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Steady State Solutions to General Competition
and Cooperation Models

Joon Hyuk Kang

Abstract Two species of animals are competing or cooperating in the same
environment. Under what conditions do they coexist peacefully? Or under what
conditions does either one of the two species become extinct, that is, is either
one of the two species excluded by the other? We investigate this phenomena in
mathematical point of view.

In this paper we concentrate on coexistence solutions of the competition or
cooperation model




∆u+ u(g1(u) + h1(v)) = 0
∆v + v(g2(u) + h2(v)) = 0

in Ω,

u|∂Ω = v|∂Ω = 0.

This system is the general model for the steady state of a competitive or
cooperative interacting system depending on growth conditions for g1 , g2 , h1
and h2 . The techniques used in this paper are elliptic theory, super-sub solutions,
maximum principles, and spectrum estimates. The arguments also rely on some
detailed properties of the solution of logistic equations.

1. Introduction

A lot of research has been focused on reaction-diffusion equations modeling
various systems in mathematical biology, especially the elliptic steady states
of competitive and cooperative interacting processes with various boundary
conditions. In earlier literature, investigations into mathematical biology models
were concerned with studying those with homogeneous Neumann boundary
conditions. Later on, the more important Dirichlet problems, which allow flux
across the boundary, became the subject of study.
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Suppose two species of animals, rabbits and squirrels for instance, are
competing or cooperating in a bounded domain Ω. Let u(x , t) and v(x , t) be
densities of the two habitats in the place x of Ω at time t . Then we have the
following biological interpretation of terms.

(A) The partial derivatives ut(x , t) and vt(x , t) mean the rate of change of
densities with respect to time t .

(B) The laplacians ∆u(x , t) and ∆v(x , t) stand for the diffusion or migration
rates.

(C) The rates of self-reproduction of each species of animals are expressed as
multiples of some positive constants a, d and current densities u(x , t),
v(x , t), i.e. au(x , t) and dv(x , t) which will increase the rate of change
of densities in (A), where a > 0, d > 0 are called the self-reproduction
constants.

(D) The rates of self-limitation of each species of animals are multiples of some
positive constants b, f and the frequency of encounters among themselves
u2(x , t), v2(x , t), i.e. bu2(x , t) and f v2(x , t) which will decrease the rate of
change of densities in (A), where b > 0, f > 0 are called the self-limitation
constants.

(E) The rates of competition or cooperation of each species of animals
are multiples of some positive constants c , e and the frequency of
encounters of each species with the other u(x , t)v(x , t), i.e. cu(x , t)v(x , t)
and eu(x , t)v(x , t) which will decrease in competition and increase in
cooperation the rate of change of densities in (A), where c > 0, e > 0 are
called the competition constants.

(F) We assume that none of the species of animals is staying on the boundary
of Ω.

Combining all those together, we have the dynamic competition model




ut(x , t) = ∆u(x , t) + au(x , t)− bu2(x , t)− cu(x , t)v(x , t)
vt(x , t) = ∆v(x , t) + dv(x , t)− f v2(x , t)− eu(x , t)v(x , t)

in Ω× [0,∞),
u(x , t) = v(x , t) = 0 for x ∈ ∂Ω,

or equivalently,




ut(x , t) = ∆u(x , t) + u(x , t)(a− bu(x , t)− cv(x , t))
vt(x , t) = ∆v(x , t) + v(x , t)(d − f v(x , t)− eu(x , t))

in Ω× [0,∞),
u(x , t) = v(x , t) = 0 for x ∈ ∂Ω,

or cooperation model




ut(x , t) = ∆u(x , t) + au(x , t)− bu2(x , t) + cu(x , t)v(x , t)
vt(x , t) = ∆v(x , t) + dv(x , t)− f v2(x , t) + eu(x , t)v(x , t)

in Ω× [0,∞),
u(x , t) = v(x , t) = 0 for x ∈ ∂Ω,
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or equivalently,




ut(x , t) = ∆u(x , t) + u(x , t)(a− bu(x , t) + cv(x , t))
vt(x , t) = ∆v(x , t) + v(x , t)(d − f v(x , t) + eu(x , t))

in Ω× [0,∞),
u(x , t) = v(x , t) = 0 for x ∈ ∂Ω.

