Communications in Mathematics and Applications

Vol. 14, No. 1, pp. 215–225, 2023 ISSN 0975-8607 (online); 0976-5905 (print) Published by RGN Publications DOI: 10.26713/cma.v14i1.1921

Research Article

Certain Results on (k, μ) -Contact Metric Manifold endowed with Concircular Curvature Tensor

R. T. Naveen Kumar¹, P. Siva Kota Reddy^{*2}, Venkatesha³ and M. Sangeetha⁴

¹Department of Mathematics, Siddaganga Institute of Technology, Tumakuru 572103, India

² Department of Mathematics, JSS Science and Technology University, Mysuru 570006, India

³Department of Mathematics, Kuvempu University, Shankaraghatta, Shimoga 577451, India

⁴Department of Mathematics, Bangalore University, Bengaluru 560056, India

*Corresponding author: pskreddy@jssstuniv.in

Received: May 30, 2022 **Accepted:** October 22, 2022

Abstract. The purpose of this paper is to study concircular curvature tensor on (k,μ) -contact metric manifold. Here, first we consider ϕ -concircularly flat (k,μ) -contact metric manifold. Next, we describe concircularly pseudo-symmetric (k,μ) -contact metric manifold. Later, we study concircularly ϕ -recurrent (k,μ) -contact metric manifold. Finally, we provide the three dimensional example for the existence of non-Sasakian concircularly ϕ -recurrent (k,μ) -contact metric manifold.

Keywords. (k,μ) -Contact metric manifold, Non-Sasakian, Concircular curvature tensor, η -Einstein manifold, Scalar curvature

Mathematics Subject Classification (2020). 53C15, 53C25, 53D10

Copyright © 2023 R. T. Naveen Kumar, P. Siva Kota Reddy, Venkatesha and M. Sangeetha. *This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

1. Introduction

A concircular transformation [11, 18] in an (2n + 1)-dimensional Riemannian manifold M is a transformation which transforms every geodesic circle of M into a geodesic circle. Here, geodesic circle means a curve in M whose first curvature is constant and whose second curvature is identically zero. A concircular transformation is always a conformal transformation [11]. Thus, the geometry of concircular transformation, that is, the concircular geometry, is a generalization of inversive geometry in the sense that the change of metric is more general than that induced by a circle preserving diffeomorphism (see also [2]). An interesting invariant of a concircular

transformation is the concircular curvature tensor \widetilde{Z} defined by [18]:

$$\widetilde{Z}(X,Y)U = R(X,Y)U - \frac{r}{2n(2n+1)}[g(Y,U)X - g(X,U)Y],$$
(1.1)

for any vector fields $X, Y, U \in TM$, where R is the curvature tensor and r is the scalar curvature. Riemannian manifolds with vanishing concircular curvature tensor are of constant curvature. Thus, the concircular curvature tensor is a measure of the failure of a Riemannian manifold to be of constant curvature.

In [16], it is proved that in a (k, μ) -contact metric manifold, the concircular curvature tensor satisfies $Z(\xi, X)Y = 0$ if and only if the manifold is flat and 3-dimensional. In [10], the authors proved that in a Kenmotsu manifold the concircular curvature tensor satisfies $Z(\xi, X).Z = 0$ if and only if the manifold is of constant scalar curvature. Moreover, in [8] De *et al.* studied concircular curvature tensor on N(k)-contact metric manifold. Here they proved that a ϕ concircularly flat N(k)-contact metric manifold is reduces to Sasakian manifold. Recently in [1], author shown that a ϕ -concircularly flat Kenmotsu manifold with respect to semi-symmetric metric connection is an η -Einstein manifold. The notion of concircular curvature tensor was weakened by many authors ([3, 13, 17]).

The present paper is organized as follows: In Section 2 we recall the basic notions and preliminary results of (k,μ) -contact metric manifolds needed throughout the paper. In Section 3, we have proved that a non-Sasakian ϕ -concircularly flat (k,μ) -contact metric manifold always reduces to N(k)-contact metric manifold. In Section 4 we describe concircularly pseudo symmetric (k,μ) -contact metric manifold and it is shown that the manifold is turns in to N(k)-contact metric manifold is concircularly flat provided $k + \mu h = \frac{r}{2n(2n+1)}$. Infact Section 5 is devoted to the study of concircularly ϕ -recurrent (k,μ) -contact metric manifold and it was proved that the manifold becomes N(k)-contact metric manifold. Finally, the last section provides the existence of 3-dimensional non-Sasakian concircularly ϕ -recurrent (k,μ) -contact metric (k,μ) -contact metric manifold.

