Volume 4 (2013), Number 3, pp. 201–212 RGN Publications

Invited article

Steady State Solutions to General Competition and Cooperation Models

Joon Hyuk Kang

Abstract Two species of animals are competing or cooperating in the same environment. Under what conditions do they coexist peacefully? Or under what conditions does either one of the two species become extinct, that is, is either one of the two species excluded by the other? We investigate this phenomena in mathematical point of view.

In this paper we concentrate on coexistence solutions of the competition or cooperation model

$$\begin{cases} \Delta u + u(g_1(u) + h_1(v)) = 0\\ \Delta v + v(g_2(u) + h_2(v)) = 0\\ u|_{\partial\Omega} = v|_{\partial\Omega} = 0. \end{cases} \text{ in } \Omega,$$

This system is the general model for the steady state of a competitive or cooperative interacting system depending on growth conditions for g_1 , g_2 , h_1 and h_2 . The techniques used in this paper are elliptic theory, super-sub solutions, maximum principles, and spectrum estimates. The arguments also rely on some detailed properties of the solution of logistic equations.

1. Introduction

A lot of research has been focused on reaction-diffusion equations modeling various systems in mathematical biology, especially the elliptic steady states of competitive and cooperative interacting processes with various boundary conditions. In earlier literature, investigations into mathematical biology models were concerned with studying those with homogeneous Neumann boundary conditions. Later on, the more important Dirichlet problems, which allow flux across the boundary, became the subject of study.

²⁰¹⁰ Mathematics Subject Classification. 35A05, 35A07.

Key words and phrases. Competition and cooperation system; Coexistence state.

Copyright © 2013 Joon Hyuk Kang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Suppose two species of animals, rabbits and squirrels for instance, are competing or cooperating in a bounded domain Ω . Let u(x,t) and v(x,t) be densities of the two habitats in the place x of Ω at time t. Then we have the following biological interpretation of terms.

- (A) The partial derivatives $u_t(x,t)$ and $v_t(x,t)$ mean the rate of change of densities with respect to time *t*.
- (B) The laplacians $\Delta u(x,t)$ and $\Delta v(x,t)$ stand for the diffusion or migration rates.
- (C) The rates of self-reproduction of each species of animals are expressed as multiples of some positive constants a, d and current densities u(x,t), v(x,t), i.e. au(x,t) and dv(x,t) which will increase the rate of change of densities in (A), where a > 0, d > 0 are called the self-reproduction constants.
- (D) The rates of self-limitation of each species of animals are multiples of some positive constants *b*, *f* and the frequency of encounters among themselves $u^2(x,t)$, $v^2(x,t)$, i.e. $bu^2(x,t)$ and $fv^2(x,t)$ which will decrease the rate of change of densities in (A), where b > 0, f > 0 are called the self-limitation constants.
- (E) The rates of competition or cooperation of each species of animals are multiples of some positive constants c, e and the frequency of encounters of each species with the other u(x,t)v(x,t), i.e. cu(x,t)v(x,t) and eu(x,t)v(x,t) which will decrease in competition and increase in cooperation the rate of change of densities in (A), where c > 0, e > 0 are called the competition constants.
- (F) We assume that none of the species of animals is staying on the boundary of Ω .

Combining all those together, we have the dynamic competition model

$$\begin{aligned} u_t(x,t) &= \Delta u(x,t) + au(x,t) - bu^2(x,t) - cu(x,t)v(x,t) \\ v_t(x,t) &= \Delta v(x,t) + dv(x,t) - fv^2(x,t) - eu(x,t)v(x,t) \\ u(x,t) &= v(x,t) = 0 \text{ for } x \in \partial \Omega, \end{aligned}$$
 in $\Omega \times [0,\infty),$

or equivalently,

$$\begin{aligned} & u_t(x,t) = \Delta u(x,t) + u(x,t)(a - bu(x,t) - cv(x,t)) \\ & v_t(x,t) = \Delta v(x,t) + v(x,t)(d - fv(x,t) - eu(x,t)) \\ & u(x,t) = v(x,t) = 0 \text{ for } x \in \partial \Omega, \end{aligned}$$
 in $\Omega \times [0,\infty),$

or cooperation model

$$\begin{aligned} u_t(x,t) &= \Delta u(x,t) + au(x,t) - bu^2(x,t) + cu(x,t)v(x,t) \\ v_t(x,t) &= \Delta v(x,t) + dv(x,t) - fv^2(x,t) + eu(x,t)v(x,t) \\ u(x,t) &= v(x,t) = 0 \text{ for } x \in \partial \Omega, \end{aligned}$$
 in $\Omega \times [0,\infty),$

or equivalently,

$$\begin{aligned} u_t(x,t) &= \Delta u(x,t) + u(x,t)(a - bu(x,t) + cv(x,t)) \\ v_t(x,t) &= \Delta v(x,t) + v(x,t)(d - fv(x,t) + eu(x,t)) \\ u(x,t) &= v(x,t) = 0 \text{ for } x \in \partial \Omega. \end{aligned}$$
 in $\Omega \times [0,\infty),$

