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Abstract. The purpose of this paper is to study concircular curvature tensor on (k,µ)-contact
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φ-recurrent (k,µ)-contact metric manifold. Finally, we provide the three dimensional example for the
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1. Introduction
A concircular transformation [11,18] in an (2n+1)-dimensional Riemannian manifold M is a
transformation which transforms every geodesic circle of M into a geodesic circle. Here, geodesic
circle means a curve in M whose first curvature is constant and whose second curvature is
identically zero. A concircular transformation is always a conformal transformation [11]. Thus,
the geometry of concircular transformation, that is, the concircular geometry, is a generalization
of inversive geometry in the sense that the change of metric is more general than that induced
by a circle preserving diffeomorphism (see also [2]). An interesting invariant of a concircular
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transformation is the concircular curvature tensor Z̃ defined by [18]:

Z̃(X ,Y )U = R(X ,Y )U − r
2n(2n+1)

[g(Y ,U)X − g(X ,U)Y ], (1.1)

for any vector fields X ,Y ,U ∈ TM, where R is the curvature tensor and r is the scalar curvature.
Riemannian manifolds with vanishing concircular curvature tensor are of constant curvature.
Thus, the concircular curvature tensor is a measure of the failure of a Riemannian manifold to
be of constant curvature.

In [16], it is proved that in a (k,µ)-contact metric manifold, the concircular curvature tensor
satisfies Z(ξ, X )Y = 0 if and only if the manifold is flat and 3-dimensional. In [10], the authors
proved that in a Kenmotsu manifold the concircular curvature tensor satisfies Z(ξ, X ).Z = 0
if and only if the manifold is of constant scalar curvature. Moreover, in [8] De et al. studied
concircular curvature tensor on N(k)-contact metric manifold. Here they proved that a φ-
concircularly flat N(k)-contact metric manifold is reduces to Sasakian manifold. Recently in [1],
author shown that a φ-concircularly flat Kenmotsu manifold with respect to semi-symmetric
metric connection is an η-Einstein manifold. The notion of concircular curvature tensor was
weakened by many authors ([3,13,17]).

The present paper is organized as follows: In Section 2 we recall the basic notions and
preliminary results of (k,µ)-contact metric manifolds needed throughout the paper. In Section 3,
we have proved that a non-Sasakian φ-concircularly flat (k,µ)-contact metric manifold always
reduces to N(k)-contact metric manifold. In Section 4 we describe concircularly pseudo
symmetric (k,µ)-contact metric manifold and it is shown that the manifold is turns in to N(k)-
contact metric manifold and the manifold is concircularly flat provided k+µh = r

2n(2n+1) . Infact
Section 5 is devoted to the study of concircularly φ-recurrent (k,µ)-contact metric manifold and
it was proved that the manifold becomes N(k)-contact metric manifold. Finally, the last section
provides the existence of 3-dimensional non-Sasakian concircularly φ-recurrent (k,µ)-contact
metric manifold.

2. Preliminaries
A (2n+1)-dimensional smooth manifold M is said to be contact manifold if it carries a global
differentiable 1-form η which satisfies the condition η∧ (dη)n ̸= 0 everywhere on M. Also, a
contact manifold admits an almost contact structure (φ,ξ,η), where φ is a (1,1)-tensor field, ξ is
a characteristic vector field and η is a global 1-form such that

φ2 =−I +η⊗ξ, η(ξ)= 1, φξ= 0, η◦φ= 0. (2.1)

An almost contact structure is said to be normal if the induced almost complex structure J on
the product manifold M×R defined by

J
(
X ,λ

d
dt

)
=

(
φX −λξ,η(X )

d
dt

)
,

is integrable, where X is tangent to M, t is the coordinate of R and λ a smooth function on
M×R. The condition of almost contact metric structure being normal is equivalent to vanishing
of the torsion tensor [φ,φ]+2dη⊗ ξ, where [φ,φ] is the Nijenhuis tensor of φ. Let g be the
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compatible Riemannian metric with almost contact structure (φ,ξ,η), that is,

g(φX ,φY )= g(X ,Y )−η(X )η(Y ), g(X ,ξ)= η(X ), (2.2)

for all vector fields X ,Y ∈ χ(M). A manifold M together with this almost contact metric structure
is said to be almost contact metric manifold and it is denoted by M(φ,ξ,η, g). An almost contact
metric structure reduces to a contact metric structure if g(X ,φY )= dη(X ,Y ).