2. Preliminaries

A (2n + 1)-dimensional smooth manifold M is said to be contact manifold if it carries a global differentiable 1-form η which satisfies the condition $\eta \wedge (d\eta)^n \neq 0$ everywhere on M. Also, a contact manifold admits an almost contact structure (ϕ, ξ, η) , where ϕ is a (1, 1)-tensor field, ξ is a characteristic vector field and η is a global 1-form such that

$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \phi\xi = 0, \quad \eta \circ \phi = 0.$$
(2.1)

An almost contact structure is said to be normal if the induced almost complex structure J on the product manifold $M \times R$ defined by

$$J\left(X,\lambda\frac{d}{dt}\right) = \left(\phi X - \lambda\xi, \eta(X)\frac{d}{dt}\right)$$

is integrable, where X is tangent to M, t is the coordinate of R and λ a smooth function on $M \times R$. The condition of almost contact metric structure being normal is equivalent to vanishing of the torsion tensor $[\phi, \phi] + 2d\eta \otimes \xi$, where $[\phi, \phi]$ is the Nijenhuis tensor of ϕ . Let g be the

compatible Riemannian metric with almost contact structure (ϕ, ξ, η), that is,

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad g(X,\xi) = \eta(X),$$
 (2.2)

for all vector fields $X, Y \in \chi(M)$. A manifold M together with this almost contact metric structure is said to be almost contact metric manifold and it is denoted by $M(\phi, \xi, \eta, g)$. An almost contact metric structure reduces to a contact metric structure if $g(X, \phi Y) = d\eta(X, Y)$.

Given a contact metric manifold $M(\phi, \xi, \eta, g)$, we consider a (1,1) tensor field h defined by $h = \frac{1}{2}L_{\xi}\phi$, where L denotes the Lie differentiation, h is a symmetric operator and satisfies $h\phi = -\phi h$. Again we have $trh = tr\phi h = 0$, and $h\xi = 0$. Moreover, if ∇ denotes the Riemannian connection of g, then the following relation holds [4]:

$$\nabla_X \xi = -\phi X - \phi h X, \quad (\nabla_X \eta) Y = g(X + h X, \phi Y). \tag{2.3}$$

Blair *et al.* [4] introduced the (k, μ) -nullity distribution of a contact metric manifold M and is defined by

$$N(k,\mu): p \to N_p(k,\mu) = \{U \in T_p M \mid R(X,Y)U = (kI + \mu h)R_0(X,Y)U\}$$

for all $X, Y \in TM$, where $(k, \mu) \in \mathbb{R}^2$. A contact metric manifold with $\xi \in N(k, \mu)$ is called a (k, μ) contact metric manifold. If k = 1, $\mu = 0$, then the manifold becomes Sasakian [4]. If $\mu = 0$, the (k, μ) -nullity distribution is reduced to the *k*-nullity distribution [14]. The *k*-nullity distribution N(k) of a Riemannian manifold is defined by:

$$N(k): p \to N_p(k) = \{ U \in T_p M \mid R(X, Y)U = kR_0(X, Y)U \},\$$

k being constant. If $\xi \in N(k)$, then we call a contact metric manifold M an N(k)-contact metric manifold. Throughout this paper, we study (2n + 1)-dimensional non-Sasakian (k, μ) -contact metric manifolds.

In a (k, μ) -contact metric manifold the following relations hold [4,5]:

$$h^2 = (k-1)\phi^2, (2.4)$$

$$R_0(X,Y)U = g(Y,U)X - g(X,U)Y,$$
(2.5)

$$R(X,Y)\xi = (kI + \mu h)R_0(X,Y)\xi,$$
(2.6)

$$S(X,\xi) = 2nk\eta(X), \tag{2.7}$$

$$S(X,Y) = [2(n-1) - n\mu]g(X,Y) + [2(n-1) + \mu]g(hX,Y)$$

+
$$[2(1-n) + n(2k+\mu)]\eta(X)\eta(Y),$$
 (2.8)

$$S(\phi X, \phi Y) = S(X, Y) - 2nk\eta(X)\eta(Y) - 2(2n - 2 + \mu)g(hX, Y).$$
(2.9)

Definition 2.1. A (2n + 1)-dimensional (k, μ) -contact metric manifold M is said to be η -Einstein if its Ricci tensor S is of the form

 $S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),$

for any vector fields X and Y, where a and b are constants. If b = 0, then the manifold M reduces to an Einstein manifold.