Here we are interested in the time independent, positive solutions, i.e. the positive solutions u(x), v(x) of

$$\Delta u(x) + u(x)(a - bu(x) - cv(x)) = 0$$

$$\Delta v(x) + v(x)(d - fv(x) - eu(x)) = 0$$
 in Ω , (1.1)

$$u|_{\partial\Omega} = v|_{\partial\Omega} = 0,$$

or

$$\begin{aligned} \Delta u(x) + u(x)(a - bu(x) + cv(x)) &= 0\\ \Delta v(x) + v(x)(d - fv(x) + eu(x)) &= 0\\ u|_{\partial\Omega} &= v|_{\partial\Omega} = 0, \end{aligned}$$
 in Ω , (1.2)

which are called the coexistence state or the steady state. The coexistence state is the positive density solution depending only on the spatial variable x, not on the time variable t, and so its existence means the two species of animals can live peacefully and forever.

A lot of work about the existence and uniqueness of the coexistence state of the above steady state models has already been done during the last decades. (See [2], [3], [4], [6], [7], [11], [12].)

In [4], Cosner and Lazer established a sufficient and necessary conditions for the existence of positive solution to the competing system.

The following is their result:

Theorem 1.1. In order that there exist positive smooth functions u and v in Ω satisfying (1.1) with a = d, it is necessary and sufficient that one of the following three sets of conditions hold, where λ_1 is as described in the Lemma 2.3.

(1) $a > \lambda_1$, b > e, c < f

(2)
$$a > \lambda_1, b = e, c = f$$

(3) $a > \lambda_1, b < e, c > f$

Biologically, the Theorem 1.1 implies that they can coexist peacefully if their reproduction rates are large enough and their self-limitation and competition rates are balanced each other.

In [12], Korman and Leung established a sufficient and necessary conditions for the existence of positive solution to the cooperation system. The following is their result:

Theorem 1.2. For existence of a positive solution to (1.2) it is necessary and sufficient that ce < 1.

Joon Hyuk Kang

Biologically, the Theorem 1.2 indicates that their strong cooperation may decrease reproduction capacities and increase self-limitation abilities that cause their extinction.

In this paper we study rather general types of the system. We are concerned with the existence of positive coexistence when the relative growth rates are nonlinear, more precisely, the existence and uniqueness of a positive steady state of

$$\begin{cases} \Delta u + u(g_1(u) + h_1(v)) = 0\\ \Delta v + v(g_2(u) + h_2(v)) = 0\\ u|_{\partial\Omega} = v|_{\partial\Omega} = 0, \end{cases} \text{ in } \Omega,$$

where g_1, g_2, h_1, h_2 are C^1 functions, Ω is a bounded domain in \mathbb{R}^n and u, v are densities of the two competitive or cooperative species.

The functions g_1, h_2 describe how species 1 (*u*) and 2 (*v*) interact among themselves, and h_1, g_2 illustrate how they interact with each other.

The followings are questions raised in the general model with nonlinear growth rates.

Problem 1. Under what conditions do the species coexist?

Problem 2. When does either one of the species become extinct?

In Section 3, some sufficient and necessary conditions for the existence of positive solution in the competition system are obtained that generalizes the Theorem 1.1, and we can also see some nonexistence result. In Section 4. We establish sufficient and necessary conditions for the existence of positive solution in the cooperating system that generalizes the Theorem 1.2.

2. Preliminaries

Before entering into our primary arguments and results, we must first present a few preliminary items that we later employ throughout the proofs detailed in this paper. The following definition and lemmas are established and accepted throughout the literature on our topic.

Definition 2.1 (Super and sub solutions). Consider

$$\begin{cases} \Delta u + f(x, u) = 0 \text{ in } \Omega, \\ u|_{\partial \Omega} = 0, \end{cases}$$
(2.1)

where $f \in C^{\alpha}(\overline{\Omega} \times R)$ and Ω is a bounded domain in \mathbb{R}^n .

(A) A function $\bar{u} \in C^{2,\alpha}(\bar{\Omega})$ satisfying

$$\begin{cases} \Delta \bar{u} + f(x, \bar{u}) \leq 0 \text{ in } \Omega, \\ \bar{u}|_{\partial \Omega} \geq 0 \end{cases}$$

is called a super solution to (2.1).