Here we are interested in the time independent, positive solutions, i.e. the positive
solutions u(x), v(x) of




∆u(x) + u(x)(a− bu(x)− cv(x)) = 0
∆v(x) + v(x)(d − f v(x)− eu(x)) = 0

in Ω,

u|∂Ω = v|∂Ω = 0,
(1.1)

or 


∆u(x) + u(x)(a− bu(x) + cv(x)) = 0
∆v(x) + v(x)(d − f v(x) + eu(x)) = 0 in Ω,

u|∂Ω = v|∂Ω = 0,
(1.2)

which are called the coexistence state or the steady state. The coexistence state
is the positive density solution depending only on the spatial variable x , not on
the time variable t , and so its existence means the two species of animals can live
peacefully and forever.

A lot of work about the existence and uniqueness of the coexistence state of the
above steady state models has already been done during the last decades. (See
[2], [3], [4], [6], [7], [11], [12].)

In [4], Cosner and Lazer established a sufficient and necessary conditions for
the existence of positive solution to the competing system.

The following is their result:

Theorem 1.1. In order that there exist positive smooth functions u and v in Ω
satisfying (1.1) with a = d , it is necessary and sufficient that one of the following
three sets of conditions hold, where λ1 is as described in the Lemma 2.3.

(1) a > λ1 , b > e, c < f
(2) a > λ1 , b = e, c = f
(3) a > λ1 , b < e, c > f

Biologically, the Theorem 1.1 implies that they can coexist peacefully if their
reproduction rates are large enough and their self-limitation and competition rates
are balanced each other.

In [12], Korman and Leung established a sufficient and necessary conditions for
the existence of positive solution to the cooperation system. The following is their
result:

Theorem 1.2. For existence of a positive solution to (1.2) it is necessary and sufficient
that ce < 1.
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Biologically, the Theorem 1.2 indicates that their strong cooperation may
decrease reproduction capacities and increase self-limitation abilities that cause
their extinction.

In this paper we study rather general types of the system. We are concerned with
the existence of positive coexistence when the relative growth rates are nonlinear,
more precisely, the existence and uniqueness of a positive steady state of




∆u+ u(g1(u) + h1(v)) = 0
∆v + v(g2(u) + h2(v)) = 0 in Ω,

u|∂Ω = v|∂Ω = 0,

where g1, g2, h1, h2 are C1 functions, Ω is a bounded domain in Rn and u, v are
densities of the two competitive or cooperative species.

The functions g1, h2 describe how species 1 (u) and 2 (v) interact among
themselves, and h1, g2 illustrate how they interact with each other.

The followings are questions raised in the general model with nonlinear growth
rates.

Problem 1. Under what conditions do the species coexist?

Problem 2. When does either one of the species become extinct?

In Section 3, some sufficient and necessary conditions for the existence of
positive solution in the competition system are obtained that generalizes the
Theorem 1.1, and we can also see some nonexistence result. In Section 4. We
establish sufficient and necessary conditions for the existence of positive solution
in the cooperating system that generalizes the Theorem 1.2.

2. Preliminaries

Before entering into our primary arguments and results, we must first present
a few preliminary items that we later employ throughout the proofs detailed in
this paper. The following definition and lemmas are established and accepted
throughout the literature on our topic.

Definition 2.1 (Super and sub solutions). Consider
¨
∆u+ f (x , u) = 0 in Ω,
u|∂Ω = 0,

(2.1)

where f ∈ Cα(Ω̄× R) and Ω is a bounded domain in Rn .

(A) A function ū ∈ C2,α(Ω̄) satisfying
¨
∆ū+ f (x , ū)≤ 0 in Ω,
ū|∂Ω ≥ 0

is called a super solution to (2.1).
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(B) A function u ∈ C2,α(Ω̄) satisfying
¨
∆u+ f (x , u)≥ 0 in Ω,
u|∂Ω ≤ 0

is called a sub solution to (2.1).

Lemma 2.2. Let f (x ,ξ) ∈ Cα(Ω̄× R) and let ū, u ∈ C2,α(Ω̄) be, respectively, super
and sub solutions to (2.1) which satisfy u(x)≤ ū(x), x ∈ Ω̄. Then (2.1) has a solution
u ∈ C2,α(Ω̄) with u(x)≤ u(x)≤ ū(x), x ∈ Ω̄.

In our proof, we also employ accepted conclusions concerning the solutions of
the following logistic equations.