In [4], the authors have proved the following result:

Lemma 2.1. A (2n + 1)-dimensional non-Sasakian (k, μ) -contact metric manifold which is η -Einstein manifold is an N(k)-contact metric manifold.

3. ϕ -Concircularly Flat (k, μ)-Contact Metric Manifold

A (2n + 1)-dimensional (n > 1) (k, μ) -contact metric manifold M is said to be ϕ -concircularly flat if

$$g(\tilde{Z}(\phi X, \phi Y)\phi U, \phi W) = 0.$$
(3.1)

Now from (1.1), we have

$$g(\tilde{Z}(\phi X, \phi Y)\phi U, \phi W) = g(R(\phi X, \phi Y)\phi U, \phi W) - \frac{r}{2n(2n+1)} [g(\phi Y, \phi U)g(\phi X, \phi W) - g(\phi X, \phi U)g(\phi Y, \phi W)]. \quad (3.2)$$

Let us consider an ϕ -concircularly flat (k, μ) -contact metric manifold, we obtain from (3.2) that

$$g(R(\phi X, \phi Y)\phi U, \phi W) = \frac{r}{2n(2n+1)} [g(\phi Y, \phi U)g(\phi X, \phi W) - g(\phi X, \phi U)g(\phi Y, \phi W)].$$
(3.3)

Let $\{\phi e_1, \phi e_2, \dots, \phi e_{2n}, \xi\}$ be an orthonormal ϕ -basis of the tangent space. Now taking $X = W = e_i$ in (3.3) and then by using (2.6), we get

$$S(\phi Y, \phi U) = \left[k + \frac{r(2n-1)}{2n(2n+1)}\right] g(\phi Y, \phi U) + \mu g(h\phi Y, \phi U),$$
(3.4)

which on simplification gives

$$S(\phi Y, \phi U) = \frac{\begin{pmatrix} k2n(2n+1)(2n-2+\mu) + \mu[2n^2\mu(2n+\mu) - 4n(n-1)(2n+1)] \\ +r(2n-1)(2n-2+\mu) \end{pmatrix}}{4n(n-1)(2n+1)}g(\phi Y, \phi U).$$
(3.5)

Replacing Y by ϕY and U by ϕU in (3.5) and then by considering (2.1), gives

 $S(Y,U) = \alpha g(Y,U) + \beta \eta(Y) \eta(U),$

where

$$\alpha = \frac{k[8n^3 - 4n^2 - 2 + \mu(4n^2 + 1)] + \mu[-4n^2 + 2n + 2 + n\mu(2n + \mu)] + r(2n - 1)(2n - 2 + \mu)}{4n(n - 1)(2n + 1)},$$

$$\beta = \frac{k[(n - 1)(16n^3 - 4n) - 2n\mu(2n + 1)] + \mu[-4n^2 + 2n + 2 + n\mu(2n + \mu)] + r(2n - 1)(2n - 2 + \mu)}{4n(n - 1)(2n + 1)}.$$

Thus we can state the following theorem:

Theorem 3.1. A (2n + 1)-dimensional (n > 1) non-Sasakian ϕ -concircularly flat (k, μ) -contact metric manifold is always an η -Einstein manifold.

Now from Theorem 3.1 and Lemma 2.1, we have following:

Corollary 3.2. If a (2n + 1)-dimensional (n > 1) non-Sasakian (k, μ) -contact metric manifold is ϕ -concircularly flat, then the manifold is reduces to N(k)-contact metric manifold.