Given a contact metric manifold M(φ,ξ,η, g), we consider a (1,1) tensor field h defined by
h = 1

2 Lξφ, where L denotes the Lie differentiation, h is a symmetric operator and satisfies
hφ=−φh. Again we have trh = trφh = 0, and hξ= 0. Moreover, if ∇ denotes the Riemannian
connection of g, then the following relation holds [4]:

∇Xξ=−φX −φhX , (∇Xη)Y = g(X +hX ,φY ). (2.3)

Blair et al. [4] introduced the (k,µ)-nullity distribution of a contact metric manifold M and is
defined by

N(k,µ) : p → Np(k,µ)= {U ∈ TpM | R(X ,Y )U = (kI +µh)R0(X ,Y )U},

for all X ,Y ∈ TM, where (k,µ) ∈ R2. A contact metric manifold with ξ ∈ N(k,µ) is called a (k,µ)-
contact metric manifold. If k = 1, µ= 0, then the manifold becomes Sasakian [4]. If µ= 0, the
(k,µ)-nullity distribution is reduced to the k-nullity distribution [14]. The k-nullity distribution
N(k) of a Riemannian manifold is defined by:

N(k) : p → Np(k)= {U ∈ TpM | R(X ,Y )U = kR0(X ,Y )U},

k being constant. If ξ ∈ N(k), then we call a contact metric manifold M an N(k)-contact metric
manifold. Throughout this paper, we study (2n+1)-dimensional non-Sasakian (k,µ)-contact
metric manifolds.

In a (k,µ)-contact metric manifold the following relations hold [4,5]:

h2 = (k−1)φ2, (2.4)

R0(X ,Y )U = g(Y ,U)X − g(X ,U)Y , (2.5)

R(X ,Y )ξ= (kI +µh)R0(X ,Y )ξ, (2.6)

S(X ,ξ)= 2nkη(X ), (2.7)

S(X ,Y )= [2(n−1)−nµ]g(X ,Y )+ [2(n−1)+µ]g(hX ,Y )

+ [2(1−n)+n(2k+µ)]η(X )η(Y ), (2.8)

S(φX ,φY )= S(X ,Y )−2nkη(X )η(Y )−2(2n−2+µ)g(hX ,Y ). (2.9)

Definition 2.1. A (2n+1)-dimensional (k,µ)-contact metric manifold M is said to be η-Einstein
if its Ricci tensor S is of the form

S(X ,Y )= ag(X ,Y )+bη(X )η(Y ),

for any vector fields X and Y , where a and b are constants. If b = 0, then the manifold M
reduces to an Einstein manifold.

In [4], the authors have proved the following result:
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Lemma 2.1. A (2n + 1)-dimensional non-Sasakian (k,µ)-contact metric manifold which is
η-Einstein manifold is an N(k)-contact metric manifold.

3. φ-Concircularly Flat (k,µ)-Contact Metric Manifold
A (2n+1)-dimensional (n > 1) (k,µ)-contact metric manifold M is said to be φ-concircularly
flat if

g(Z̃(φX ,φY )φU ,φW)= 0. (3.1)

Now from (1.1), we have

g(Z̃(φX ,φY )φU ,φW)= g(R(φX ,φY )φU ,φW)

− r
2n(2n+1)

[g(φY ,φU)g(φX ,φW)− g(φX ,φU)g(φY ,φW)]. (3.2)

