^1, s_i^2, s_i^3, s_i^4, \dots, s_i^m$ be the points of S_m attached at t_i for $2 \le i \le n$.

Define a labelling *g* from V(G) to $\{0, 1\}$ as follows:

$$\begin{split} g(r_1 = t_1) &= 1, \\ g(r_i) &= 0 \quad \text{for } 2 \leq i \leq n, \\ g(t_i) &= 1 \quad \text{for } 2 \leq i \leq n, \\ g(r_i^1) &= 0 \quad \text{for } 1 \leq i \leq n, \\ g(t_i^1) &= 1 \quad \text{for } 2 \leq i \leq n, \\ g(p_i^j) &= 0 \quad \text{for } 1 \leq j \leq m, 2 \leq i \leq n, \\ g(s_i^j) &= 1 \quad \text{for } 1 \leq j \leq m, 2 \leq i \leq n. \end{split}$$

. .

If m is even

$$g(p_1^j) = 0$$
 if $1 \le j \le \frac{m}{2}$,
 $g(p_1^j) = 1$ if $\frac{m}{2} + 1 \le j \le m$

If m is odd

$$g(p_1^j) = 0$$
 if $1 \le j \le \frac{m-1}{2}$,
 $g(p_1^j) = 1$ if $\frac{m-1}{2} \le j \le m$.

Absolute difference of $v_f(0)$ and $v_f(1)$ is less than or equal to 1 and the absolute difference of $e_f(0)$ and $e_f(1)$ is less than or equal to 1.

Thus g is a product cordial graph.

Theorem 2.3. The bicyclic graph $B[n,n] * P_3 * S_m$ is a product cordial graph.

Proof. Let $r_1, r_2, ..., r_n$ and $t_1, t_2, ..., t_n$ be the points of bicyclic graph B[n, n] with $r_1 = t_1$ be the common point.

Let r'_i and r''_i be the points of path P_3 attached at r_i for $1 \le i \le n$ and let t'_i and t''_i be the points of path P_3 attached at t_i for $2 \le i \le n$.

Communications in Mathematics and Applications, Vol. 13, No. 4, pp. 1329–1336, 2022

Let $p_i^1, p_i^2, p_i^3, p_i^4, \dots, p_i^m$ be the pendent points of S_m attached at r_i'' for $1 \le i \le n$ and let $s_i^1, s_i^2, s_i^3, s_i^4, \dots, s_i^m$ be the points of S_m attached at t_i'' for $2 \le i \le n$.

Define a labelling g from V(G) to $\{0,1\}$ as follows:

$$\begin{split} g(r_1 = t_1) &= 1, \\ g(r_i) &= 0 \quad \text{for } 2 \le i \le n, \\ g(t_i) &= 1 \quad \text{for } 2 \le i \le n, \\ g(r'_1) &= 0, \ g(r''_1) &= 1, \\ g(r'_i) &= 0, \ g(r''_i) &= 0 \quad \text{for } 2 \le i \le n, \\ g(t'_i) &= 0, \ g(t''_i) &= 1 \quad \text{for } 2 \le i \le n, \\ g(p^j_i) &= 0 \quad \text{for } 2 \le i \le n, \ 1 \le j \le m, \\ g(s^j_i) &= 1 \quad \text{for } 2 \le i \le n, \ 1 \le j \le m. \end{split}$$

If m is even

$$g(p_1^j) = 0$$
 if $1 \le i \le \frac{m}{2}$,
 $g(p_1^j) = 1$ if $\frac{m}{2} + 1 \le i \le m$.

If m is odd

$$g(p_1^j) = 0 \quad \text{if } 1 \le i \le \frac{m+1}{2},$$

$$g(p_1^j) = 1 \quad \text{if } \frac{m+3}{2} + 1 \le j \le m$$

Absolute difference of $v_f(0)$ and $v_f(1)$ is less than or equal to 1 and the absolute difference of $e_f(0)$ and $e_f(1)$ is less than or equal to 1.

