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Abstract. The main purpose of this manuscript is to prove a common fixed point theorem for two
weakly compatible maps satisfying the following integral type contraction in G-metric space:∫ G(Fx,Fy,Fz)

0
ϕ(t)dt ≤α

∫ L(x,y,z)

0
ϕ(t)dt,

for all x, y, z ∈ X , where

L(x, y, z)=max{G(gx, gy, gz),G(gx,Fx,Fx),G(gx,Fy,Fy),G(gy,Fy,Fy),

G(gy,Fx,Fx),G(gz,Fz,Fz),G(gz,Fx,Fx),G(gz,Fy,Fy)}.

Also, we have proved common fixed point theorems for the above mentioned weakly compatible
self-mappings along with E.A property and (CLRg) property.
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1. Introduction
In 2006, Mustafa and Sims [7] introduced the concept of G-metric spaces as follows:
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Definition 1.1 ([7]). Let X be a non-empty set and G : X × X × X →R be a function satisfying
the following conditions:
(G1) G(x, y, z)= 0 iff x = y= z.

(G2) 0<G(x, x, z) for all x, z ∈ X with x ̸= z.

(G3) G(x, x, y)≤G(x, y, z) for all x, y, z ∈ X with z ̸= y.

(G4) G(x, y, z)=G(x, z, y)=G(y, z, x)= . . . (symmetry in all variables).

(G5) G(x, y, z)≤G(x,a,a)+G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality).
Then, the function G is called a generalized metric or more specifically a G-metric space on X
and the pair (X ,G) is called G-metric space.

Definition 1.2 ([7]). Let (X ,G) be a G-metric space and let {xn} be a sequence of points of X .
We say that the sequence {xn} is G-convergent to x ∈ X if

lim
n,m→∞G(x, xn, xm)= 0,

that is, for any ϵ> 0, there exists N ∈N such that G(x, xn, xm)< ϵ for all n,m ≥ N . We call x the
limit of the sequence and write xn → x or lim

n→∞xn = x.

Proposition 1.1 ([7]). Let (X ,G) be a G-metric space. The followings are equivalent:
(i) {xn} is G-convergent to x ;

(ii) G(xn, xn, x)→ 0 as n →+∞ ;

(iii) G(xn, x, x)→ 0 as n →+∞ ;

(iv) G(xn, xm, x)→ 0 as n,m →+∞.

Definition 1.3 ([7]). Let (X ,G) be a G-metric space. A sequence {xn} is called G-Cauchy
sequence if, for any ϵ> 0, there is N ∈N such that G(xn, xm, xl) < ϵ for all n,m, l ≥ N , that is,
G(xn, xm, xl)→ 0 as n,m, l → 0.

Proposition 1.2 ([7]). Let (X ,G) be a G-metric space. The followings are equivalent:
(i) the sequence {xn} is G-Cauchy ;

(ii) for any ϵ> 0, there is N ∈N such that G(xn, xm, xm)< ϵ for all n,m ≥ N .

Proposition 1.3 ([7]). Let (X ,G) be a G-metric space. Then, the function G(x, y, z) is jointly
continuous in all three of its variables.

Definition 1.4 ([7]). A G-metric space (X ,G) is called G-complete if every G-Cauchy sequence
is G-convergent in (X ,G).

Proposition 1.4 ([7]). Let (X ,G) be a G-metric space. Then, for any x, y, z,a ∈ X , it follows that:
(i) if G(x, y, z)= 0, then x = y= z ;

(ii) G(x, y, z)≤G(x, x, y)+G(x, x, z) ;

(iii) G(x, y, y)≤ 2G(y, x, x) ;

(iv) G(x, y, z)≤G(x,a, z)+G(a, y, z) ;
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(v) G(x, y, z)≤ 2
3 (G(x, y,a)+G(x,a, z)+G(a, y, z)) ;

(vi) G(x, y, z)≤G(x,a,a)+G(y,a,a)+G(z,a,a).

Definition 1.5. A G-metric space (X ,G) is called symmetric G-metric space if

G(x, y, y)=G(y, x, x), for all x, y in X .

Definition 1.6. A coincidence point of a pair of self-maps F, g : X → X is a point µ ∈ X for which
Fµ= gµ.
A common fixed point of a pair of self-mappingsF, g : X → X is a point µ ∈ X for which
Fµ= gµ=µ.

In 1996, Jungck [6] introduced the concept of weakly compatible mappings to study common
fixed point theorems:

Definition 1.7 ([6]). Let (X ,d) be a metric space. A pair of self-maps F, g : X → X is weakly
compatible if they commute at their coincidence points, that is, if there exists µ ∈ X , such that
F gµ= gFµ, where µ is coincidence point of F and g.

