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Solutions for Some Elliptic Problems
with Double Resonance?

Aixia Qian

Abstract In this paper, we prove the existence results and multiplicity results of
nontrivial solutions for some elliptic problems with double resonance by using
Morse theory.

1. Introduction

In this paper, we consider the nontrivial solutions for the Dirichlet boundary
value problem by using Morse theory,

¨
−∆u= p(x , u), x ∈ Ω,

u|∂Ω = 0.
(1.1)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, and p ∈ C1(Ω×
R,R), such that p(x , 0) = 0.

We assume that

p0 := lim
u→0

p(x , u)
u

= λm , p∞ := lim
|u|→∞

p(x , u)
u

= λk (1.2)

which characterizes (1.1) as double resonance at both zero and infinity. Denote
0 < λ1 < λ2 < · · · < λ j < · · · to be the distinct eigenvalues sequence of −∆
in H1

0(Ω). The resonant problem has been widely studied by many authors using
various methods under various assumptions on nonlinearity p and its primitive P.
See [3, 4, 5, 6, 7, 8, 9, 10, 11] and the references therein. We will give conditions
under which the problem (1.1) has nontrivial solution. We also allow the case
when λm = λk. For some special cases we consider its multiple solutions.

In section 2, we give some preliminaries for our paper, which are preliminary
to the computations of critical groups at degenerate critical points. In section 3,
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we prove our main theorems, which result in the existence and multiplicity of
nontrivial solutions.

2. Preliminaries

Let X := H1
0(Ω) is the usual Sobolev space with the inner product and the norm

〈u, v〉=
∫

Ω

∇u∇v, ‖u‖= 〈u, u〉 1
2 .

Define the functional f : H1
0(Ω)→ R as

f (u) =
1

2

∫

Ω

|∇u|2d x −
∫

Ω

P(x , u)d x ,

where P(x , u) =
∫ u

0
p(x , t)d t. Thus solutions of the problem (1.1) are critical point

of the functional f . Corresponding to the eigenvalue λn, H1
0(Ω) can be splitted as

H1
0(Ω) =W− ⊕ V ⊕W+

where

W− =⊕ j<n ker(−∆−λ j), V = ker(−∆−λn), W+ = (W− ⊕ V )⊥.

Denote by

H1
0(Ω) =W−

∗ ⊕ V∗ ⊕W+
∗ (∗= 0,∞)

the decomposition corresponding to λm, λk, respectively.
Set

q∞(x , t) = p(x , t)− p∞ t, Q∞(x , t) =

∫ t

0

q∞(x ,τ)dτ

q0(x , t) = p(x , t)− p0 t, Q0(x , t) =

∫ t

0

q0(x ,τ)dτ

We shall use the following assumptions:

(p0)±,
Q∞(x , t)
|t| → ±∞, |t| →∞;

(p1) ∃ c > 0, β > 0 such that |q0(x , u)| ≤ c|u|β , |u|< 1, x ∈ Ω;

(p2)±
Q0(x , u)

u2β
→±∞, as |u| → 0 uniformly in x ∈ Ω.

It will be seen that critical groups and Morse theory are the main tools we use
to solve our problems. Now let us to recall some results used below. We refer the
readers to the books [1] for more information on Morse theory.

Let X be the Banach space and f ∈ C1(X ,R) be a functional satisfying the
compactness condition (PS), and Hq(A, B) be the qth singular relative homology
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group with integer coefficients. Let u0 be an isolated critical point of f with
f (u0) = c ∈ R, and U be a neighborhood of u0. The group

Cq( f , u0) := Hq( f
c ∩ U , f c ∩ U\{u0}), q ∈ N0 := {0, 1, 2, · · · }

is called the qth critical group of f at u0, where f c = {u ∈ X : f (u) ≤ c}. Let
K := {u ∈ X : f ′(u) = 0} be the set of critical points of f and α < inf f (K). The
critical groups of f at infinity are formally defined as [3]

Cq( f ,∞) := Hq(X , f α), q ∈ N0.

The following results are used to prove the results in our paper.