Lemma 2.3 (Established in [13]). Consider
¨
∆u+ uf (u) = 0 in Ω,
u|∂Ω = 0, u> 0,

where f is a decreasing C1 function such that there exists c0 > 0 such that f (u)≤ 0
for u≥ c0 and Ω is a bounded domain in Rn .
If f (0)> λ1 , then the above equation has a unique positive solution, where λ1 is the
first eigenvalue of −∆ with homogeneous boundary conditions whose corresponding
eigenfunction is denoted by φ1 . We denote this unique positive solution as θ f .

The most important property of this positive solution is that θ f is increasing as
f is increasing.

We specifically note that for a > λ1 , the unique positive solution of
�
∆u+ u(a− u) = 0 in Ω,
u|∂Ω = 0, u> 0,

is denoted by ωa ≡ θa−x . Hence, θa is increasing as a > 0 is increasing.

Consider the system

∆u+ f (x , u) = 0 in, Ω,
u= 0 on ∂Ω, (2.2)

where u = (u1, . . . , um) and f = ( f1, . . . , fm) is quasimonotone increasing, i.e.
fi(x , u) is increasing in u j for all j 6= i .

Lemma 2.4 ([12]). Let wλ be a family of subsolutions (α ≤ λ ≤ β) to (2.2),
increasing in λ such that

∆wλ + f (x , wλ)≥ 0 in Ω, wλ = 0 on ∂Ω.

Assume also u ≥ wα , wλ does not satisfy (2.2) for any λ, and ∂ wλ
∂ n

changes
continuously in λ on ∂Ω. Then u≥ sup wλ .
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3. Competing Species

Consider the system for two competing species of animals



∆u(x) + u(x)[g1(u(x)) + h1(v(x))] = 0
∆v(x) + v(x)[g2(u(x)) + h2(v(x))] = 0

in Ω,

u|∂Ω = v|∂Ω = 0,
(3.1)

where g1 , g2 , h1 , h2 ∈ C1 are such that g ′1 < 0, g ′2 < 0, h′1 < 0, h′2 < 0, there exist
constants c0 > 0, c1 > 0 such that g1(u) ≤ 0 for u ≥ c0 and h2(v) ≤ 0 for v ≥ c1 ,
and h1(0) = g2(0) = 0.

If there were no competition between the species, that is, if we consider



∆u+ ug1(u) = 0
∆v + vh2(v) = 0

in Ω,

u= v = 0 on ∂Ω,

then the condition ag1(0) > λ1 , h2(0) > λ1 (i.e. reproductions are relatively
large) were sufficient to guarantee the existence of a positive density solution
θg1

, θh2
. But, if there is some competition between them, then as we see in the

following Theorem 3.1, we should have the balance conditions for self-limitation
and competition rates.

The following theorem provides a sufficient condition for the existence of a
positive smooth solution to (3.1).

Theorem 3.1. Suppose one of the following three sets of conditions holds.

(1) g1(0)> λ1 , inf(g ′1)< inf(g ′2), inf(h′1)> inf(h′2)
(2) g1(0)> λ1 , inf(g ′1) = inf(g ′2), inf(h′1) = inf(h′2)
(3) g1(0)> λ1 , inf(g ′1)> inf(g ′2), inf(h′1)< inf(h′2)

Then (3.1) with g1(0) = h2(0) has a positive smooth solution.

Proof. By the Theorem 1.1, if one of the above three sets of conditions holds, then
there is a positive smooth solution (u, v) to

∆u+ u[g1(0)− (− inf(g ′1))u− (− inf(h′1))v] = 0
∆v + v[h2(0)− (− inf(g ′2))u− (− inf(h′2))v] = 0 in Ω, u|∂Ω = v|∂Ω = 0.

But, by the Mean Value Theorem,

∆u+ u[g1(u) + h1(v)] = ∆u+ u[g1(0) + g1(u)− g1(0) + h1(v)− h1(0)]

≥∆u+ u[g1(0) + inf(g ′1)u+ inf(h′1)v]

= ∆u+ u[g1(0)− (− inf(g ′1))u− (− inf(h′1))v]

= 0,
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and

∆v + v[g2(u) + h2(v)] = ∆v + v[h2(0) + g2(u)− g2(0) + h2(v)− h2(0)]

≥∆v + v[h2(0) + inf(g ′2)u+ inf(h′2)v]

= ∆v + v[h2(0)− (− inf(g ′2))u− (− inf(h′2))v]

= 0.