Taking covariant derivative of (3.5) with respect to V, we get

$$(\nabla_V S)(\phi Y, \phi U) = \frac{dr(X)(2n-1)(2n-2+\mu)}{4n(n-1)(2n+1)} (\nabla_V g)(\phi Y, \phi U).$$
(3.6)

Communications in Mathematics and Applications, Vol. 14, No. 1, pp. 215–225, 2023

219

If we consider the manifold of constant scalar curvature *r*, that is, dr(X) = 0, we have

 $(\nabla_V S)(\phi Y, \phi U) = 0.$

This leads us to the following result:

Theorem 3.3. A (2n + 1)-dimensional (n > 1) non-Sasakian ϕ -concircularly flat (k, μ) -contact metric manifold endowed with a constant scalar curvature always admits an η -parallel Ricci tensor.

4. Concircularly Pseudo-Symmetric (k, μ) -Contact Metric Manifold

In [9], Deszcz introduced the idea of pseudo-symmetric manifolds which is given by the condition

 $(R(X,Y).R)(U,V)W = L_R[((X \land Y).R)(U,V)W],$

where L_R is some smooth function on M and $X \wedge Y$ is an endomorphism defined by

 $(X \wedge Y)U = g(Y, U)X - g(X, U)Y.$

A (2n + 1)-dimensional (n > 1) (k, μ) -contact metric manifold M is said to be concircularly pseudo-symmetric if

$$(R(X,Y).\tilde{Z})(U,V)W = L_{\tilde{Z}}[((X \wedge Y).B)(U,V)W], \qquad (4.1)$$

holds on the set $U_{\tilde{Z}} = \{x \in M : \tilde{Z} \neq 0\}$ at x, where $L_{\tilde{Z}}$ is some function on $U_{\tilde{Z}}$ and \tilde{Z} is the concircular curvature tensor. We now have the following result:

Theorem 4.1. Let M be an (2n + 1)-dimensional (n > 1) non-Sasakian (k, μ) -contact metric manifold. If M is concircular pseudo-symmetric, then M is an η -Einstein manifold.

Proof. Let us consider (k, μ) -contact metric manifold which is concircularly pseudo-symmetric. Now it follows from (4.1) that

$$(R(X,\xi).\tilde{Z})(U,V)W = L_{\tilde{Z}}[((X \wedge \xi)(\tilde{Z}(U,V)W) - \tilde{Z}((X \wedge \xi)U,V)W) - \tilde{Z}(U,(X \wedge \xi))W - \tilde{Z}(U,V)(X \wedge \xi)W].$$

$$(4.2)$$

Now the left hand side of (4.2) becomes

 $R(X,\xi)\tilde{Z}(U,V)W - \tilde{Z}(R(X,\xi)U,V)W - \tilde{Z}(U,R(X,\xi)V)W - \tilde{Z}(U,V)R(X \wedge \xi)W.$ (4.3) By virtue of (2.7) in (4.3), we get

$$k[\tilde{Z}(U,V,W,\xi)X - \tilde{Z}(U,V,W,X)\xi - \eta(U)\tilde{Z}(X,V)W + g(X,U)\tilde{Z}(\xi,V)W - \eta(V)\tilde{Z}(U,X)W + g(X,V)\tilde{Z}(U,\xi)W - \eta(W)\tilde{Z}(U,V)X + g(X,W)\tilde{Z}(U,V)\xi] + \mu h[\tilde{\tilde{Z}}(U,V,W,\xi)X - \tilde{\tilde{Z}}(U,V,W,X)\xi - \eta(U)\tilde{Z}(X,V)W + g(X,U)\tilde{Z}(\xi,V)W - \eta(V)\tilde{Z}(U,X)W + g(X,V)\tilde{Z}(U,\xi)W - \eta(W)\tilde{Z}(U,V)X + g(X,W)\tilde{Z}(U,V)\xi].$$

$$(4.4)$$

Similarly, right hand side of (4.2) gives

$$L_{\tilde{Z}}[\tilde{Z}(U,V,W,\xi)X - \tilde{Z}(U,V,W,X)\xi - \eta(U)\tilde{Z}(X,V)W + g(X,U)\tilde{Z}(\xi,V)W - \eta(V)\tilde{Z}(U,X)W + g(X,V)\tilde{Z}(U,\xi)W - \eta(W)\tilde{Z}(U,V)X + g(X,W)\tilde{Z}(U,V)\xi].$$