(B) A function $\underline{u} \in C^{2,\alpha}(\overline{\Omega})$ satisfying

$$\begin{cases} \Delta \underline{u} + f(x, \underline{u}) \ge 0 \text{ in } \Omega, \\ \underline{u}|_{\partial \Omega} \le 0 \end{cases}$$

is called a sub solution to (2.1).

Lemma 2.2. Let $f(x,\xi) \in C^{\alpha}(\bar{\Omega} \times R)$ and let $\bar{u}, \underline{u} \in C^{2,\alpha}(\bar{\Omega})$ be, respectively, super and sub solutions to (2.1) which satisfy $\underline{u}(x) \leq \bar{u}(x), x \in \bar{\Omega}$. Then (2.1) has a solution $u \in C^{2,\alpha}(\bar{\Omega})$ with $\underline{u}(x) \leq u(x) \leq \bar{u}(x), x \in \bar{\Omega}$.

In our proof, we also employ accepted conclusions concerning the solutions of the following logistic equations.

Lemma 2.3 (Established in [13]). Consider

$$\begin{cases} \Delta u + uf(u) = 0 \text{ in } \Omega, \\ u|_{\partial \Omega} = 0, u > 0, \end{cases}$$

where f is a decreasing C^1 function such that there exists $c_0 > 0$ such that $f(u) \le 0$ for $u \ge c_0$ and Ω is a bounded domain in \mathbb{R}^n .

If $f(0) > \lambda_1$, then the above equation has a unique positive solution, where λ_1 is the first eigenvalue of $-\Delta$ with homogeneous boundary conditions whose corresponding eigenfunction is denoted by ϕ_1 . We denote this unique positive solution as θ_f .

The most important property of this positive solution is that θ_f is increasing as f is increasing.

We specifically note that for $a > \lambda_1$, the unique positive solution of

$$\begin{cases} \Delta u + u(a - u) = 0 \text{ in } \Omega, \\ u|_{\partial \Omega} = 0, u > 0, \end{cases}$$

is denoted by $\omega_a \equiv \theta_{a-x}$. Hence, θ_a is increasing as a > 0 is increasing.

Consider the system

$$\Delta u + f(x, u) = 0 \text{ in, } \Omega,$$

$$u = 0 \text{ on } \partial \Omega,$$
(2.2)

where $u = (u_1, ..., u_m)$ and $f = (f_1, ..., f_m)$ is quasimonotone increasing, i.e. $f_i(x, u)$ is increasing in u_j for all $j \neq i$.

Lemma 2.4 ([12]). Let w_{λ} be a family of subsolutions ($\alpha \leq \lambda \leq \beta$) to (2.2), increasing in λ such that

$$\Delta w_{\lambda} + f(x, w_{\lambda}) \ge 0$$
 in $\Omega, w_{\lambda} = 0$ on $\partial \Omega$.

Assume also $u \ge w_{\alpha}$, w_{λ} does not satisfy (2.2) for any λ , and $\frac{\partial w_{\lambda}}{\partial n}$ changes continuously in λ on $\partial \Omega$. Then $u \ge \sup w_{\lambda}$.

3. Competing Species

Consider the system for two competing species of animals

$$\begin{cases} \Delta u(x) + u(x)[g_1(u(x)) + h_1(v(x))] = 0\\ \Delta v(x) + v(x)[g_2(u(x)) + h_2(v(x))] = 0\\ u|_{\partial\Omega} = v|_{\partial\Omega} = 0, \end{cases}$$
 in Ω , (3.1)

where $g_1, g_2, h_1, h_2 \in C^1$ are such that $g'_1 < 0, g'_2 < 0, h'_1 < 0, h'_2 < 0$, there exist constants $c_0 > 0, c_1 > 0$ such that $g_1(u) \le 0$ for $u \ge c_0$ and $h_2(v) \le 0$ for $v \ge c_1$, and $h_1(0) = g_2(0) = 0$.

If there were no competition between the species, that is, if we consider

$$\begin{cases} \Delta u + ug_1(u) = 0\\ \Delta v + vh_2(v) = 0\\ u = v = 0 \text{ on } \partial \Omega, \end{cases} \text{ in } \Omega,$$

then the condition $ag_1(0) > \lambda_1$, $h_2(0) > \lambda_1$ (i.e. reproductions are relatively large) were sufficient to guarantee the existence of a positive density solution θ_{g_1} , θ_{h_2} . But, if there is some competition between them, then as we see in the following Theorem 3.1, we should have the balance conditions for self-limitation and competition rates.