Proposition 1.5 ([2]). Let F and g be weakly compatible self-mappings of a non-empty set X .
If F and g have a unique point of coincidence µ, that is w = Fµ = gµ, then w is the unique
common fixed point of F and g.

In 2002, Aamri and El Moutawakil [1] introduced the notion of E.A property as follows:

Definition 1.8 ([1]). Let (X ,d) be a metric space. Two self-maps P and Q on X are said to
satisfy the E.A property, if there exists a sequence {µn} in X such that

lim
n→∞Pµn = lim

n→∞Qµn = t, for some t ∈ X .

Inspired by Aamri and El Moutawakil [1], we define the property (E.A) in G-metric space as
follows:

Definition 1.9 ([1]). A pair (F, g) of self-mappings of a G-metric space (X ,G) is said to satisfy
the property (E.A) if there exists a sequence {xn} such that {Fxn} and {gxn} G-converges to
z ∈ X , that is,

lim
n→∞G(Fxn,Fxn, z)= lim

n→∞G(gxn, gxn, z)= 0.

In 2011, Sintunavarat et al. [9] introduced the notion of (CLR) property as follows:

Definition 1.10 ([9]). Let (X ,d) be a metric space. Two self-mappings P and Q on X are said
to satisfy the (CLRP ) property, if there exists a sequence {µn} in X such that,

lim
n→∞Pµn = lim

n→∞Qµn = P(t), for some t ∈ X .

Inspired by Sintunavarat et al. [9], we define the property (CLR) with respect to the mapping
g︸︷︷︸ in G-metric space as follows:
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Definition 1.11. A pair (F, g) of self mappings of a G-metric space (X ,G) is said to satisfy the
property (CLRg) if there exists a sequence {xn} such that {Fxn} and {gxn} G-converges to z ∈ X ,
that is,

lim
n→∞G(Fxn,Fxn, gz)= lim

n→∞G(gxn, gxn, gz)= 0.

2. Main Results
In 2012, Aydi [3] proved the following result:

Theorem 2.1 ([3, Theorem 3.1]). Let (X ,G) be a G-metric space and F, g : X → X such that∫ G(Fx,Fy,Fz)

0
ϕ(t)dt ≤α

∫ G(gx,gy,gz)

0
ϕ(t)dt, (2.1)

for all x, y, z ∈ X , where α ∈ [0,1) and ϕ : [0,∞)→ [0,∞) is a lebesgue integrable mapping which
is summable, non negative and such that for each ϵ> 0,∫ ϵ

0
ϕ(t)dt > 0. (2.2)

Assume that F(X )⊂ g(X ) and g(X ) is complete subspace of X , then F and g have a unique point
of coincidence in X . Moreover, if F and g are weakly compatible, then F and g have a unique
common fixed point in X .

Now, we prove our main result which generalizes the result of Aydi [3].

Theorem 2.2. Let (X ,G) be a G-metric space and F, g : X → X such that∫ G(Fx,Fy,Fz)

0
ϕ(t)dt ≤α

∫ L(x,y,z)

0
ϕ(t)dt, (2.3)

where

L(x, y, z)=max{G(gx, gy, gz),G(gx,Fx,Fx),G(gx,Fy,Fy),G(gy,Fy,Fy),

G(gy,Fx,Fx),G(gz,Fz,Fz),G(gz,Fx,Fx),G(gz,Fy,Fy)},

for all x, y, z ∈ X where α ∈ [0,1) and ϕ : [0,∞)→ [0,∞) is a lebesgue integrable mapping which
is summable, non negative and such that for each ϵ> 0,∫ ϵ

0
ϕ(t)dt > 0. (2.4)

Assume that F(X )⊂ g(X ) and g(X ) is complete subspace of X , then F and g have a unique point
of coincidence in X . Moreover if F and g are weakly compatible, then F and g have a unique
common fixed point in X .