Thus g is a product cordial graph.

Theorem 2.4. The corona product of bicyclic graph $B[n,n] \odot K_2$ is a product cordial graph.

Proof. Let $r_1, r_2, ..., r_n$ and $t_1, t_2, ..., t_n$ be the points of bicyclic graph B[n, n] with $r_1 = t_1$ be the common point.

Let p_i^1, p_i^2 be the points of K_2 attached at r_i for $1 \le i \le n$ and let s_i^1, s_i^2 be the points of K_2 attached at t_i for $2 \le i \le n$.

Define a labelling *g* from V(G) to $\{0, 1\}$ as follows:

```
\begin{split} g(r_1 = t_1) &= 1, \\ g(r_i) &= 0 \quad \text{for } 2 \leq i \leq n, \\ g(t_i) &= 1 \quad \text{for } 2 \leq i \leq n, \\ g(p_1^1) &= 0, \ g(p_1^2) = 0, \\ g(p_i^1) &= g(p_i^2) = 0 \quad \text{for } 2 \leq i \leq n, \\ g(s_i^1) &= g(s_i^2) = 1 \quad \text{for } 2 \leq i \leq n. \end{split}
```

Absolute difference of $v_f(0)$ and $v_f(1)$ is less than or equal to 1 and the absolute difference of $e_f(0)$ and $e_f(1)$ is less than or equal to 1. Thus g is a product cordial graph. \Box

Theorem 2.5. The corona product of bicyclic graph $B[n,n] \odot K_3$ admits product cordial labeling.

Proof. Let $r_1, r_2, ..., r_n$ and $t_1, t_2, ..., t_n$ be the points of bicyclic graph B[n, n] with $r_1 = t_1$ be the common point.

Let p_i^1, p_i^2, p_i^3 be the points of K_3 attached at r_i for $1 \le i \le n$ and let s_i^1, s_i^2, s_i^3 be the points of K_3 attached at t_i for $2 \le i \le n$.

Define a labelling *g* from V(G) to $\{0, 1\}$ as follows:

$$\begin{split} g(r_1 = t_1) &= 1, \\ g(r_i) &= 0 \quad \text{for } 2 \leq i \leq n, \\ g(t_i) &= 1 \quad \text{for } 2 \leq i \leq n, \\ g(p_i^1) &= 0, \\ g(p_i^2) &= 1, \\ g(p_i^3) &= 1, \\ g(p_1^3) &= 1, \\ g(p_1^1) &= f(p_1^2) = g(p_i^3) = 0 \quad \text{for } 2 \leq i \leq n, \\ g(s_i^1) &= f(s_i^2) = g(s_i^2) = 1 \quad \text{for } 2 \leq i \leq n. \end{split}$$

Absolute difference of $v_f(0)$ and $v_f(1)$ is less than or equal to 1 and the absolute difference of $e_f(0)$ and $e_f(1)$ is less than or equal to 1.

Thus *g* is a product cordial graph.

3. Illustrations

Illustration 3.1.

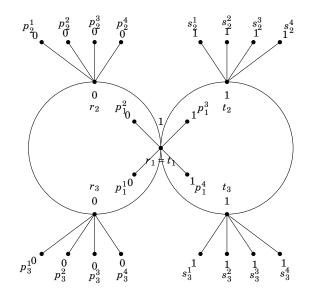


Figure 1. Product cordial labelling of $B[3,3] * S_4$

Illustration 3.2.

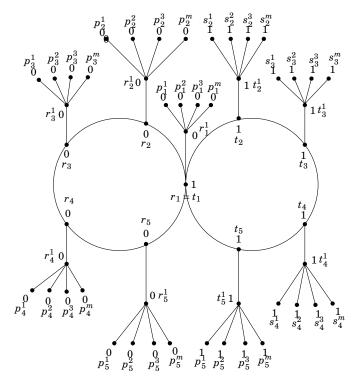


Figure 2. Product cordial labelling of $B[5,5] * P_2 * S_4$

Illustration 3.3.