The following theorem provides a sufficient condition for the existence of a positive smooth solution to (3.1).

Theorem 3.1. Suppose one of the following three sets of conditions holds.

- (1) $g_1(0) > \lambda_1$, $\inf(g'_1) < \inf(g'_2)$, $\inf(h'_1) > \inf(h'_2)$
- (2) $g_1(0) > \lambda_1$, $\inf(g_1') = \inf(g_2')$, $\inf(h_1') = \inf(h_2')$
- (3) $g_1(0) > \lambda_1$, $\inf(g'_1) > \inf(g'_2)$, $\inf(h'_1) < \inf(h'_2)$

Then (3.1) with $g_1(0) = h_2(0)$ has a positive smooth solution.

Proof. By the Theorem 1.1, if one of the above three sets of conditions holds, then there is a positive smooth solution (u, v) to

$$\begin{aligned} \Delta u + u[g_1(0) - (-\inf(g_1'))u - (-\inf(h_1'))v] &= 0\\ \Delta v + v[h_2(0) - (-\inf(g_2'))u - (-\inf(h_2'))v] &= 0 \end{aligned} \quad \text{in } \Omega, u|_{\partial\Omega} = v|_{\partial\Omega} = 0. \end{aligned}$$

But, by the Mean Value Theorem,

$$\begin{aligned} \Delta u + u[g_1(u) + h_1(v)] &= \Delta u + u[g_1(0) + g_1(u) - g_1(0) + h_1(v) - h_1(0)] \\ &\geq \Delta u + u[g_1(0) + \inf(g_1')u + \inf(h_1')v] \\ &= \Delta u + u[g_1(0) - (-\inf(g_1'))u - (-\inf(h_1'))v] \\ &= 0, \end{aligned}$$

206

and

$$\begin{aligned} \Delta v + v[g_2(u) + h_2(v)] &= \Delta v + v[h_2(0) + g_2(u) - g_2(0) + h_2(v) - h_2(0)] \\ &\geq \Delta v + v[h_2(0) + \inf(g'_2)u + \inf(h'_2)v] \\ &= \Delta v + v[h_2(0) - (-\inf(g'_2))u - (-\inf(h'_2))v] \\ &= 0. \end{aligned}$$

Hence, (u, v) is a subsolution to (3.1).

But by the conditions of g, h, any large positive constant M satisfying u < M, v < M in Ω is a supersolution to (3.1).

Therefore, by the Lemma 2.2, (3.1) has a positive smooth solution.

The next theorem establishes a necessary condition for the existence of a positive smooth solution to (3.1).

Theorem 3.2. If (3.1) with $g_1(0) = h_2(0)$ has a positive smooth solution, then $a > \lambda_1$ and one of the following six sets of conditions holds.

- (1) $g'_1 \equiv g'_2 \text{ are constants, } \inf(h'_2) \le \sup(h'_1), \ \sup(h'_2) \ge \inf(h'_1)$ (2) $\inf(g'_2) = \sup(g'_1), \ \sup(g'_2) > \inf(g'_1), \ \inf(h'_2) \le \sup(h'_1)$
- (3) $\inf(g'_2) > \sup(g'_1), \, \sup(g'_2) > \inf(g'_1), \, \inf(h'_2) < \sup(h'_1)$
- (4) $\inf(g'_2) < \sup(g'_1), \ \sup(g'_2) = \inf(g'_1), \ \sup(h'_2) \ge \inf(h'_1)$
- (5) $\inf(g'_2) < \sup(g'_1), \, \sup(g'_2) < \inf(g'_1), \, \sup(h'_2) > \inf(h'_1)$
- (6) $\inf(g'_2) < \sup(g'_1), \, \sup(g'_2) > \inf(g'_1)$

Proof. Suppose (u, v) is a positive smooth solution to (3.1).

By the Mean Value Theorem, there are \tilde{u} , \tilde{v} with $0 \le \tilde{u} \le u$, $0 \le \tilde{v} \le v$ such that

$$g_1(u) - g_1(0) = g'_1(\tilde{u})u,$$

 $h_1(v) - h_1(0) = h'_1(\tilde{v})v.$

Hence, by the Green's Identity,

$$\begin{split} &\int_{\Omega} u\phi_1[\lambda_1 - g_1(0) - g_1'(\tilde{u})u - h_1'(\tilde{v})v]dx \\ &= \int_{\Omega} u\phi_1[\lambda_1 - g_1(0) + g_1(0) - g_1(u) - h_1(v) + h_1(0)]dx \\ &= \int_{\Omega} u\phi_1[\lambda_1 - g_1(u) - h_1(v)]dx \\ &= \int_{\Omega} \phi_1[-u(g_1(u) + h_1(v))] + u\lambda_1\phi_1dx \\ &= \int_{\Omega} \phi_1\Delta u - u\Delta\phi_1dx \\ &= 0. \end{split}$$

But, since $-g'_1(\tilde{u})u - h'_1(\tilde{v})v > 0$ in Ω , $g_1(0) > \lambda_1$.