$$(4.5)$$

Substituting (4.4) and (4.5) in (4.2) with $V = \xi$, we get

$$(L_{\tilde{Z}} - (k + \mu h))[\tilde{Z}(U,\xi,W,\xi)X - \tilde{Z}(U,\xi,W,X)\xi - \eta(U)\tilde{Z}(X,\xi)W + g(X,U)\tilde{Z}(\xi,\xi)W - \eta(\xi)\tilde{Z}(U,X)W + g(X,\xi)\tilde{Z}(U,\xi)W - \eta(W)\tilde{Z}(U,\xi)X + g(X,W)\tilde{Z}(U,\xi)\xi] = 0.$$
(4.6)

This implies either $L_{\tilde{Z}} = (k + \mu h)$ or

$$g(\tilde{Z}(U,X)W,T) = \left(k + \mu h - \frac{r}{2n(2n+1)}\right) [g(X,W)g(U,T) - g(U,W)g(X,T)].$$
(4.7)

By considering (1.1) in (4.7), gives

$$g(R(U,X)W,T) = k[g(X,W)g(U,T) - g(U,W)g(X,T)] + \mu[g(X,W)g(hU,T) - g(U,W)g(hX,T)].$$
(4.8)

Contracting above equation over U and T, we obtain

$$S(X,W) = \frac{r + n[4(1-n) + k(4n - 6 + 2\mu) + \mu(4-\mu)]}{2(n-1+\mu)}g(X,W) + \frac{2(1-n) + n(2k+\mu)}{2(n-1+\mu)}\eta(X)\eta(W).$$
(4.9)
M is an *n*-Einstein manifold.

Thus *M* is an η -Einstein manifold.

Now from Theorem 4.1 and Lemma 2.1, we can obtain the following result:

Corollary 4.2. If a (2n + 1)-dimensional (n > 1) non-Sasakian (k, μ) -contact metric manifold is concircular pseudo-symmetric, then the manifold is an N(k)-contact metric manifold.

Further, if we take
$$k + \mu h = \frac{r}{2n(2n+1)}$$
 in (4.7), we have
 $\tilde{Z}(U, X)W = 0.$
(4.10)

Hence we can state the following result:

Corollary 4.3. If a (2n + 1)-dimensional (n > 1) non-Sasakian (k, μ) -contact metric manifold is concircularly pseudo-symmetric, then the manifold is concircularly flat provided the concircularly pseudo-symmetric manifold is never reduces to concircularly semi-symmetric manifold ($L_{\tilde{Z}}$ = $(k + \mu h) = \frac{r}{2n(2n+1)} \neq 0$.

5. Concircularly ϕ -Recurrent (k, μ) -Contact Metric Manifold

A (2n + 1)-dimensional (n > 1) non-Sasakian (k, μ) -contact metric manifold is said to be concircularly ϕ -recurrent if there exists a non zero 1-form A such that

$$\phi^2((\nabla_W \tilde{Z})(X, Y)U) = A(W)\tilde{Z}(X, Y)U, \tag{5.1}$$

for arbitrary vector fields X, Y, U and W.

If the 1-form A vanishes, then the manifold reduces to a concircularly ϕ -symmetric.

By virtue of (2.1), equation (5.1) yields

$$-(\nabla_{W}\widetilde{Z})(X,Y)U + \eta((\nabla_{W}\widetilde{Z})(X,Y)U)\xi = A(W)\widetilde{Z}(X,Y)U.$$
(5.2)

Taking inner product of above expression along *V* and then plugging $X = V = e_i$, taking summation over *i*, $1 \le i \le 2n + 1$, we have

$$(\nabla_{W}S)(Y,U) = \frac{(2n-1)dr(W)}{2n(2n+1)}g(Y,U) - \frac{dr(W)}{2n(2n+1)}\eta(Y)\eta(U) - (kI + \mu h)[g(W,\phi U) + g(hW,\phi U)]\eta(Y) - A(W)[S(Y,U) - \frac{r}{2n+1}g(Y,U)].$$
(5.3)

Replacing U by ξ in (5.3), gives

$$(\nabla_W S)(Y,\xi) = \frac{1}{2n+1} [A(W)(dr(W) - 2nk(2n+1) - r)]\eta(Y).$$
(5.4)