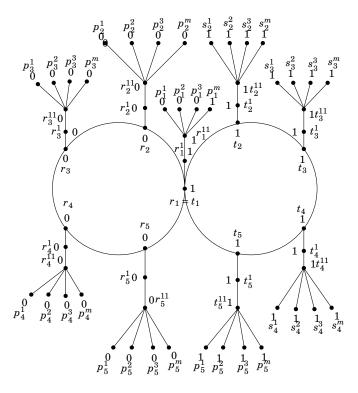


Figure 3. Product cordial labelling of $B[5,5] * P_3 * S_4$

Communications in Mathematics and Applications, Vol. 13, No. 4, pp. 1329–1336, 2022

Illustration 3.4.

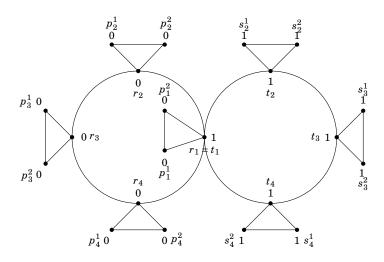


Figure 4. Product cordial labelling of $B[4,4] \odot K_2$

Illustration 3.5.

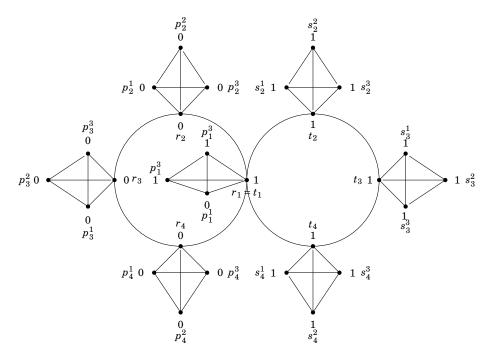


Figure 5. Product cordial labelling of $B[4,4] \odot K_3$

4. Conclusion

We provide five new theorems on product cordial labelling. It is terribly interesting to examine whether or not a graph family admits product cordial labelling. We try to link bicyclic graphs and graph operations. Similar results are often derivative for alternative graph families.

Acknowledgment

We the authors are greatly appreciative to the referees for constructive comments and suggestions.

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

- [1] J. A. Bondy and V. S. S. Murty, *Graph Theory with Applications*, North-Holland, New York (1976), URL: https://www.zib.de/groetschel/teaching/WS1314/BondyMurtyGTWA.pdf.
- [2] G. Gajalakshmi and S. Meena, On odd prime labelings of snake related graphs, *Journal of Algebraic Statistics* 13(1) (2022), 630 634, URL: https://www.publishoa.com/index.php/journal/article/view/ 128.
- [3] J. A. Gallian, A dynamic survey of graph labelling (Graph Labelling), *The Electronic Journal of Combinatorics* **DS6**, Version 25 (2022), 623 pages, DOI: 10.37236/27.
- [4] Z.-B. Gao, G.-Y. Sun, Y.-N. Zhang, Y. Meng and G.-C. Lau, Product cordial and total product cordial labelings of P_{n+1}^m , Journal of Discrete Mathematics **2015** (2015), DOI: 10.1155/2015/512696.
- [5] F. Harary, Graph Theory, Addison-Wesley, Reading, MA (1969).
- [6] S. Meena, G. Gajalakshmi and P. Kavitha, Prime labelling of *h*-super subdivision of cycle related graph, *AIP Conference Proceedings* **2516** (2022), 210051, DOI: 10.1063/5.0109588.
- [7] M. Sundaram, R. Ponraj and S. Somasundaram, Product cordial labeling of graphs, *Bulletin of Pure* and Applied Sciences, Mathematics and Statistics **23E** (2004), 155 – 163.
- [8] D. B. West, *Introduction to Graph Theory*, Prentice Hall (1996), URL: https://faculty.math.illinois. edu/~west/igt/.