Proposition 1 ([3]). Assume that X is a Banach space X = X−⊕ X+, dim X− = l <
∞ and f ∈ C1(X ,R) satisfies the (PS) condition. If f is bounded form below on X+

and

f (u)→−∞, as ‖u‖ →∞, u ∈ X−.

Then

Cl( f ,∞) 6= 0.

Proposition 2 ([3]). Assume that f ∈ C1(X ,R) satisfies the (PS) condition,

(i) If there exists some k ∈ N0, s.t. Ck( f ,∞) 6= 0. Then f has a critical point u
satisfying Ck( f , u) 6= 0.

(ii) Assume 0 is and isolated critical point. If there exists some k ∈ N0, s.t.
Ck( f ,∞) 6= Ck( f , 0). Then f has a nontrivial critical points.

Proposition 3 ([1]). Assume that X is a Hilbert space, f ∈ C2(X ,R) and u0 is an
isolated critical point with Morse index µ and the nullity ν . If f ′′(u0) is a Fredholm
operator. Then for q /∈ [µ,µ+ ν], Cq( f , u0)∼= 0. Furthermore

(i) Cµ( f , u) 6= 0 implies Cq( f , u)∼= δq,µG ;
(ii) Cµ+ν( f , u) 6= 0 implies Cq( f , u)∼= δq,µ+νG .

In section 3, we will give the proof of our main theorems and give more
existence results.

3. Proof of our main results

Theorem 3.1. Let (p0)+ and (p1) hold. Then the problem (1.1) has at least one
nontrivial solution in each of the following cases:

(a) (p2)+ and m 6= k;
(b) (p2)− and m 6= k+ 1.

Proof. We just consider the critical points of the functional f : X = H1
0(Ω)→ R

f (u) =
1

2

∫

Ω

|∇u|2d x −
∫

Ω

P(x , u)d x .
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It is obvious that f ∈ C2. As the proof of [9], under (p0)+ the functional f satisfies
the (PS) condition and

f (u)→−∞, as ‖u‖ →∞ with u ∈ V∞ ⊕W−
∞,

f (u)→+∞, as ‖u‖ →∞ with u ∈W+
∞.

By Proposition 1,

Cµ( f ,∞) 6= 0, µ= dim(W−
∞ ⊕ V∞) =

k∑

j=1

dimker(−∆−λ j).

It follows Proposition 2 or the Morse inequality that f has a critical point u∗, such
that

Cµ( f , u∗) 6= 0. (3.1)

(a) If (p1) and (p2)+ hold, then by Proposition 2 [5] we have

Cq( f , 0) = δq,µ0
G (3.2)

where µ0 =
m∑

i=1
dimker(−∆−λi).

Now m 6= k implies µ 6= µ0. It follows (3.1) and (3.2) that

Cq( f , 0) 6= Cq( f , u∗). (3.3)

Hence u∗ 6= 0 is a nontrivial solution of (1.1).
(b) If (p1) and (p2)− hold, then by Proposition 2 [5] we have

Cq( f , 0) = δq,µ0
G (3.4)

where µ0 =
m−1∑
j=1

dimker(−∆−λ j).

Now m 6= k+ 1 implies µ 6= µ0. It follows (3.1) and (3.4) that (3.3) holds. Again
u∗ 6= 0 is a nontrivial solution of (1.1). ¤

Remark 3.1. In (a), we still get the same results under the condition p0 with s ≥ 2,
k ≥ 2 in paper [6].

Now, we give a dual version of Theorem 3.1.

Theorem 3.2. Let (p0)− and (p1) hold. Then the problem (1.1) has at least one
nontrivial solution in each of the following cases:

(a) (p2)+ and m 6= k− 1;
(b) (p2)− and m 6= k.

Proof. As the proof of Theorem 3.1, under (p0)− the functional f still satisfies the
(PS) condition. Moreover, f has the following properties:

f (u)→−∞, as ‖u‖ →∞ with u ∈W−
∞ (3.5)

f (u)→+∞, as ‖u‖ →∞ with u ∈ V∞ ⊕W+
∞. (3.6)



Solutions for Some Elliptic Problems with Double Resonance 185

Thus by Proposition 1 we have

Cµ( f ,∞) 6= 0, with µ=
k−1∑

j=1

dim ker(−∆−λ j).