Let us consider an φ-concircularly flat (k,µ)-contact metric manifold, we obtain from (3.2)
that

g(R(φX ,φY )φU ,φW)= r
2n(2n+1)

[g(φY ,φU)g(φX ,φW)− g(φX ,φU)g(φY ,φW)]. (3.3)

Let {φe1,φe2, . . . ,φe2n,ξ} be an orthonormal φ-basis of the tangent space. Now taking X =W = e i

in (3.3) and then by using (2.6), we get

S(φY ,φU)=
[
k+ r(2n−1)

2n(2n+1)

]
g(φY ,φU)+µg(hφY ,φU), (3.4)

which on simplification gives

S(φY ,φU)=

(
k2n(2n+1)(2n−2+µ)+µ[2n2µ(2n+µ)−4n(n−1)(2n+1)]
+r(2n−1)(2n−2+µ)

)
4n(n−1)(2n+1)

g(φY ,φU). (3.5)

Replacing Y by φY and U by φU in (3.5) and then by considering (2.1), gives

S(Y ,U)=αg(Y ,U)+βη(Y )η(U),

where

α= k[8n3 −4n2 −2+µ(4n2 +1)]+µ[−4n2 +2n+2+nµ(2n+µ)]+ r(2n−1)(2n−2+µ)
4n(n−1)(2n+1)

,

β= k[(n−1)(16n3−4n)−2nµ(2n+1)]+µ[−4n2+2n+2+nµ(2n+µ)]+ r(2n−1)(2n−2+µ)
4n(n−1)(2n+1)

.

Thus we can state the following theorem:

Theorem 3.1. A (2n+1)-dimensional (n > 1) non-Sasakian φ-concircularly flat (k,µ)-contact
metric manifold is always an η-Einstein manifold.

Now from Theorem 3.1 and Lemma 2.1, we have following:

Corollary 3.2. If a (2n+1)-dimensional (n > 1) non-Sasakian (k,µ)-contact metric manifold is
φ-concircularly flat, then the manifold is reduces to N(k)-contact metric manifold.

Taking covariant derivative of (3.5) with respect to V , we get

(∇V S)(φY ,φU)= dr(X )(2n−1)(2n−2+µ)
4n(n−1)(2n+1)

(∇V g)(φY ,φU). (3.6)
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If we consider the manifold of constant scalar curvature r, that is, dr(X )= 0, we have

(∇V S)(φY ,φU)= 0.

This leads us to the following result:

Theorem 3.3. A (2n+1)-dimensional (n > 1) non-Sasakian φ-concircularly flat (k,µ)-contact
metric manifold endowed with a constant scalar curvature always admits an η-parallel Ricci
tensor.

4. Concircularly Pseudo-Symmetric (k,µ)-Contact Metric Manifold
In [9], Deszcz introduced the idea of pseudo-symmetric manifolds which is given by the condition

(R(X ,Y ).R)(U ,V )W = LR[((X ∧Y ).R)(U ,V )W],

where LR is some smooth function on M and X ∧Y is an endomorphism defined by

(X ∧Y )U = g(Y ,U)X − g(X ,U)Y .

A (2n+ 1)-dimensional (n > 1) (k,µ)-contact metric manifold M is said to be concircularly
pseudo-symmetric if

(R(X ,Y ).Z̃)(U ,V )W = L Z̃[((X ∧Y ).B)(U ,V )W], (4.1)

holds on the set UZ̃ = {x ∈ M : Z̃ ̸= 0} at x, where L Z̃ is some function on UZ̃ and Z̃ is the
concircular curvature tensor. We now have the following result:

Theorem 4.1. Let M be an (2n+1)-dimensional (n > 1) non-Sasakian (k,µ)-contact metric
manifold. If M is concircular pseudo-symmetric, then M is an η-Einstein manifold.