By the Mean Value Theorem again, there are u_1, u_2, v_1, v_2 with $0 \le u_1, u_2 \le u$, $0 \le v_1, v_2 \le v$ such that

$$g_1(u) - g_1(0) = g'_1(u_1)u,$$

$$g_2(u) - g_2(0) = g'_2(u_2)u,$$

$$h_1(v) - h_1(0) = h'_1(v_1)v,$$

$$h_2(v) - h_2(0) = h'_2(v_2)v.$$

Therefore, by the Green's Identity again,

$$\begin{split} &\int_{\Omega} uv([g_{2}'(u_{2}) - g_{1}'(u_{1})]u + [h_{2}'(v_{2}) - h_{1}'(v_{1})]v)dx \\ &= \int_{\Omega} uv[g_{2}'(u_{2})u + h_{2}'(v_{2})v - g_{1}'(u_{1})u - h_{1}'(v_{1})v)dx \\ &= \int_{\Omega} uv[g_{2}(u) - g_{2}(0) + h_{2}(v) - h_{2}(0) + g_{1}(0) - g_{1}(u) - h_{1}(v) + h_{1}(0)]dx \\ &= \int_{\Omega} uv[g_{2}(u) + h_{2}(v) - g_{1}(u) - h_{1}(v)]dx \\ &= \int_{\Omega} v\Delta u - u\Delta vdx \\ &= 0, \end{split}$$

and so,

$$\int_{\Omega} uv([\inf(g'_{2}) - \sup(g'_{1})]u + [\inf(h'_{2}) - \sup(h'_{1})]v)dx \le 0,$$
$$\int_{\Omega} uv([\sup(g'_{2}) - \inf(g'_{1})]u + [\sup(h'_{2}) - \inf(h'_{1})]v)dx \ge 0,$$

which derives

(A)
$$\inf(g'_2) = \sup(g'_1), \inf(h'_2) \le \sup(h'_1),$$

(B) $\inf(g'_2) > \sup(g'_1), \inf(h'_2) < \sup(h'_1),$
(C) $\inf(g'_2) < \sup(g'_1),$

and

$$\begin{array}{ll} (A') & \sup(g_2') = \inf(g_1'), \, \sup(h_2') \geq \inf(h_1'), \\ (B') & \sup(g_2') < \inf(g_1'), \, \sup(h_2') > \inf(h_1'), \\ (C') & \sup(g_2') > \inf(g_1'). \end{array}$$

Combining (A), (B), (C) and (A'), (B'), (C') together, we may have

$$\begin{array}{ll} ({\rm A}^{\prime\prime}) & g_1^\prime \equiv g_2^\prime \mbox{ are constants, } \inf(h_2^\prime) \leq \sup(h_1^\prime), \ \sup(h_2^\prime) \geq \inf(h_1^\prime), \\ ({\rm B}^{\prime\prime}) & \inf(g_2^\prime) = \sup(g_1^\prime), \ \sup(g_2^\prime) < \inf(g_1^\prime), \ \inf(h_2^\prime) \leq \sup(h_1^\prime), \ \sup(h_2^\prime) > \inf(h_1^\prime), \\ ({\rm C}^{\prime\prime}) & \inf(g_2^\prime) = \sup(g_1^\prime), \ \sup(g_2^\prime) > \inf(g_1^\prime), \ \inf(h_2^\prime) \leq \sup(h_1^\prime), \\ ({\rm D}^{\prime\prime}) & \inf(g_2^\prime) > \sup(g_1^\prime), \ \sup(g_2^\prime) = \inf(g_1^\prime), \ \inf(h_2^\prime) < \sup(h_1^\prime), \ \sup(h_2^\prime) \geq \inf(h_1^\prime), \\ ({\rm E}^{\prime\prime}) & \inf(g_2^\prime) > \sup(g_1^\prime), \ \sup(g_2^\prime) < \inf(g_1^\prime), \ \inf(h_2^\prime) < \sup(h_1^\prime), \ \sup(h_2^\prime) > \inf(h_1^\prime), \\ \end{array}$$