Now, we have

1

$$(\nabla_W S)(Y,\xi) = \nabla_W S(Y,\xi) - S(\nabla_W Y,\xi) - S(Y,\nabla_W \xi).$$
(5.5)

In view of (2.3) and (2.7), we get from (5.5)

$$(\nabla_W S)(Y,\xi) = 2nkg(W+hW,\phi Y) + S(Y,\phi W+\phi hW).$$
(5.6)

By virtue of (5.4) and (5.6), we have

$$\frac{1}{2n+1} [A(W)(dr(W) - 2nk(2n+1) - r)]\eta(Y) = 2nkg(W + hW, \phi Y) + S(Y, \phi W + \phi hW).$$
(5.7)

Replacing *Y* by ϕY in (5.7) yields

$$2nkg(\phi W + \phi hW, \phi Y) - S(\phi Y, \phi W + \phi hW) = 0.$$
(5.8)

Now the above equation takes the form

$$S(Y,W) + S(Y,hW) = 2nkg(Y,W) + [2nk + 2(2n - 2 + \mu)]g(Y,hW) + 2(2n - 2 + \mu)(k - 1)g(Y, -W + \eta(W)\xi).$$
(5.9)

Now it follows from (2.8) that

$$S(Y,hW) = (2n - 2 - n\mu)g(Y,hW) - (2n - 2 + \mu)(k - 1)g(Y,W) + (2n - 2 + \mu)(k - 1)g(Y, -W + \eta(W)\xi).$$
(5.10)

Hence we get from (5.9) that

$$S(Y,W) = [\mu(1-k) + 2(n-1) + 2k]g(Y,W) + [2(nk+n-1) + \mu(n+2)]g(Y,hW) + (2n-2+\mu)(k-1)\eta(Y)\eta(W).$$
(5.11)

Plugging W by hW in (5.11), we get

$$S(Y,hW) = [\mu(1-k)+2(n-1)+2k]g(Y,hW) + [2(nk+n-1)+\mu(n+2)]g(Y,(k-1)\phi^2W).$$
 (5.12)
From (5.10) and (5.12), it follows that

$$[\mu(k-1-n)-2k]g(Y,hW) = (k-1)[-2nk-\mu(n+1)]g(Y,W) + (k-1)[2nk+\mu(n+1)]\eta(Y)\eta(W).$$
(5.13)

By considering (5.13) in (5.11), we have

$$S(Y,W) = \alpha' g(Y,W) + \beta' \eta(Y) \eta(W), \qquad (5.14)$$

where

$$\alpha' = \frac{[\mu(1-k)+2(n-1)+2k][\mu(k-1-n)-2k] + [-2nk-\mu(n+1)](k-1)[-2nk-\mu(n+1)]}{\mu(k-1-n)-2k},$$

$$\beta' = \frac{[2(n-1) + \mu(k-1)][\mu(k-1-n) - 2k] + [2(nk+n-1) + \mu(n+2)][2nk + \mu(n+1)(k-1)]}{\mu(k-1-n) - 2k}$$

Thus we can state the following result:

Theorem 5.1. A (2n + 1)-dimensional (n > 1) non-Sasakian concircularly ϕ -recurrent (k, μ) contact metric manifold is an η -Einstein manifold.

Hence, from Theorem 5.1 and Lemma 2.1, we can obtain the following result:

Corollary 5.2. If a (2n + 1)-dimensional (n > 1) non-Sasakian (k, μ) -contact metric manifold is concircularly ϕ -recurrent then the manifold is reduces to N(k)-contact metric manifold.

6. Example

We consider the 3-dimensional manifold $M = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 \neq 0\}$, where (x_1, x_2, x_3) are the standard coordinates in \mathbb{R}^3 . Let $\{E_1, E_2, E_3\}$ be an linearly independent global frame on M such that

$$[E_1, E_2] = 2E_3 + \frac{2}{x_1}E_1, \quad [E_2, E_3] = 2E_1, \quad [E_3, E_1] = 0.$$

Let g be the Riemannian metric defined by

 $g(E_1, E_1) = g(E_2, E_2) = g(E_3, E_3) = 1,$ $g(E_1, E_2) = g(E_2, E_3) = g(E_1, E_3) = 0.$

Let ϕ be the (1,1)-tensor field defined by

$$\phi E_1 = E_2, \quad \phi E_2 = -E_1, \quad \phi E_3 = 0$$

Moreover

$$hE_1 = -E_1, \quad hE_2 = E_2, \quad hE_3 = 0.$$

Thus for $E_3 = \xi$, (ϕ, ξ, η, g) defines a contact metric structure on *M*.