Proof. Let us consider (k,µ)-contact metric manifold which is concircularly pseudo-symmetric.
Now it follows from (4.1) that

(R(X ,ξ).Z̃)(U ,V )W = L Z̃[((X ∧ξ)(Z̃(U ,V )W)− Z̃((X ∧ξ)U ,V )W

− Z̃(U , (X ∧ξ))W − Z̃(U ,V )(X ∧ξ)W]. (4.2)

Now the left hand side of (4.2) becomes

R(X ,ξ)Z̃(U ,V )W − Z̃(R(X ,ξ)U ,V )W − Z̃(U ,R(X ,ξ)V )W − Z̃(U ,V )R(X ∧ξ)W . (4.3)

By virtue of (2.7) in (4.3), we get

k[ ˜̃Z(U ,V ,W ,ξ)X − ˜̃Z(U ,V ,W , X )ξ−η(U)Z̃(X ,V )W + g(X ,U)Z̃(ξ,V )W −η(V )Z̃(U , X )W

+ g(X ,V )Z̃(U ,ξ)W −η(W)Z̃(U ,V )X + g(X ,W)Z̃(U ,V )ξ]

+µh[ ˜̃Z(U ,V ,W ,ξ)X− ˜̃Z(U ,V ,W , X )ξ−η(U)Z̃(X ,V )W+g(X ,U)Z̃(ξ,V )W−η(V )Z̃(U , X )W

+ g(X ,V )Z̃(U ,ξ)W −η(W)Z̃(U ,V )X + g(X ,W)Z̃(U ,V )ξ]. (4.4)

Similarly, right hand side of (4.2) gives

L Z̃[ ˜̃Z(U ,V ,W ,ξ)X − ˜̃Z(U ,V ,W , X )ξ−η(U)Z̃(X ,V )W + g(X ,U)Z̃(ξ,V )W −η(V )Z̃(U , X )W

+ g(X ,V )Z̃(U ,ξ)W −η(W)Z̃(U ,V )X + g(X ,W)Z̃(U ,V )ξ]. (4.5)
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Substituting (4.4) and (4.5) in (4.2) with V = ξ, we get

(L Z̃ − (k+µh))[ ˜̃Z(U ,ξ,W ,ξ)X − ˜̃Z(U ,ξ,W , X )ξ−η(U)Z̃(X ,ξ)W + g(X ,U)Z̃(ξ,ξ)W

−η(ξ)Z̃(U , X )W + g(X ,ξ)Z̃(U ,ξ)W −η(W)Z̃(U ,ξ)X + g(X ,W)Z̃(U ,ξ)ξ]= 0. (4.6)

This implies either L Z̃ = (k+µh) or

g(Z̃(U , X )W ,T)=
(
k+µh− r

2n(2n+1)

)
[g(X ,W)g(U ,T)− g(U ,W)g(X ,T)]. (4.7)

By considering (1.1) in (4.7), gives

g(R(U , X )W ,T)= k[g(X ,W)g(U ,T)− g(U ,W)g(X ,T)]

+µ[g(X ,W)g(hU ,T)− g(U ,W)g(hX ,T)]. (4.8)

Contracting above equation over U and T , we obtain

S(X ,W)= r+n[4(1−n)+k(4n−6+2µ)+µ(4−µ)]
2(n−1+µ)

g(X ,W)

+ 2(1−n)+n(2k+µ)
2(n−1+µ)

η(X )η(W). (4.9)

Thus M is an η-Einstein manifold.

Now from Theorem 4.1 and Lemma 2.1, we can obtain the following result:

Corollary 4.2. If a (2n+1)-dimensional (n > 1) non-Sasakian (k,µ)-contact metric manifold is
concircular pseudo-symmetric, then the manifold is an N(k)-contact metric manifold.

Further, if we take k+µh = r
2n(2n+1) in (4.7), we have

Z̃(U , X )W = 0. (4.10)

Hence we can state the following result:

Corollary 4.3. If a (2n+1)-dimensional (n > 1) non-Sasakian (k,µ)-contact metric manifold is
concircularly pseudo-symmetric, then the manifold is concircularly flat provided the concircularly
pseudo-symmetric manifold is never reduces to concircularly semi-symmetric manifold (L Z̃ =
(k+µh)= r

2n(2n+1) ̸= 0).

