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Abstract. This paper shows the impact of the Dufour and Soret numbers on a hybrid nanofluid (HNF)
in a boundary layer area across a spinning sheet. The collection of flow governing (PDEs) partial
differential equations was turned into a system of (ODEs) ordinary differential equations, which are
then solved utilising BVP4C code in MATLAB. The impact of the flow governing parameters on the
flow properties were analysed and presented graphically. The Soret factor influences the thermal
efficiency at the surface, while the Dufour effect reduces the mass transfer at the surface.

Keywords. Hybrid nanofluid, Rotating sheet, Lobatto III A technique, Soret, Dufour

Mathematics Subject Classification (2020). 76A05, 76A10, 76Dxx, 76R10, 76R50, 76Uxx

Copyright © 2023 Alfunsa Prathiba, Venkata A. Lakshmi and V. Ramesh. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction
Research is being done on the enhancement of the thermal conductivity in various materials
owing to the demand in heat transfer applications. Choi and Eastman [10] used nanoparticles
for the first time by incorporating a thin suspension of nano particles suspension into the liquid
base. The nanofluids are widely employed in heat exchangers, nuclear reactors, microelectronics,
bio-medicine, and many more (Khan [31]). To investigate thermal energy flow in nanofluids,
Buongiorno [9] has created a two-piece relationship based on two major slip characters, namely
“Brownian motion, and thermophoresis”. Nayak et al. [30] in their study, investigated the
MHD nanofluids flow by connecting it with porous matrix and Patel model that provided a
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significant development in the heat transfer capabilities of the nano fluid. Ali et al. [2], gave the
experimental findings of water based ZnO nanoparticles to alter the heat changes for a car’s
radiator. Arshad and Ali [5] experimentally investigated the characteristics of heat transfer
and pressure fall of Titanium nanoparticles through a mini-channel and explained that the
thermal behaviour of TiO2 had strong impact on the heating capacity. Further, Saffarian et al.
[40] have used nanofluid to modify a solar collector’s heat transfer (HETR) across a flat surface
via several pathways. Recently, Rana et al. [36] in their investigation examined the 3-D steady
flow of an incompressible 25 nm water based Cu nano liquid over a bi-directional extended
surface, also Corcione’s model for dynamic viscosity and effective thermal boundary conductivity
was utilised in conjunction with specific heat, electric conductivity connexions constructed on
effective medium theory.

Despite varied utilitarian benefits some nanofluids have been identified as hybrid or second-
grade fluids due to their advanced rheological capabilities and thermo-physical properties.
These fluids are formed from two distinct nano-material suspensions in a base liquid. Various
researchers have explored this innovative class of heat transmission fluids to identify answers
to real-world issues and it has been widely used in many domains, such as biomedicine, drug
delivery, cooling of machines and many more. Waini et al. [50] in their analysis discovered
that only one solution was stable among the dual solutions of the dusty HNF in an existing
magnetic field, along a shrinking sheet. Lund et al. [25] in their investigation studied the
rotating 3-D flow of a HNF over an exponential sheet with suction effects and found that a
symmetrical solution existed for changes in rotation parameter. Kumar et al. [22] estimated
the Natural convection 3D hydro magnetic flow and heat transfer of hybrid nanoparticles and
hybrid nanoparticles generated in Carreau hybrid base fluid consisting of the activations of
thermal shapes nanoparticles using R-K Fehlberg method. Many researchers have recently
explored the heat transfer trend in hybrid nano flow. A remarkable amount of research has
been conducted on the production, categorization and applications of various varieties of hybrid
nano fluids [1,3,6,11–13,23,38,45].