 $\begin{array}{ll} ({\rm F}^{\prime\prime}) & \inf(g_2^\prime) > \sup(g_1^\prime), \, \sup(g_2^\prime) > \inf(g_1^\prime), \, \inf(h_2^\prime) < \sup(h_1^\prime), \\ ({\rm G}^{\prime\prime}) & \inf(g_2^\prime) < \sup(g_1^\prime), \, \sup(g_2^\prime) = \inf(g_1^\prime), \, \sup(h_2^\prime) \geq \inf(h_1^\prime), \\ ({\rm H}^{\prime\prime}) & \inf(g_2^\prime) < \sup(g_1^\prime), \, \sup(g_2^\prime) < \inf(g_1^\prime), \, \sup(h_2^\prime) > \inf(h_1^\prime), \\ ({\rm I}^{\prime\prime}) & \inf(g_2^\prime) < \sup(g_1^\prime), \, \sup(g_2^\prime) > \inf(g_1^\prime). \end{array}$

However, it is clear that (B''), (D''), (E'') are not possible, so we establish the result of the Theorem.

We easily recognize that combining the Theorems 3.1 and 3.2 generalizes the result of Theorem 1.1 with linear growth rates.

We also prove a nonexistence result.

Theorem 3.3. If $g_1(0) > \frac{v}{\mu}h_2(0)$, $-1 \le g'_1 < 0$, and $h'_2 \le -1$, where $\mu = \min[-\sup(g'_2), 1]$ and $v = \max[-\inf(h'_1), 1]$, then there is no positive solution to (3.1).

Proof. Suppose there is a positive solution (u, v) to (3.1).

Then by the Mean Value Theorem, the Green's Identity and the inequality conditions,

$$\begin{split} &\int_{\Omega} (g_1(0) - h_2(0) + [-\sup(g_2') - 1]u + [1 + \inf(h_1')]v)uvdx \\ &\leq \int_{\Omega} (g_1(0) - h_2(0) + [\inf(g_1') - \sup(g_2')]u + [\inf(h_1') - \sup(h_2')]v)uvdx \\ &\leq \int_{\Omega} [g_1(0) - h_2(0) + g_1(u) - g_1(0) - g_2(u) + g_2(0) + h_1(v) \\ &\quad -h_1(0) - h_2(v) + h_2(0)]uvdx \qquad (3.2) \\ &= \int_{\Omega} [g_1(u) + h_1(v) - g_2(u) - h_2(v)]uvdx \\ &= \int_{\Omega} (v\Delta u - u\Delta v)dx \\ &= 0. \end{split}$$

But, if $g_1(0) > \frac{v}{\mu} h_2(0)$, then since $g_1(0) \ge u$ and $h_2(0) \ge v$,

$$g_1(0) - h_2(0) + [-\sup(g'_2) - 1]u + [1 + \inf(h'_1)]v \ge \mu g_1(0) - vh_2(0) > 0,$$

which contradicts to (3.2).

4. Cooperating Species

Consider the system for two cooperating species of animals

$$\begin{aligned} \Delta u(x) + u(x)(g_1(u(x)) + h_1(v(x))) &= 0\\ \Delta v(x) + v(x)(g_2(u(x)) + h_2(v(x))) &= 0\\ u|_{\partial\Omega} &= v|_{\partial\Omega} = 0, \end{aligned}$$
 in Ω , (4.1)

where g_1 , g_2 , h_1 and h_2 are in C^1 such that $g'_1 < 0$, $g'_2 > 0$, $h'_1 > 0$, $h'_2 < 0$ and $g_2(0) = h_1(0) = 0$.

The following Theorem proves a necessary condition for the existence of a positive solution to (4.1).

Theorem 4.1. If $g_1(0) > \lambda_1$, $h_2(0) > \lambda_1$, $\inf(h'_2) \ge -1$, $\inf(g'_2) > 0$, then the existence of a positive solution to (4.1) implies

 $\inf(h'_1)\inf(g'_2) + \inf(g'_1) < 0.$

Proof. Suppose $\inf(h'_1)\inf(g'_2) + \inf(g'_1) \ge 0$. Consider a family $(u_{\lambda}, v_{\lambda}) = (\lambda \phi_1, \lambda \inf(g'_2)\phi_1)$ with any $\lambda > 0$.