Let ∇ be the Levi-Civita connection with respect to the Riemannian metric *g* and by using the Koszul's formula, we can easily obtained the following:

$$\left. \begin{array}{l} \nabla_{E_{1}}E_{1} = -\frac{2}{x_{1}}E_{2}, \quad \nabla_{E_{1}}E_{2} = \frac{2}{x_{1}}E_{1}, \quad \nabla_{E_{1}}E_{3} = 0, \\ \nabla_{E_{2}}E_{1} = -2E_{3}, \quad \nabla_{E_{2}}E_{2} = 0, \quad \nabla_{E_{2}}E_{3} = 2E_{1}, \\ \nabla_{E_{3}}E_{1} = 0, \quad \nabla_{E_{3}}E_{2} = 0, \quad \nabla_{E_{3}}E_{3} = 0. \end{array} \right\}$$

$$(6.1)$$

From the above expressions, it can be easily seen that (ϕ, ξ, η, g) is a non-Sasakian (k, μ) -contact metric structure on M with $k = -\frac{2}{x_1} \neq 0$ and $\mu = -\frac{2}{x_1} \neq 0$.

Now by using the relations in (6.1), we can easily found the non-vanishing components of the Riemannian curvature tensor R as follows:

$$R(E_2, E_3)E_1 = \frac{4}{x_1}E_2.$$

Since $\{E_1, E_2, E_3\}$ forms a basis of M^3 , any vector field $X \in \chi(M)$ can be written as

$$W = c_1 E_1 + c_2 E_2 + c_3 E_3,$$

where c_i , i = 1, 2, 3 are positive real numbers.

Communications in Mathematics and Applications, Vol. 14, No. 1, pp. 215-225, 2023

Thus the covariant derivative of the Riemannian curvature tensor R is given by

$$(\nabla_W R)(E_2, E_3)E_1 = -\frac{8c_2}{x_1^2}E_2.$$

Let us define a non-vanishing 1-form A as

$$A(W) = \frac{2c_2}{x_1}$$

at any point $p \in M^3$.

Then in view of (1.1), the component of concircular curvature tensor is given by

$$\widetilde{Z}(E_2, E_3)E_1 = \frac{4}{x_1}E_2.$$
(6.2)

Thus the covariant derivative of (6.2) is as follows:

$$(\nabla_W \widetilde{Z})(E_2, E_3)E_1 = -\frac{8c_2}{x_1^2}E_2$$

and so

$$\phi^{2}((\nabla_{W}\widetilde{Z})(E_{2},E_{3})E_{1}) = \frac{8c_{2}}{x_{1}^{2}}E_{2} = A(W)\widetilde{Z}(E_{2},E_{3})E_{1}$$

This shows that the existence of concircularly ϕ -recurrent non-Sasakian (k, μ) -contact metric manifold.

7. Conclusion

In this study, we have proved that a (2n + 1)-dimensional (n > 1) non-Sasakian (k, μ) -contact metric manifold is ϕ -concircularly flat, concircularly pseudo-symmetric and concircularly ϕ -recurrent, then the manifold always reduces to N(k)-contact metric manifold.

Acknowledgement

The authors thank the referees for their several helpful comments and suggestions.

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

- A. Barman, Concircular curvature tensor of a semi-symmetric metric connection in a Kenmotsu manifold, *The Thai Journal of Mathematics* 13(1) (2015), 245 – 257, URL: http://thaijmath.in.cmu. ac.th/index.php/thaijmath/article/view/1052/579.
- [2] D. E. Blair, *Inversion Theory and Conformal Mapping*, The Student Mathematical Library, Volume 9, American Mathematical Society, USA (2000), DOI: 10.1090/stml/009.