Proof. Let x0 ∈ X be an arbitrary point of X . Since F(X )⊂ g(X ), we can construct two sequences
{xn} and {yn} in X as follows:

yn =Fxn = gxn+1, n = 0,1,2, . . . . (2.5)

On putting, x = xn, y= xn+1 and z = xn+1 in (2.3) and using (2.5), we get∫ G(Fxn,Fxn+1,Fxn+1)

0
ϕ(t)dt ≤α

∫ L(xn,xn+1,xn+1)

0
ϕ(t)dt, (2.6)
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where

L(xn, xn+1, xn+1)=max{G(gxn, gxn+1, gxn+1),G(gxn,Fxn,Fxn),

G(gxn,Fxn+1,Fxn+1),G(gxn+1,Fxn+1,Fxn+1),

G(gxn+1,Fxn,Fxn),G(gxn+1,Fxn+1,Fxn+1),

G(gxn+1,Fxn,Fxn),G(gxn+1,Fxn+1,Fxn+1)}

=max{G(yn−1, yn, yn),G(yn−1, yn, yn),G(yn−1, yn, yn),G(yn, yn+1, yn+1),

G(yn, yn, yn),G(yn, yn+1, yn+1),G(yn, yn, yn),G(yn, yn+1, yn+1)}

=max{G(yn−1, yn, yn),G(yn, yn+1, yn+1)}.

If L(xn, xn+1, xn+1)=G(yn−1, yn, yn), from (2.6), we have∫ G(yn,yn+1,yn+1)

0
ϕ(t)dt =

∫ G(Fxn,Fxn+1,Fxn+1)

0
ϕ(t)dt

≤α
∫ L(xn,xn+1,xn+1)

0
ϕ(t)dt,∫ G(yn,yn+1,yn+1)

0
ϕ(t)dt ≤α

∫ G(yn−1,yn,yn)

0
ϕ(t)dt

≤α2
∫ G(yn−2,yn−1,yn−1)

0
ϕ(t)dt,

≤αn
∫ G(y0,y1,y1)

0
ϕ(t)dt,

lim
n→∞

∫ G(yn,yn+1,yn+1)

0
ϕ(t)dt = 0,

since α ∈ [0,1), this implies lim
n→∞G(yn, yn+1, yn+1)= 0.

If L(xn, xn+1, xn+1)=G(yn, yn+1, yn+1),from (2.6), we have∫ G(yn,yn+1,yn+1)

0
ϕ(t)dt =

∫ G(Fxn,Fxn+1,Fxn+1)

0
ϕ(t)dt

≤α
∫ L(xn,xn+1,xn+1)

0
ϕ(t)dt,∫ G(yn,yn+1,yn+1)

0
ϕ(t)dt ≤α

∫ G(yn,yn+1,yn+1)

0
ϕ(t)dt

<
∫ G(yn,yn+1,yn+1)

0
ϕ(t)dt,

a contradiction. Hence, we have

G(yn, yn+1, yn+1)= 0. (2.7)

Now, we shall prove that {yn} is G-Cauchy sequence. Suppose that {yn} is not a G-Cauchy
sequence. Then, there exists ϵ> 0 and n, m > 0 with m(α)> n(α)> 2α satisfying

G(ym(α), ym(α), yl(α))≥ ϵ . (2.8)

Now, corresponding to l(α), we choose m(α) to be the smallest for which (2.8) holds.
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So, we have

G(ym(α)−1, ym(α)−1, yl(α))< ϵ . (2.9)

Now, using (2.7) and the rectangle inequality, we have

ϵ≤G(ym(α), ym(α), yl(α))

≤G(ym(α), ym(α), ym(α)−1)+ G(ym(α)−1, ym(α)−1, yl(α))

< ϵ+G(ym(α)−1, ym(α)−1, yl(α)).

Letting α→∞ in the above inequality and using (2.9), we have

lim
α→∞G(ym(α), ym(α), yl(α))= ϵ . (2.10)

Again, a rectangle inequality gives us

G(ym(α)−1, ym(α)−1, yl(α)−1)≤G(ym(α)−1, ym(α)−1, yl(α))+G(yl(α), yl(α), yl(α)−1)

< ϵ+G(yl(α), yl(α), yl(α)−1).

Now, using (2.7) and letting limit as α→∞, we have

lim
α→∞G(ym(α)−1, ym(α)−1, yl(α)−1)≤ ϵ . (2.11)

Similarly, we have

G(ym(α)−1, yl(α), yl(α))≤ ϵ
and

G(yl(α)−1, ym(α), ym(α))≤ ϵ .