Hence, (u, v) is a subsolution to (3.1).
But by the conditions of g, h, any large positive constant M satisfying u < M ,

v < M in Ω is a supersolution to (3.1).
Therefore, by the Lemma 2.2, (3.1) has a positive smooth solution.
The next theorem establishes a necessary condition for the existence of a

positive smooth solution to (3.1).

Theorem 3.2. If (3.1) with g1(0) = h2(0) has a positive smooth solution, then
a > λ1 and one of the following six sets of conditions holds.

(1) g ′1 ≡ g ′2 are constants, inf(h′2)≤ sup(h′1), sup(h′2)≥ inf(h′1)
(2) inf(g ′2) = sup(g ′1), sup(g ′2)> inf(g ′1), inf(h′2)≤ sup(h′1)
(3) inf(g ′2)> sup(g ′1), sup(g ′2)> inf(g ′1), inf(h′2)< sup(h′1)
(4) inf(g ′2)< sup(g ′1), sup(g ′2) = inf(g ′1), sup(h′2)≥ inf(h′1)
(5) inf(g ′2)< sup(g ′1), sup(g ′2)< inf(g ′1), sup(h′2)> inf(h′1)
(6) inf(g ′2)< sup(g ′1), sup(g ′2)> inf(g ′1)

Proof. Suppose (u, v) is a positive smooth solution to (3.1).
By the Mean Value Theorem, there are ũ, ṽ with 0≤ ũ≤ u, 0≤ ṽ ≤ v such that

g1(u)− g1(0) = g ′1(ũ)u,

h1(v)− h1(0) = h′1(ṽ)v.

Hence, by the Green’s Identity,
∫

Ω

uφ1[λ1 − g1(0)− g ′1(ũ)u− h′1(ṽ)v]d x

=

∫

Ω

uφ1[λ1 − g1(0) + g1(0)− g1(u)− h1(v) + h1(0)]d x

=

∫

Ω

uφ1[λ1 − g1(u)− h1(v)]d x

=

∫

Ω

φ1[−u(g1(u) + h1(v))] + uλ1φ1d x

=

∫

Ω

φ1∆u− u∆φ1d x

= 0.

But, since −g ′1(ũ)u− h′1(ṽ)v > 0 in Ω, g1(0)> λ1 .
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By the Mean Value Theorem again, there are u1 , u2 , v1 , v2 with 0≤ u1 , u2 ≤ u,
0≤ v1 , v2 ≤ v such that

g1(u)− g1(0) = g ′1(u1)u,

g2(u)− g2(0) = g ′2(u2)u,

h1(v)− h1(0) = h′1(v1)v,

h2(v)− h2(0) = h′2(v2)v.

Therefore, by the Green’s Identity again,∫

Ω

uv([g ′2(u2)− g ′1(u1)]u+ [h
′
2(v2)− h′1(v1)]v)d x

=

∫

Ω

uv[g ′2(u2)u+ h′2(v2)v − g ′1(u1)u− h′1(v1)v)d x

=

∫

Ω

uv[g2(u)− g2(0) + h2(v)− h2(0) + g1(0)− g1(u)− h1(v) + h1(0)]d x

=

∫

Ω

uv[g2(u) + h2(v)− g1(u)− h1(v)]d x

=

∫

Ω

v∆u− u∆vd x

= 0,

and so, ∫

Ω

uv([inf(g ′2)− sup(g ′1)]u+[inf(h′2)− sup(h′1)]v)d x ≤ 0,

∫

Ω

uv([sup(g ′2)− inf(g ′1)]u+[sup(h′2)− inf(h′1)]v)d x ≥ 0,

which derives

(A) inf(g ′2) = sup(g ′1), inf(h′2)≤ sup(h′1),
(B) inf(g ′2)> sup(g ′1), inf(h′2)< sup(h′1),
(C) inf(g ′2)< sup(g ′1),

and

(A′) sup(g ′2) = inf(g ′1), sup(h′2)≥ inf(h′1),
(B′) sup(g ′2)< inf(g ′1), sup(h′2)> inf(h′1),
(C′) sup(g ′2)> inf(g ′1).