Great deal of research is done on the flow of fluids and heat conduction phenomenon in
revolving frames. It is due to their abundant utilitarian benefits in computer storage devices,
crystal growth, gas turbine propellers etc. Aziz et al. [7], in their investigation of an optimal
study for 3D rotating flow of Oldroyd-B nanofluid fluid with convectively heated surface, and
had noticed a substantial rise in temperature for improved values of Prandtl and Biot number.
Kumar et al. [21] have investigated the flow of Se anoparticles over a rotating exponential sheet
due to solar radiation and found that the rise in temperature and thermal layer thickness was
due to the existence of solar radiation. Furthermore, Turkyilmazoglu [48] explored the flow and
heat transfer of an incompressible electrically conducting fluid over a rotating infinite disk, using
the Optimal homotopy technique. Hayat et al. [17]., studied thermophysical characteristics
of Cu-water nano tube with engine and kerosine oils in rotating porous disk using Darcy-
Forcheimer medium. Khan et al. [16] gave the comparison of heat transfer properties of MHD
rotating nanofluid with that of emerging hybrid nanofluid. Khan et al. [20], have analysed
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the thermophysical traits of MHD Williamson fluid under the influence of Joule heating and
activation energy over a rotating sheet and observed that higher values of thermal conductivity,
Eckert number and solar radiation parameters the temperature profile increases, on the other
hand opposite behaviour is noticed for Prandtl number. Mustafa et al. [29], recently used
Cattaneo-Christov heat flux theory to find the analytical solutions of 3-D rotating floes of Old
Royd-B liquid.

The driving potential is more complex when heat and mass transfer phenomena occur
simultaneously among the fluxes as energy flux can be created not only by temperature
gradients but also by composition gradients [50]. The Dufour or diffusion thermo effect is
the energy flux generated by composition gradient. Correspondingly, the Soret is triggered by
a temperature gradient, causing mass fluxes. The effects exhibited by Fick’s or Fourier laws
are of higher order than the Soret and Dufour effects [41]. Charles Soret, a Swiss chemist, was
the first to use the thermo-diffusion effect to investigate the gravity of Earth in detail in 1879.
Soret also noticed that a salt solution in a tube with two ends at different temperatures did not
remain uniform in composition, and salt was concentrated more towards the colder end than
the heated end of the tube [50]. Shaheen et al. [44] in their investigation explored the effects
of variable characteristics on a 3-D dusty Casson fluid flow past a deformable bidirectional
surface amalgamated with Arrhenius activation energy and chemical reaction. Rasool et al. [37],
studied “the consequences of binary chemical reaction, thermal radiation, and Soret-Dufour
effects on a steady incompressible Darcy-Forchheimer flow of nanofluids”. Further, numerous
investigations on the effects of Soret and Dufour were performed by various researchers using
numerical and analytical methods on a variety of fluid flows [35,39,43,47].

Shoaib et al. [46] investigated the flow properties of HNF over a rotational disk subjected
to Joule heating implementing the Lobatto IIIA technique. Arif et al. [19] utilised FEM along
with the Lobatto III-A to investigate the dispersion of both single and combined nanoparticles
in a fluid under the influence of the magnetic field with viscosity and on a non-uniform surface.
Ouyang et al. [32] has learned about, the radiative flow of an MHD hybrid nanofluid (Al2O3–
Cu/H2O) over a convectively heated stretchable rotating disc with velocity slip effects was
numerically treated using the Lobatto IIIA technique. Uddin [49] explored the capability
of a numerical computational structure based on the Lobatto IIIA approach for the Darcy-
Forchheimer flow of Sisko nanomaterials with nonlinear thermal radiation.

As witnessed in the above-mentioned works and due to their large potential industrial
applications, the Soret and Dufour effects have become a prominent field of study. Thus, our
goal is to explore numerically theses effects on the HNF flow over a revolving sheet through
this article. Through similarity transformation, the boundary layered PDEs of the physical
flow were turned into ODEs and an efficient mathematical tool BVP4C code in MATLAB was
implemented to solve them. The correctness of the code was ensured by comparative study of
previous works as a limiting condition.
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2. Mathematical Formulation
Consider the 3D flow of Al2O3-Cu/water nano particles across a z = 0 plane as the stretchy
surface. The chosen hybrid nano particles and the base liquids are assumed to be in “thermal
equilibrium”. The fluid is capturing the half space at z ≥ 0. As seen in Figure 1, the surface
extends in the x-direction with a linearly varying velocity Uw = ax, causing flow in adjacent
liquid layers. Let Ω be the rotating liquid’s constant angular velocity. The surface temperature
Tw and T∞ the ambient temperature of the hybrid nanofluid is constant. The concentration of
the hybrid nanofluid is given by Cw.

Figure 1. Physical model of the problem

After applying the boundary layer approximations, the governing equations for the hybrid
nanofluid can be stated as follows [4,31,42,50,52].