The rest of the proof is similar to the proof of Theorem 3.1. ¤

Remark 3.2. Under more conditions, we can get more solutions and more
information about those solutions as in paper [6].

Remark 3.3. Paper [10] gets the similar results as ours, while those condition
in [10] are stronger, such as ( f1−3), which are necessary to the (PS) of the
functional J .

Multiplicity results:

Theorem 3.3. Let (p0)−, (p1) and k = 1 hold. Then the problem (1.1) has at least
two nontrivial solution in each of the following cases:

(a) (p2)+ and m≥ 1;
(b) (p2)− and m> 1.

Proof. Since k = 1 we see that W−
∞ = ;. By (p0)− and (3.5), f is bounded from

below. Therefore

Cq( f ,∞)∼= δq,0G . (3.7)

By Proposition 2, f has a critical point u0, s.t.

C0( f , u0) 6∼= .

In fact, u0 is the global minimum of f . Hence

Cq( f , u0)∼= δq,0G . (3.8)

Now we know that u = 0 is a degenerate critical point of f and the critical groups
of f at u= 0 are

in case (a)

Cq( f , 0)∼= δq,µ0
G with µ0 =

m∑

j=1

dimker(−∆−λ j);

in case (b)

Cq( f , 0)∼= δq,µ0
G with µ0 =

m−1∑

j=1

dimker(−∆−λ j).

It follows from case (a) m ≥ 1 or case (b) m > 1 that u0 6= 0. If the critical set
K = {u0, 0}, then by the More inequality we have

(−1)0 + (−1)n = (−1)0, with n= µ0.
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This is impossible. Therefore f must have another critical point u1 different from
u0 and 0. Moreover, by Proposition 3 the critical groups of f at u1 satisfy

either Cn−1( f , u1) 6∼= 0 or Cn+1( f , u1) 6∼= 0. (3.9)

Then the Morse index µ1 and the nullity ν1 of u1 satisfy

either µ1 ≤ n− 1 or µ1 + ν1 ≥ n+ 1. (3.10)

Hence the proof is complete. ¤

Remark 3.4. We would like to point out that based on the Morse theory, we get
more information about the second nontrivial solution than the three critical points
theorem [5, Theorem 1].

Theorem 3.4. Assume that q∞ is bounded, k = 1 and
∫

Ω

Q∞(x , u)d x →+∞ as ‖u‖ →∞ with u ∈ V∞. (3.11)

Then (1.1) has at least two nontrivial solutions in each of the following cases:

(a) (p1), (p2)+ and m≥ 1;
(b) (p1), (p2)− and m 6= 2.

Proof. Since q∞ is bounded and (3.11) holds, f satisfies the conditions of
Lemma 5.2 [1, Chapter II]. It follows that

Cq( f ,∞)∼= δq,1G .

Thus by Proposition 2, f has a critical point u0 s.t.

C1( f , u0) 6∼= 0.

Hence u0 is a mountain pass point of f [2] and then

Cq( f , u0)∼= δq,1G . (3.12)

Similar arguments as Theorem 3.3 show that f has another critical point u1

different from u0 and 0. Moreover, the nontrivial solution of (1.1) still satisfies
(3.9) and (3.10). ¤

Now we give a dual version of Theorem 3.4

Theorem 3.5. Assume that q∞ is bounded, k = 2 and
∫

Ω

Q∞(x , u)d x →−∞ as ‖u‖ →∞ with u ∈ V∞. (3.13)

Then (1.1) has at least two nontrivial solutions in each of the following cases:

(a) (p1), (p2)+ and m≥ 1;
(b) (p1), (p2)− and m 6= 2.
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Proof. Since q∞ is bounded and (3.13) holds, f satisfies the conditions of
Theorem 1.2 [4]. It follows that

Cq( f ,∞)∼= δq,1G .

Thus f has a critical point u0 satisfying (3.12). Similar arguments as Theorem 3.3
show that f has another critical point u1 different from u0 and 0. Moreover, the
nontrivial critical point u1 satisfies (3.9) and (3.10). ¤

Remark 3.5. In paper [6], they consider the solutions of (1.1) in the case k ≥ 2
and λm 6= λk, while our results allow the case when λm = λk including k = 1.
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