Combining (A), (B), (C) and (A′), (B′), (C′) together, we may have

(A′′) g ′1 ≡ g ′2 are constants, inf(h′2)≤ sup(h′1), sup(h′2)≥ inf(h′1),
(B′′) inf(g ′2) = sup(g ′1), sup(g ′2)< inf(g ′1), inf(h′2)≤ sup(h′1), sup(h′2)> inf(h′1),
(C′′) inf(g ′2) = sup(g ′1), sup(g ′2)> inf(g ′1), inf(h′2)≤ sup(h′1),
(D′′) inf(g ′2)> sup(g ′1), sup(g ′2) = inf(g ′1), inf(h′2)< sup(h′1), sup(h′2)≥ inf(h′1),
(E′′) inf(g ′2)> sup(g ′1), sup(g ′2)< inf(g ′1), inf(h′2)< sup(h′1), sup(h′2)> inf(h′1),
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(F′′) inf(g ′2)> sup(g ′1), sup(g ′2)> inf(g ′1), inf(h′2)< sup(h′1),
(G′′) inf(g ′2)< sup(g ′1), sup(g ′2) = inf(g ′1), sup(h′2)≥ inf(h′1),
(H′′) inf(g ′2)< sup(g ′1), sup(g ′2)< inf(g ′1), sup(h′2)> inf(h′1),
(I′′) inf(g ′2)< sup(g ′1), sup(g ′2)> inf(g ′1).

However, it is clear that (B′′), (D′′),(E′′)are not possible, so we establish the result
of the Theorem.

We easily recognize that combining the Theorems 3.1 and 3.2 generalizes the
result of Theorem 1.1 with linear growth rates.

We also prove a nonexistence result.

Theorem 3.3. If g1(0) >
ν

µ
h2(0), −1 ≤ g ′1 < 0, and h′2 ≤ −1, where µ =

min[− sup(g ′2), 1] and ν = max[− inf(h′1), 1], then there is no positive solution to
(3.1).

Proof. Suppose there is a positive solution (u, v) to (3.1).
Then by the Mean Value Theorem, the Green’s Identity and the inequality
conditions,∫

Ω

(g1(0)− h2(0) + [− sup(g ′2)− 1]u+[1+ inf(h′1)]v)uvd x

≤
∫

Ω

(g1(0)− h2(0) + [inf(g ′1)− sup(g ′2)]u+ [inf(h′1)− sup(h′2)]v)uvd x

≤
∫

Ω

[g1(0)− h2(0) + g1(u)− g1(0)− g2(u) + g2(0) + h1(v)

− h1(0)− h2(v) + h2(0)]uvd x (3.2)

=

∫

Ω

[g1(u) + h1(v)− g2(u)− h2(v)]uvd x

=

∫

Ω

(v∆u− u∆v)d x

= 0.

But, if g1(0)>
ν

µ
h2(0), then since g1(0)≥ u and h2(0)≥ v ,

g1(0)− h2(0) + [− sup(g ′2)− 1]u+ [1+ inf(h′1)]v ≥ µg1(0)− νh2(0)> 0,

which contradicts to (3.2). ¤

4. Cooperating Species

Consider the system for two cooperating species of animals



∆u(x) + u(x)(g1(u(x)) + h1(v(x))) = 0
∆v(x) + v(x)(g2(u(x)) + h2(v(x))) = 0 in Ω,

u|∂Ω = v|∂Ω = 0,
(4.1)
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where g1 , g2 , h1 and h2 are in C1 such that g ′1 < 0, g ′2 > 0, h′1 > 0, h′2 < 0 and
g2(0) = h1(0) = 0.

The following Theorem proves a necessary condition for the existence of a
positive solution to (4.1).

Theorem 4.1. If g1(0) > λ1 , h2(0) > λ1 , inf(h′2) ≥ −1, inf(g ′2) > 0, then the
existence of a positive solution to (4.1) implies

inf(h′1) inf(g ′2) + inf(g ′1)< 0.

Proof. Suppose inf(h′1) inf(g ′2) + inf(g ′1) ≥ 0. Consider a family (uλ, vλ) =
(λφ1,λ inf(g ′2)φ1) with any λ > 0.