The continuity equation,

ux +vy +wz = 0 . (2.1)

The momentum equations

uux +vuy +wuz =
µhnf

ρhnf
uzz +2Ωv , (2.2)

uvx +vvy +wvz =
µhnf

ρhnf
vzz −2Ωu . (2.3)

The energy equation

uTx +vT y +wT z =
khnf

(ρCp)hnf
Tzz − 1

(ρCp)hnf
qrz + DMkT

Cs(ρCp)hnf
Czz . (2.4)

The equation of concentration

uCx +vC y +wCz = Dhnf Czz + DMkT

TM
Tzz . (2.5)

The boundary restrictions are,

u =Uwλ, v = 0, w = ww, T = Tw, C = Cw at z = 0,

u → 0, v → 0, T → T∞, C → C∞ as z →∞ . (2.6)

In equations (2.1)-(2.6), u,v,w are the velocity components of the hybrid nanofluid
along the x, y, z-direction. T, qr, C are the temperature, radiative heat flux (Gireesha et
al. [14]) and concentration of the hybrid nanofluid respectively. λ is the stretching parameter
(Anuar et al. [4]). Further DM , Dhnf is the “mass diffusivity coefficient”, the thermal diffusion
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ratio is given by KT , and the mean fluid temperature and the concentration susceptibility are
given by TM and Cs, respectively.

The thermophysical properties of the hybrid nanofluid such as dynamic viscosity, thermal
conductivity etc are given in Table 2. Further the physical relations of the hybrid nanofluid
used in the above equations are stated in Table 1.

Table 1. Thermophysical relations of the fluid [15,28,46]

Properties Hybrid nanofluid

Density, ρ ρhnf
ρ f

= [(ρs1
ρ f

)
φ1 + (1−φ1)

]
(1−φ2)+φ2

ρs2
ρ f

Heat capacity, ρCp [ρCp]hnf = [ρCp] f
[( (ρCp)s1

(Cpρ) f

)
φ1 + (1−φ1)(1−φ2)+φ2(ρCp)s2

]
Dynamic viscosity, µ µhnf

µ f
= 1

[(1−ϕ1)(1−ϕ2)]5/2

Thermal conductivity [32], k khnf
kbf

= ks2+kbf (s−1)−(kbf −ks2)(s−1)ϕ2
kbf (s−1)+(kbf −ks2)ϕ2+ks2

and kbf
k f

= ks1+k f (s−1)−(k f −ks1)(s−1)ϕ1
k f (s−1)+(k f −ks1)ϕ2+ks1

Here, hnf , bf , f , s1, s2 are the subscripts which are related to HNF, base fluid, solid nano
particle1 (Al2O3), “solid or fluid nano particle2 (Cu)”. The volume fraction of the nanoparticle
alumina and Copper are given by φ1 and φ2, to get the desired combination of the hybrid
nanofluid alumina is introduced into the base fluid (water) and then the copper particles and
ϕ1 = 0.01 is the constant volume fraction taken throughout the analysis. The radiation term
qr which can be expressed according to the Rosseland approximation [4], [26] can be given as
below,

qr =−4σ0

3k∗
∂T4

∂z
,

where σ0 and k∗ are the Stefan-Boltzmann constant and the coefficient of mean absorption,
respectively [4]. Ignoring the higher order terms and using the Taylor series, T4 is expanded
about T∞; hence we get T4 ≈ 4T3∞T −3T4∞, then equation (2.4) can be rewritten as

uTx +vT y +wT z =
khnf

(ρCp)hnf
Tzz +

16σ0T3∞
3k∗(ρCp)hnf

Tzz + DMkT

Cs(ρCp)hnf
Czz . (2.7)

The following similarity transformations [4], [27] have been utilised in this problem to modify
the PDE to ODE

u = axf ′(η), v = axg(η), w =−
√

aϑ f f (η), θ(η)= T −T∞
Tw −T∞

, Φ(η)= C−C∞
Cw −C∞

, η= z

√
a
ϑ f

. (2.8)

The differentiation with respect to η is indicated by prime and ww =−√
aϑ f S, in which a is a

constant and S is the mass flux parameter. If S > 0 corresponds to suction and S < 0 relates
to injection. Equation (2.1) identically verified and equations (2.2), (2.3), (2.7) and (2.5) are
changed to ODE’s as listed below,

µhnf /µ f

ρhnf /ρ f
f ′′′+ f f ′′− ( f ′)2 +2ωg = 0, (2.9)