Then by the assumption and Mean Value Theorem,

$$\begin{split} \Delta u_{\lambda} + u_{\lambda} [g_{1}(u_{\lambda}) + h_{1}(v_{\lambda})] \\ &= -\lambda \lambda_{1} \phi_{1} + \lambda \phi_{1} [g_{1}(\lambda \phi_{1}) + h_{1}(\lambda \inf(g_{2}')\phi_{1})] \\ &= \lambda \phi_{1} [-\lambda_{1} + g_{1}(\lambda \phi_{1}) + h_{1}(\lambda \inf(g_{2}')\phi_{1})] \\ &= \lambda \phi_{1} [g_{1}(0) - \lambda_{1} + g_{1}(\lambda \phi_{1}) - g_{1}(0) + h_{1}(\lambda \inf(g_{2}')\phi_{1}) - h_{1}(0)] \\ &\geq \lambda \phi_{1} [g_{1}(0) - \lambda_{1} + \inf(g_{1}')\lambda \phi_{1} + \inf(h_{1}')\lambda \inf(g_{2}')\phi_{1}] \\ &> 0, \end{split}$$

and

$$\begin{split} \Delta v_{\lambda} + v_{\lambda} [g_{2}(u_{\lambda}) + h_{2}(v_{\lambda})] \\ &= -\lambda \inf(g'_{2})\lambda_{1}\phi_{1} + \lambda \inf(g'_{2})\phi_{1} [g_{2}(\lambda\phi_{1}) + h_{2}(\lambda \inf(g'_{2})\phi_{1})] \\ &= \lambda \inf(g'_{2})\phi_{1}(-\lambda_{1} + g_{2}(\lambda\phi_{1}) + h_{2}(\lambda \inf(g'_{2})\phi_{1})) \\ &= \lambda \inf(g'_{2})\phi_{1}(h_{2}(0) - \lambda_{1} + g_{2}(\lambda\phi_{1}) - g_{2}(0) + h_{2}(\lambda \inf(g'_{2})\phi_{1}) - h_{2}(0)) \\ &\geq \lambda \inf(g'_{2})\phi_{1}(h_{2}(0) - \lambda_{1} + \inf(g'_{2})\lambda\phi_{1} + \inf(h'_{2})\lambda \inf(g'_{2})\phi_{1}) \\ &> 0. \end{split}$$

Therefore, $(u_{\lambda}, v_{\lambda}) = (\lambda \phi_1, \lambda \inf(h_u)\phi_1)$ with any $\lambda > 0$ is a family of subsolutions to (4.1).

Furthermore, if (u, v) is a positive solution to (4.1), then $u > \lambda_0 \phi_1$ and $v > \lambda_0 \inf(h_u)\phi_1$ for sufficiently small $\lambda_0 > 0$, and so by the Lemma 2.4, we conclude that $u \ge \lambda \phi_1$ and $v \ge \lambda \inf(h_u)\phi_1$ for any $\lambda \ge \lambda_0$.

Hence, there is no positive solution to (4.1)

For a sufficient condition for the existence of a positive solution to (4.1), we need the following Lemma.

Lemma 4.2. If bf > ce, then we can choose arbitrary large M, N > 0 such that

$$a - bM + cN < 0,$$

$$d + eu - fN < 0.$$

We now establish a sufficient condition for the existence of a positive solution to (4.1).

Theorem 4.3. If $g_1(0) > \lambda_1, h_2(0) > \lambda_1$ and $\sup(h'_1) \sup(g'_2) < \sup(g'_1) \sup(h'_2)$, then (4.1) has a positive solution.

Proof. Let $\underline{u} = \alpha \phi_1, \underline{v} = \beta \phi_1$, where $\alpha, \beta > 0$. Then since $g_1(0) > \lambda_1$ and $h_2(0) > \lambda_1$, by the Mean Value Theorem, for small enough $\alpha, \beta > 0$,

$$\begin{aligned} \Delta \underline{u} + \underline{u} [g_1(\underline{u}) + h_1(\underline{v})] \\ &= -\alpha \lambda_1 \phi_1 + \alpha \phi_1 [g_1(\alpha \phi_1) + h_1(\beta \phi_1)] \\ &= \alpha \phi_1 [-\lambda_1 + g_1(\alpha \phi_1) + h_1(\beta \phi_1)] \\ &= \alpha \phi_1 [-\lambda_1 + g_1(0) + g_1(\alpha \phi_1) - g_1(0) + h_1(\beta \phi_1) - h_1(0)] \\ &\geq \alpha \phi_1 [-\lambda_1 + g_1(0) + \inf(g_1') \alpha \phi_1 + \inf(h_1') \beta \phi_1] \\ &\geq 0, \end{aligned}$$

and

$$\begin{split} &\Delta \underline{\nu} + \underline{\nu} [g_2(\underline{u}) + h_2(\underline{\nu})] \\ &= -\beta \lambda_1 \phi_1 + \beta \phi_1 [g_2(\alpha \phi_1) + h_2(\beta \phi_1)] \\ &= \beta \phi_1 [-\lambda_1 + g_2(\alpha \phi_1) + h_2(\beta \phi_1)] \\ &= \beta \phi_1 [-\lambda_1 + h_2(0) + g_2(\alpha \phi_1) - g_2(0) + h_2(\beta \phi_1) - h_2(0)] \\ &\geq \beta \phi_1 [-\lambda_1 + h_2(0) + \inf(g_2') \alpha \phi_1 + \inf(h_2') \beta \phi_1] \\ &\geq 0, \end{split}$$