5. Concircularly φ-Recurrent (k,µ)-Contact Metric Manifold
A (2n + 1)-dimensional (n > 1)non-Sasakian (k,µ)-contact metric manifold is said to be
concircularly φ-recurrent if there exists a non zero 1-form A such that

φ2((∇W Z̃)(X ,Y )U)= A(W)Z̃(X ,Y )U , (5.1)

for arbitrary vector fields X , Y , U and W .
If the 1-form A vanishes, then the manifold reduces to a concircularly φ-symmetric.
By virtue of (2.1), equation (5.1) yields

−(∇W Z̃)(X ,Y )U +η((∇W Z̃)(X ,Y )U)ξ= A(W)Z̃(X ,Y )U . (5.2)
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Taking inner product of above expression along V and then plugging X = V = e i , taking
summation over i, 1≤ i ≤ 2n+1, we have

(∇W S)(Y ,U)= (2n−1)dr(W)
2n(2n+1)

g(Y ,U)− dr(W)
2n(2n+1)

η(Y )η(U)− (kI +µh)[g(W ,φU)

+ g(hW ,φU)]η(Y )− A(W)[S(Y ,U)− r
2n+1

g(Y ,U)]. (5.3)

Replacing U by ξ in (5.3), gives

(∇W S)(Y ,ξ)= 1
2n+1

[A(W)(dr(W)−2nk(2n+1)− r)]η(Y ). (5.4)

Now, we have

(∇W S)(Y ,ξ)=∇W S(Y ,ξ)−S(∇WY ,ξ)−S(Y ,∇Wξ). (5.5)

In view of (2.3) and (2.7), we get from (5.5)

(∇W S)(Y ,ξ)= 2nkg(W +hW ,φY )+S(Y ,φW +φhW). (5.6)

By virtue of (5.4) and (5.6), we have
1

2n+1
[A(W)(dr(W)−2nk(2n+1)− r)]η(Y )= 2nkg(W +hW,φY )+S(Y ,φW +φhW). (5.7)

Replacing Y by φY in (5.7) yields

2nkg(φW +φhW,φY )−S(φY ,φW +φhW)= 0. (5.8)

Now the above equation takes the form

S(Y ,W)+S(Y ,hW)= 2nkg(Y ,W)+ [2nk+2(2n−2+µ)]g(Y ,hW)

+2(2n−2+µ)(k−1)g(Y ,−W +η(W)ξ). (5.9)

Now it follows from (2.8) that

S(Y ,hW)= (2n−2−nµ)g(Y ,hW)− (2n−2+µ)(k−1)g(Y ,W)

+ (2n−2+µ)(k−1)g(Y ,−W +η(W)ξ). (5.10)

Hence we get from (5.9) that

S(Y ,W)= [µ(1−k)+2(n−1)+2k]g(Y ,W)+ [2(nk+n−1)+µ(n+2)]g(Y ,hW)

+ (2n−2+µ)(k−1)η(Y )η(W). (5.11)

Plugging W by hW in (5.11), we get

S(Y ,hW)= [µ(1−k)+2(n−1)+2k]g(Y ,hW)+[2(nk+n−1)+µ(n+2)]g(Y , (k−1)φ2W). (5.12)

From (5.10) and (5.12), it follows that

[µ(k−1−n)−2k]g(Y ,hW)= (k−1)[−2nk−µ(n+1)]g(Y ,W)+(k−1)[2nk+µ(n+1)]η(Y )η(W).
(5.13)

By considering (5.13) in (5.11), we have

S(Y ,W)=α′g(Y ,W)+β′η(Y )η(W), (5.14)

where

α′ = [µ(1−k)+2(n−1)+2k][µ(k−1−n)−2k]+ [−2nk−µ(n+1)](k−1)[−2nk−µ(n+1)]
µ(k−1−n)−2k

,
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β′ = [2(n−1)+µ(k−1)][µ(k−1−n)−2k]+ [2(nk+n−1)+µ(n+2)][2nk+µ(n+1)(k−1)]
µ(k−1−n)−2k

.