µhnf /µ f

ρhnf /ρ f
g′′− f ′g+ f g′−2ω f ′ = 0, (2.10)
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(ρCp) f

(ρCp)hnf

{
1
Pr

[khnf

k f
+ 4

3
Rd

]
θ′′+DuΦ′′

}
+ f θ′ = 0, (2.11)

Φ′′+ D f

Dhnf
Sc[ fΦ′+Srθ′′]= 0, (2.12)

subject to

f ′(η)=λ, g(η)= 0, f (0)= S, θ(η)= 1, Φ(η)= 1, as η→ 0,

f ′(η)→ 0, g(η)→ 0, f (0)→ 0, θ(η)→ 0, Φ(η)→ 0, as η→∞ . (2.13)

In equations (2.9)-(2.12) the non-dimensional parameters present are given as

ω= Ω
a

, Pr= ϑ f (ρCp) f

k f
, Sc = ϑ f

D f
, Rd = 4σ0T3∞

k∗k f
, Du = DMKT

Cs(ρCp) f ϑ f

[
Cw −C∞
Tw −T∞

]
,

Sr = DMKT

TMϑ f

[
Tw −T∞
Cw −C∞

]
.

The Skin friction coefficients C f x and C f y along the axis x and y, as well as the local Nusselt
number Nux and the local Sherwood number Shx are stated as below ([34]),

C f x =
µhnf

ρ f U2
w

(
∂u
∂z

)
z=0

, C f y =
µhnf

ρ f U2
w

(
∂v
∂z

)
z=0

,

Nux = x
k f (Tw −T∞)

[
−khnf

(
∂T
∂z

)
z=0

+ qr

∣∣∣
z=0

]
, Shx = x

D f (Tw −T∞)

[
−Dhnf

(
∂C
∂z

)
z=0

]
(2.14)

From equations (2.8) and (2.14) the modified values of the above as

Re1/2
x C f x =

µhnf

µ f
f ′′(0), Re1/2

x C f y =
µhnf

µ f
g′(0),

Re−1/2
x Nux =−

(khnf

k f
+ 4Rd

3

)
θ′(0), Re−1/2

x Shx =−
(Dhnf

D f

)
Φ′(0) . (2.15)

Table 2. The thermophysical properties [4,24,33]

Properties
Base fluid Nano particles

Water Al2O3 (Alumina) Cu (Copper)

Thermal conductivity (k)(Wm−1K−1) 0.613 40 400

Density (ρ) (kgm−3) 997.1 3970 8933

Specific heat (Cp)(Jkg−1K−1) 4179 765 385

3. Method of Solution
Lobatto IIIA is integrated into MATLAB routine “BVP4C” was implemented to solve the
equations (2.9) to (2.12) along the boundary conditions (2.13). In this method h = 0.01 was used
as the step size and the procedure is continued until the results are accurate to the desired level
of precision 10−6. Figure 2 depicts the solution strategy for the problem.

The parameters A1, A2, A3, B1, B2 are stated below as,

A1 =
µ f

µhnf
, A2 =

ρhnf

ρ f
, A3 =

(ρCp)hnf

(ρCp) f
, B1 =

khnf

k f
+ 4

3
Rd, B2 = 1

(1−φ1)(1−φ2)
.
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Figure 2. Graphical abstract of the problem

4. Results and Discussion
The numerical solution for the modified ODEs under various parameter values are displayed in
Figures 3-19. The description of the behaviour of velocity, concentration, and temperature of an
Al2O3-Cu-water based flow across a revolving sheet has been presented in detail. The results,
as shown in Table 3 and Table 4 were compared and determined to be in good agreement to give
the authenticity of the code.

In this segment, the effects of various significant parameters such as nano-particle volume
fraction (φ2), Dufour (Du), Soret (Sr), rotation parameter (ω), radiation parameter (Rd), Suction
parameter (S), and Schmidt parameter (Sc) on the flow parameters are described.