and so, $(\underline{u}, \underline{v}) = (\alpha \phi_1, \beta \phi_1)$ is a subsolution to (4.1) for sufficiently small $\alpha, \beta > 0$. But, for all (u, v), by the Mean Value Theorem again,

$$g_1(u) + h_1(v) = g_1(0) + g_1(u) - g_1(0) + h_1(v) - h_1(0)$$

$$\leq g_1(0) + \sup(g_1')u + \sup(h_1')v,$$

and

$$g_2(u) + h_2(v) = h_2(0) + g_2(u) - g_2(0) + h_2(v) - h_2(0)$$

$$\leq h_2(0) + \sup(g'_2)u + \sup(h'_2)v,$$

so by the condition and the Lemma 4.2, there are constants M, N > 0 with $\alpha \phi_1 < M, \beta \phi_1 < N$ such that

$$\begin{split} &\Delta M + M[g_1(M) + h_1(N)] \leq M[g_1(0) + \sup(g_1')M + \sup(h_1')N] < 0, \\ &\Delta N + N[g_2(M) + h_2(N)] \leq N[h_2(0) + \sup(g_2')M + \sup(h_2')N] < 0, \end{split}$$

in other words, (M, N) is a supersolution to (4.1).

We conclude by the Lemma 2.2 that there is a positive solution (u, v) to (4.1) with $\alpha \phi_1 \le u \le M, \beta \phi_1 \le v \le N$.

We easily recognize that combining the Theorems 4.1 and 4.3 generalizes the result of Theorem 1.2 with linear growth rates. $\hfill \Box$

References

- S.W. Ali and C. Cosner, On the uniqueness of the positive steady state for Lotka-Volterra Models with diffusion, *Journal of Mathematical Analysis and Application* 168(1992), 329–341.
- [2] R.S. Cantrell and C. Cosner, On the steady-state problem for the Volterra-Lotka competition model with diffusion, *Houston Journal of Mathematics* 13(1987), 337– 352.
- [3] R.S. Cantrell and C. Cosner, On the uniqueness and stability of positive solutions in the Volterra-Lotka competition model with diffusion, *Houston J. Math.* 15(1989) 341– 361.
- [4] C. Cosner and A.C. Lazer, Stable coexistence states in the Volterra-Lotka competition model with diffusion, *Siam J. Appl. Math.* 44(1984), 1112–1132.
- [5] D. Dunninger, Lecture Note for Applied Analysis in Michigan State University.
- [6] C. Gui and Y. Lou, Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model, *Comm. Pure and Appl. Math.* XVL2(12) (1994), 1571– 1594.
- [7] J.L.-Gomez and R. Pardo, Existence and uniqueness for some competition models with diffusion, C.R. Acad. Sci. Paris, Ser. I Math. 313(1991), 933–938.
- [8] J. Kang and Y. Oh, A sufficient condition for the uniqueness of positive steady state to a reaction diffusion system, *Journal of Korean Mathematical Society* **39**(39) (2002), 377–385.
- [9] J. Kang and Y. Oh, Uniqueness of coexistence state of general competition model for several competing species, *Kyungpook Mathematical Journal* **42**(2) (2002), 391–398.
- [10] J. Kang, Y. Oh and J. Lee, The existence, nonexistence and uniqueness of global positive coexistence of a nonlinear elliptic biological interacting model, *Kangweon-Kyungki Math. Jour.* **12**(1) (2004), 77–90.
- [11] P. Korman and A. Leung, A general monotone scheme for elliptic systems with applications to ecological models, *Proceedings of the Royal Society of Edinburgh* **102A**(1986), 315–325.
- [12] P. Korman and A. Leung, On the existence and uniqueness of positive steady states in the Volterra-Lotka ecological models with diffusion, *Applicable Analysis* **26**, 145–160.
- [13] L. Li and R. Logan, Positive solutions to general elliptic competition models, *Differential and Integral Equations* **4**(1991), 817–834.
- [14] A. Leung, Equilibria and stabilities for competing-species, reaction-diffusion equations with Dirichlet boundary data, J. Math. Anal. Appl. 73(1980), 204–218.

Joon Hyuk Kang, Department of Mathematics, Andrews University, Berrien Springs, MI. 49104, U.S.A. E-mail: kang@andrews.edu

Received November 22, 2013 Accepted December 26, 2013