Thus we can state the following result:

Theorem 5.1. A (2n+1)-dimensional (n > 1) non-Sasakian concircularly φ-recurrent (k,µ)-
contact metric manifold is an η-Einstein manifold.

Hence, from Theorem 5.1 and Lemma 2.1, we can obtain the following result:

Corollary 5.2. If a (2n+1)-dimensional (n > 1) non-Sasakian (k,µ)-contact metric manifold is
concircularly φ-recurrent then the manifold is reduces to N(k)-contact metric manifold.

6. Example
We consider the 3-dimensional manifold M = {(x1, x2, x3) ∈ R3 | x1 ̸= 0}, where (x1, x2, x3) are the
standard coordinates in R3. Let {E1,E2,E3} be an linearly independent global frame on M such
that

[E1,E2]= 2E3 + 2
x1

E1, [E2,E3]= 2E1, [E3,E1]= 0.

Let g be the Riemannian metric defined by

g(E1,E1)= g(E2,E2)= g(E3,E3)= 1,

g(E1,E2)= g(E2,E3)= g(E1,E3)= 0.

Let φ be the (1,1)-tensor field defined by

φE1 = E2, φE2 =−E1, φE3 = 0.

Moreover

hE1 =−E1, hE2 = E2, hE3 = 0.

Thus for E3 = ξ, (φ,ξ,η, g) defines a contact metric structure on M.
Let ∇ be the Levi-Civita connection with respect to the Riemannian metric g and by using

the Koszul’s formula, we can easily obtained the following:

∇E1 E1 =− 2
x1

E2, ∇E1 E2 = 2
x1

E1, ∇E1 E3 = 0,

∇E2 E1 =−2E3, ∇E2 E2 = 0, ∇E2 E3 = 2E1,

∇E3 E1 = 0, ∇E3 E2 = 0, ∇E3 E3 = 0.

 (6.1)

From the above expressions, it can be easily seen that (φ,ξ,η, g) is a non-Sasakian (k,µ)-contact
metric structure on M with k =− 2

x1
̸= 0 and µ=− 2

x1
̸= 0.

Now by using the relations in (6.1), we can easily found the non-vanishing components of
the Riemannian curvature tensor R as follows:

R(E2,E3)E1 = 4
x1

E2 .

Since {E1,E2,E3} forms a basis of M3, any vector field X ∈ χ(M) can be written as

W = c1E1 + c2E2 + c3E3 ,

where ci , i = 1,2,3 are positive real numbers.
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Thus the covariant derivative of the Riemannian curvature tensor R is given by

(∇W R)(E2,E3)E1 =−8c2

x2
1

E2 .

Let us define a non-vanishing 1-form A as

A(W)= 2c2

x1
,

at any point p ∈ M3.
Then in view of (1.1), the component of concircular curvature tensor is given by

Z̃(E2,E3)E1 = 4
x1

E2 . (6.2)

Thus the covariant derivative of (6.2) is as follows:

(∇W Z̃)(E2,E3)E1 =−8c2

x2
1

E2

and so

φ2((∇W Z̃)(E2,E3)E1)= 8c2

x2
1

E2 = A(W)Z̃(E2,E3)E1 .

This shows that the existence of concircularly φ-recurrent non-Sasakian (k,µ)-contact metric
manifold.

7. Conclusion
In this study, we have proved that a (2n+1)-dimensional (n > 1) non-Sasakian (k,µ)-contact
metric manifold is φ-concircularly flat, concircularly pseudo-symmetric and concircularly
φ-recurrent, then the manifold always reduces to N(k)-contact metric manifold.
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