Higher rotational parameter values produce lower velocity distributions since the rotational
parameter is the ratio of rotation to stretching rates in physical terms’. In Figure 3, the impact of
the rotation parameter (ω) on the non-dimensional velocities in the x-direction was observed and
found that the higher values of the rotation parameter result in a faster rotational rate, which
corresponds to a decrease in the velocity distribution f ′(η). Figure 4 reveals that the rise in the
values of ω decays the velocity distribution g(η). It is so because the rotational parameter is
crucial in accelerating the flow along y-direction and the more significant rotational parameter
produces an oscillating pattern in the velocity distribution.
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Table 3. Comparison of the values of f ′′(0), g′(0), Re−1/2
x Nux for base fluid when ϕ1 = ϕ2 = 0,

Du = Sr = Sc = 0 and λ= 1

Wang [51] Bachok et al. [8] Present study

ω f ′′(0) g′(0) f ′′(0) g′(0) Re−0.5
x Nux f ′′(0) g′(0) Re−0.5

x Nux

0.00 −1.00000 0.00000 −1.00000 0.00000 14.78568 −1.0000 0.000000 14.7857

0.50 −1.1384 −0.5128 −1.13838 −0.51276 14.78408 −1.1384 0.5128213 14.7841

1.00 −1.3250 −0.8371 −1.32503 −0.83710 14.78039 −1.3250 0.8371426 14.7804

2.00 −1.6523 −1.2873 −1.6524 −1.28726 17.775800 −1.6524 1.287323 17.7758

Table 4. Comparison of the values of Re−1/2
x Shx for base fluid when ϕ1 = 0.1, Du = Sr = Sc = 0 and λ= 1

for different values of ϕ2

ϕ2 λ Du Sr Waini et al. [50] Present study

0 0 0 0 0.5739 0.573879

0.02 0.5734 0.573396

0.04 0.5724 0.572384

 

Figure 3. Behaviour of f ′(η) with ω

 

Figure 4. The impact of the rotational parameter (ω) on g(η)
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The impact of the radiation parameter (Rd) on the temperature and concentration
distribution was presented in Figure 5 and Figure 6. With the rise in the values of the
thermal radiation parameter, the temperature and concentration boundary layers increase.
Consequently, the boundary layers grow with the increased thermal radiation. As a result, it
has been suggested that the lowering of thermal radiation must proceed at a faster diffusion
rate.

 

Figure 5. Impact of Rd on the temperature profile

 

Figure 6. The impact on radiation parameter (Rd) on the concentration profile

Figure 7 to Figure 10 show the influence of the mass flux parameter S, i.e., the suction
parameter, on the non-dimensional distribution of velocity, temperature, and concentration. The
plots reveal that velocity rate in x-direction decreases significantly with an increase in suction
parameter (S > 1) whereas the reverse effect is observed in the velocity in the y-direction. And
it is noted that the increase in the values of suction parameter decrease the temperature and
diffusion of the nanofluid.

Figure 11 and Figure 12 were plotted to examine the influence of the Soret (Sr) and the
Dufour (Du) on the concentration and temperature boundary layers, respectively. From the
diagrams, we observe the significant decline in nanoparticle concentration profiles for higher
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values of the Sr, under the influence of suction (S > 1). The reduction in concentration is
associated with the thermophoresis effect. Similarly, we observed that the rise in Du values
decrease the temperature profiles.

 

Figure 7. Changes in f ′(η) for different values of S

 

Figure 8. The surge in transverse velocity for S

 

Figure 9. Influence of S on θ(η)
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Figure 10. Impact of suction on Φ(η)

 

Figure 11. Impact of Du on θ(η)

 

Figure 12. Impact of Soret on concentration

Figure 13 and Figure 14 display the influential variation of the stretching parameter λ on
the velocity boundary layer and it reveals that the greater values of the stretching parameter
constitute a higher velocity distribution and vice-versa for f ′(η). The converse effects are
observed on g(η).
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Figure 13. Influence of λ on f ′(η)

 

Figure 14. Impact of stretching parameter λ on g(η)

The influence of variation in the nanoparticle volume fraction φ2(0.005,0.02,0.04,0.06) of
the Cu (Copper) in the water-based Al2O3 nanofluid can be visualized from the plots (Figure 15
to Figure 18). They show that the rise in the concentration values of Cu enhances the profile
g(η), Φ(η) and reduces the profiles of f ′(η) and θ(η).