Then by the assumption and Mean Value Theorem,

∆uλ + uλ[g1(uλ) + h1(vλ)]

=−λλ1φ1 +λφ1[g1(λφ1) + h1(λ inf(g ′2)φ1)]

= λφ1[−λ1 + g1(λφ1) + h1(λ inf(g ′2)φ1)]

= λφ1[g1(0)−λ1 + g1(λφ1)− g1(0) + h1(λ inf(g ′2)φ1)− h1(0)]

≥ λφ1[g1(0)−λ1 + inf(g ′1)λφ1 + inf(h′1)λ inf(g ′2)φ1]

> 0,

and

∆vλ + vλ[g2(uλ) + h2(vλ)]

=−λ inf(g ′2)λ1φ1 +λ inf(g ′2)φ1[g2(λφ1) + h2(λ inf(g ′2)φ1)]

= λ inf(g ′2)φ1(−λ1 + g2(λφ1) + h2(λ inf(g ′2)φ1))

= λ inf(g ′2)φ1(h2(0)−λ1 + g2(λφ1)− g2(0) + h2(λ inf(g ′2)φ1)− h2(0))

≥ λ inf(g ′2)φ1(h2(0)−λ1 + inf(g ′2)λφ1 + inf(h′2)λ inf(g ′2)φ1)

> 0.

Therefore, (uλ, vλ) = (λφ1,λ inf(hu)φ1) with any λ > 0 is a family of subsolutions
to (4.1).

Furthermore, if (u, v) is a positive solution to (4.1), then u > λ0φ1 and
v > λ0 inf(hu)φ1 for sufficiently small λ0 > 0, and so by the Lemma 2.4, we
conclude that u≥ λφ1 and v ≥ λ inf(hu)φ1 for any λ≥ λ0 .

Hence, there is no positive solution to (4.1) ¤

For a sufficient condition for the existence of a positive solution to (4.1), we
need the following Lemma.

Lemma 4.2. If b f > ce, then we can choose arbitrary large M , N > 0 such that

a− bM + cN < 0,

d + eu− f N < 0.
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We now establish a sufficient condition for the existence of a positive solution
to (4.1).

Theorem 4.3. If g1(0) > λ1, h2(0) > λ1 and sup(h′1) sup(g ′2) < sup(g ′1) sup(h′2),
then (4.1) has a positive solution.

Proof. Let u= αφ1, v = βφ1 , where α,β > 0.
Then since g1(0) > λ1 and h2(0) > λ1 , by the Mean Value Theorem, for small
enough α,β > 0,

∆u+ u[g1(u) + h1(v)]

=−αλ1φ1 +αφ1[g1(αφ1) + h1(βφ1)]

= αφ1[−λ1 + g1(αφ1) + h1(βφ1)]

= αφ1[−λ1 + g1(0) + g1(αφ1)− g1(0) + h1(βφ1)− h1(0)]

≥ αφ1[−λ1 + g1(0) + inf(g ′1)αφ1 + inf(h′1)βφ1]

≥ 0,

and

∆v + v[g2(u) + h2(v)]

=−βλ1φ1 + βφ1[g2(αφ1) + h2(βφ1)]

= βφ1[−λ1 + g2(αφ1) + h2(βφ1)]

= βφ1[−λ1 + h2(0) + g2(αφ1)− g2(0) + h2(βφ1)− h2(0)]

≥ βφ1[−λ1 + h2(0) + inf(g ′2)αφ1 + inf(h′2)βφ1]

≥ 0,

and so, (u, v) = (αφ1,βφ1) is a subsolution to (4.1) for sufficiently small α,β > 0.
But, for all (u, v), by the Mean Value Theorem again,

g1(u) + h1(v) = g1(0) + g1(u)− g1(0) + h1(v)− h1(0)

≤ g1(0) + sup(g ′1)u+ sup(h′1)v,

and

g2(u) + h2(v) = h2(0) + g2(u)− g2(0) + h2(v)− h2(0)

≤ h2(0) + sup(g ′2)u+ sup(h′2)v,

so by the condition and the Lemma 4.2, there are constants M , N > 0 with
αφ1 < M ,βφ1 < N such that

∆M +M[g1(M) + h1(N)]≤ M[g1(0) + sup(g ′1)M + sup(h′1)N]< 0,

∆N + N[g2(M) + h2(N)]≤ N[h2(0) + sup(g ′2)M + sup(h′2)N]< 0,

in other words, (M , N) is a supersolution to (4.1).
We conclude by the Lemma 2.2 that there is a positive solution (u, v) to (4.1)

with αφ1 ≤ u≤ M ,βφ1 ≤ v ≤ N .



212 Joon Hyuk Kang

We easily recognize that combining the Theorems 4.1 and 4.3 generalizes the
result of Theorem 1.2 with linear growth rates. ¤
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