On putting, x = xm(α), y= xl(α) and z = xl(α) in (2.3) and using (2.7)-(2.11), we get∫ G(Fxm(α),Fxl(α),Fxl(α))

0
ϕ(t)dt ≤α

∫ L(xm(α),xl(α),xl(α))

0
ϕ(t)dt, (2.12)

where

L(xm(α), xl(α), xl(α))=max{G(gxm(α), gxl(α), gxl(α)),G(gxm(α),Fxm(α),Fxm(α)),

G(gxm(α),Fxl(α),Fxl(α)),G(gxl(α),Fxl(α),Fxl(α)),

G(gxl(α),Fxm(α),Fxm(α)),G(gxl(α),Fxl(α),Fxl(α)),

G(gxl(α),Fxm(α),Fxm(α)),G(gxl(α),Fxl(α),Fxl(α))}

=max{G(ym(α)−1, yl(α)−1, yl(α)−1),G(ym(α)−1, ym(α), ym(α)),

G(ym(α)−1, yl(α), yl(α)),G(yl(α)−1, yl(α), yl(α)),

G(yl(α)−1, ym(α), ym(α)),G(yl(α)−1, yl(α), yl(α)),

G(yl(α)−1, ym(α), ym(α)),G(yl(α)−1, yl(α), yl(α))}

=max{ϵ,0,ϵ,0,ϵ,0,ϵ,0} (as α→∞)

= ϵ
and

0<
∫ ϵ

0
ϕ(t)dt
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=
∫ lim

α→∞G(ym(α),ym(α),yl(α))

0
ϕ(t)dt

=
∫ lim

α→∞G(Fxm(α),Fxm(α),Fxl(α))

0
ϕ(t)dt

≤α
∫ lim

α→∞L(ym(α),ym(α),yl(α))

0
ϕ(t)dt

≤α
∫ ϵ

0
ϕ(t)dt

<
∫ ϵ

0
ϕ(t)dt,

a contradiction. Since α ∈ [0,1). Thus, we proved that {yn} is a G-Cauchy sequence. Since gX is
complete, we obtain that {gxn} is G-convergent to some q ∈ gX . So, there exists some p in X
such that

gp = q ,

lim
n→∞ yn = lim

n→∞Fxn = lim
n→∞ gxn+1 = q = gp. (2.13)

By Proposition 1.1, we have

lim
n→∞G(gxn, gxn, gp)= lim

n→∞G(gxn, gp, gp)= 0.

Now, we shall prove that gp =Fp. Let, if possible gp ̸=Fp.
On putting, x = xn, y= p and z = p in (2.3) and using (2.13), we get∫ G(Fxn,Fp,Fp)

0
ϕ(t)dt ≤α

∫ L(xn,p,p)

0
ϕ(t)dt, (2.14)

where

L(xn, p, p)=max{G(gxn, gp, gp),G(gxn,Fxn,Fxn),G(gxn,Fp,Fp),

G(gp,Fp,Fp),G(gp,Fxn,Fxn),G(gp,Fp,Fp),

G(gxn+1,Fxn,Fxn),G(gxn+1,Fxn+1,Fxn+1)}.

Letting limit as n →∞, we have

lim
n→∞L(xn, p, p)=max{G(gp, gp, gp),G(gp, gp, gp),G(gp,Fp,Fp),

G(gp,Fp,Fp),G(gp, gp, gp),G(gp,Fp,Fp),

G(gp,Fp,Fp),G(gp, gp, gp)}

=G(gp,Fp,Fp)

and

0≤
∫ G(gp,Fp,Fp)

0
ϕ(t)dt

=
∫ lim

n→∞G(Fxn,Fp,Fp)

0
ϕ(t)dt

≤α
∫ lim

n→∞L(xn,p,p)

0
ϕ(t)dt
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≤α
∫ G(gp,Fp,Fp)

0
ϕ(t)dt

<
∫ G(gp,Fp,Fp)

0
ϕ(t)dt,

a contradiction. Hence G(gp,Fp,Fp)= 0, which implies that gp =Fp = w (say).
Now, since F and g are weakly compatible maps, it follows that

Fgp = gFp, i.e., Fw = gw. (2.15)

Now, we shall prove that w = gw.
On putting, x = w, y= w and z = p in (2.3) and using (2.15), we get∫ G(Fw,Fw,Fp)

0
ϕ(t)dt ≤α

∫ L(w,w,p)

0
ϕ(t)dt, (2.16)

where

L(w,w, p)=max{G(gw, gw, gp),G(gw,Fw,Fw),G(gw,Fw,Fw),G(gw,Fw,Fw),

G(gw,Fw,Fw),G(gw,Fw,Fw),G(gp,Fp,Fp),G(gp,Fw,Fw)}

=max{G(gw, gw,w),0,0,0,0,0,0,G(w, gw, gw)}

=G(gw, gw,w)

and

0≤
∫ G(gw,gw,w)

0
ϕ(t)dt

=
∫ G(Fw,Fw,Fp)

0
ϕ(t)dt

≤α
∫ L(w,w,p)

0
ϕ(t)dt

≤α
∫ G(gw,gw,w)

0
ϕ(t)dt

<
∫ G(gw,gw,w)