 

Figure 15. The variation in primary velocity with φ2
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Figure 16. The transverse velocity profile variations with φ2

 

Figure 17. Influence of φ2 on the temperature profile

 

Figure 18. Impact of φ2 on the concentration

For the increased values of the Schmidt parameter, it is anticipated from the plot that there
is a decline in concentration profiles (Figure 19). It is so because the Schmidt number is defined
as the ratio of momentum to mass diffusivities. Hence the rise in Sc values is responsible for
reducing concentration profiles.
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Figure 19. Impact of S on the concentration profile

Table 5 illustrates the computational values of the Nusselt Number, Mass diffusion
coefficient (Shx), local Skin friction values for distinct values of Soret, Dufour, the nanoparticle
volume fraction of Cu, suction etc. From the above table, we observe that the Re−1/2

x Nux,
−Re−1/2

x Shx values shoot up with the enhancement in Sr, Du, φ2, S, and decline with rise
in the values of Rd . The local skin friction C f x increase with increase in the values of φ2, S,
whereas C f y tends to exhibit the variant behaviour for the various values of suction and volume
fraction parameters.

Table 5. Computational values of Re1/2
x C f x, Re1/2

x C f y, Re−1/2
x Nux, Re−1/2

x Shx for various values of Sr,
Du, φ2, S, Rd

Sr Du φ2 S Rd −Re1/2
x C f x −Re1/2

x C f y Re−1/2
x Nux −Re−1/2

x Shx

0.0
0.1
0.2
0.3

0.3 0.02 0.5 0.2 15.076356
16.311422
17.828558
19.603687

0.531949
0.865588
1.23013
1.74362

0.3 0.0
0.1
0.2
0.3

0.02 0.5 0.2 3.971461
6.571446
9.401161
12.491079

0.818473
0.971720
1.138839
1.321664

0.3 0.30 0.02 0
0.5
1

0.2 2.183845
2.489511
2.818417

1.839443
1.828564
1.797756

3.872191
11.446637
19.716298

0.651987
2.099186
3.619574

0.3 0.30 0
0.01
0.02
0.03

0.5 0.2 1.289386
1.345371
1.401623
1.458222

1.087367
1.133068
1.179011
1.225273

9.077827
9.237560
9.401161
9.568735

1.107367
1.123087
1.138839
1.154612

0.3 0.3 0.02 0.5 0
0.2
0.4
0.6

56.750332
42.374143
33.583211
27.656099

10.83257
7.621294
5.822552
4.669863
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5. Conclusion
A numerical solution has been presented for a rotating flow of Al2O3-Cu/water hybrid nanofluid
over a stretchable sheet with thermal-diffusion and diffusion-thermo effects. The effects of
Thermal radiation, Schmidt parameter, Suction, and volume fraction of Cu were considered for
the flow study. Using MATLAB, a three-step finite-difference scheme called the Lobatto-IIIA
was implemented to solve the governing non-linear ordinary differential equations.

The observations as a result of this study are:
(1) The primary velocity declines with rising values of the rotational parameter (ω).

(2) The temperature and concentration profile decline with an increase in the Dufour and
Soret parameter values in the presence of suction.

(3) The temperature and concentration boundary layers increase with the rise in thermal
radiation.

(4) The concentration profiles diminish with an increase in the values of the Schmidt
parameter.

(5) The enhancement in the volume fraction of Copper (Cu) nanoparticles in Al2O3/water
nanofluid leads to the decrease of the primary velocity and temperature profiles and a
rise in the shape of transverse momentum and Concentration.

Nomenclature
u,v,w x, y, z components of velocity (ms−1) T∞ Ambient temperature (K)
Cw Free stream concentration ρ Fluid density (kgm−3)
λ Stretching parameter C∞ Uniform constant concentration
T The temperature of the fluid (K) Ω Angular velocity (ms−1)
D Mass diffusivity coefficient Rd Radiation parameter
ϕ1, ϕ2 Nanoparticle’s volume fraction κ Thermal conductivity (Wm−1k−1)
Cp Specific heat constant pressure (Jkgk−1) ω Angular velocity
C The concentration of the species S Suction/injection
Tw Surface temperature (K) Re Reynolds number
ν Kinematic viscosity (m2s−1) Sc Schmidt number
Du Dufour number Sr Soret number
Pr Prandtl number µ Dynamic viscosity (kgm−1s−1)
Subscript
f fluid b f Base fluid
nf Nano fluid hnf Hybrid nanofluid
s1 First solid particle s2 Second solid particle
w Condition at wall ∞ Ambient condition
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