- [3] D. E. Blair, J. S. Kim and M. M. Tripathi, On the concircular curvature tensor of a contact metric manifold, *Journal of the Korean Mathematical Society* 42(5) (2005), 883 – 892, DOI: 10.4134/JKMS.2005.42.5.883.
- [4] D. E. Blair, T. Koufogiorgos and B. J. Papantonious, Contact metric manifolds satisfying a nullity condition, *Israel Journal of Mathematics* 91 (1995), 189 – 214, DOI: 10.1007/BF02761646.
- [5] E. Boeckx, A full classification of contact metric (k,μ)-spaces, Illinois Journal of Mathematics 44 (2000), 212 219, DOI: 10.1215/ijm/1255984960.
- [6] W. M. Boothby and H. C. Wang, On contact manifolds, Annals of Mathematics 68(3) (1958), 721 734, DOI: 10.2307/1970165.
- [7] E. Cartan, Sur une classe remarquable d'espaces de Riemann, *Bulletin de la Société Mathématique de France* 54 (1926), 214 264, DOI: 10.24033/bsmf.1105.
- U. C. De, A. Yildiz and S. Ghosh, On a class of N(k)-contact metric manifolds, Mathematical Reports 16(66), 2 (2014), 207 217, URL: https://www.csm.ro/reviste/Mathematical_Reports/Pdfs/2014/2/4. pdf.
- [9] R. Deszcz, On pseudosymmetric spaces, Bulletin of the Belgian Mathematical Society, Series A 44 (1992), 1 34.
- [10] S. Hong, C. Özgür and M. M. Tripathi, On some special classes of Kenmotsu manifolds, *Kuwait Journal of Science & Engineering* 33(2) (2006), 19 32, URL: https://hdl.handle.net/20.500.12462/8369.
- [11] W. Kühnel, Conformal transformations between Einstein spaces, In: R. S. Kulkarni and U. Pinkall (eds.), *Conformal Geometry. Aspects of Mathematics / Aspekte der Mathematik*, Vol. 12, Vieweg+Teubner Verlag, Wiesbaden, pp. 105 – 146 (1988), DOI: 10.1007/978-3-322-90616-8_5.
- [12] Y. A. Ogawa, A condition for a compact Kaehlerian space to be locally symmetric, Natural Science Report of the Ochanomizu University 28 (1977), 21 – 23.
- [13] C. Ozgür and M. M. Tripathi, On the concircular curvature tensor of an N(k)-quasi Einstein manifold, Mathematica Pannonica 18(1) (2007), 95 – 100, URL: http://mathematica-pannonica.ttk. pte.hu/articles/mp18-1/MP18-1(2007)pp095-100.pdf.
- [14] Z. I. Szabo, Structure theorems on Riemannian spaces satisfying $R(X,Y) \cdot R = 0$. I. The local version, *Journal of Differential Geometry* 17(4) (1982), 531 582, URL: https://projecteuclid.org/journals/journal-of-differential-geometry/volume-17/issue-4/Structure-theorems-on-Riemannian-spaces-satisfying/10.4310/jdg/1214437486.pdf.
- [15] S. Tanno, Ricci curvatures of contact Riemannian manifolds, *Tóhoku Mathematical Journal* (2) 40(3) (1988), 441 448, DOI: 10.2748/tmj/1178227985.
- [16] M. M. Tripathi and J. S. Kim, On the concircular curvature tensor of a (k,μ)-manifold, Balkan Journal of Geometry and Its Applications 9(1) (2004), 104 – 114, URL: http://www.mathem.pub.ro/ bjga/v09n1/B09-1-TRI.pdf.
- [17] Venkatesha and C. S. Bagewadi, On concircular φ-recurrent LP-Sasakian manifolds, Differential Geometry – Dynamical Systems 10 (2008), 312 – 319, URL: http://www.mathem.pub.ro/dgds/v10/ D10-VE.pdf.
- [18] K. Yano, Concircular geometry I. Concircular transformations, *Proceedings of the Imperial Academy* 16(6) (1940), 195 – 200, DOI: 10.3792/pia/1195579139.
- [19] K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, Vol. 3, World Scientific Publishing Co., Singapore (1984), DOI: 10.1142/0067.

[20] A. Yildiz and U. C. De, A classification of (k, μ) -contact metric manifolds, Communications of the Korean Mathematical Society 27(2) (2012), 327 – 339, DOI: 10.4134/CKMS.2012.27.2.327.