0
ϕ(t)dt,

a contradiction.
Hence G(gw, gw,w)= 0, implies that, gw = w.
Hence gw = w =Fw, which shows that w is a common fixed point of F and g.
For uniqueness of common fixed point, let a and b be two common fixed points of F and g.
Now, from (2.3), we can obtain∫ G(Fa,Fa,Fb)

0
ϕ(t)dt ≤α

∫ L(a,a,b)

0
ϕ(t)dt,

where

L(a,a,b)=max{G(ga, ga, gb),G(ga,Fa,Fa),G(ga,Fa,Fa),G(ga,Fa,Fa)

G(ga,Fa,Fa),G(gb,Fb,Fb),G(gb,Fa,Fa),G(gb,Fa,Fa)}

=G(a,a,b),
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which implies that∫ G(a,a,b)

0
ϕ(t)dt ≤α

∫ L(a,a,b)

0
ϕ(t)dt

<
∫ G(a,a,b)

0
ϕ(t)dt,

a contradiction. Hence F and g have a unique common fixed point. This completes the proof of
the theorem.

Theorem 2.3. Let (X ,G) be a G-metric space and F and g be self-maps on X satisfying (2.3)
and (2.4). Let g(X ) is a complete subspace of X , and if F and g are weakly compatible. Also,
(F, g) satisfying E.A property, then F and g have a unique common fixed point in X .

Proof. Since F and g satisfy E.A property, therefore, there exists a sequence {xn} in X such that

lim
n→∞Fxn = lim

n→∞ gxn = u, for some u in X .

Since g(X ) is a complete subspace of X , therefore

lim
n→∞Fxn = lim

n→∞ gxn = u = ga, for some a in X . (2.17)

Now, we claim that Fa = ga = u.
On putting, x = xn, y= a and z = a in (2.3) and using (2.17), we get∫ G(Fxn,Fa,Fa)

0
ϕ(t)dt ≤α

∫ L(xn,a,a)

0
ϕ(t)dt, (2.18)

where

L(xn,a,a)=max{G(gxn, ga, ga),G(gxn,Fxn,Fxn),G(gxn,Fa,Fa),G(ga,Fa,Fa),

G(ga,Fxn,Fxn),G(ga,Fa,Fa),G(ga,Fxn,Fxn),G(ga,Fa,Fa)}.

On letting limit as n →∞, we have

lim
n→∞L(xn,a,a)=max{0,0,G(ga,Fa,Fa),G(ga,Fa,Fa),0,G(ga,Fa,Fa),0,G(ga,Fa,Fa)}

=G(ga,Fa,Fa)

and

0≤
∫ G( g︸︷︷︸ a,Fa,Fa)

0
ϕ(t)dt =

∫ lim
n→∞G(Fxn,Fa,Fa)

0
ϕ(t)dt

≤α
∫ lim

n→∞L(xn,a,a)

0
ϕ(t)dt

≤α
∫ G(ga,Fa,Fa)

0
ϕ(t)dt

<
∫ G(ga,Fa,Fa)

0
ϕ(t)dt,

a contradiction.
Hence G(ga,Fa,Fa)= 0, which implies that, ga =Fa = w (say).
Now, since F and g are weakly compatible maps, it follows that

Fga = gFa, i.e., Fw = gw. (2.19)
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On putting, x = w, y= w and z = p in (2.3) and using (2.19), we get∫ G(Fw,Fw,Fp)

0
ϕ(t)dt ≤α

∫ L(w,w,p)

0
ϕ(t)dt, (2.20)

where

L(w,w, p)=max{G(gw, gw, gp),G(gw,Fw,Fw),G(gw,Fw,Fw),G(gw,Fw,Fw),

G(gw,Fw,Fw),G(gw,Fw,Fw),G(gp,Fp,Fp),G(gp,Fw,Fw)}

=max{G(gw, gw,w),0,0,0,0,0,0,G(w, gw, gw)}

=G(gw, gw,w)

and

0≤
∫ G(gw,gw,w)

0
ϕ(t)dt

=
∫ G(Fw,Fw,Fp)

0
ϕ(t)dt

≤α
∫ L(w,w,p)

0
ϕ(t)dt

≤α
∫ G(gw,gw,w)

0
ϕ(t)dt

<
∫ G(gw,gw,w)

0
ϕ(t)dt,

a contradiction. Hence G(gw, gw,w)= 0, which implies that, gw = w.
Hence gw = w =Fw, which shows that w is common fixed point of F and g. We can prove the
uniqueness in the similar way as of Theorem 2.2.
This completes the proof of the theorem.

Theorem 2.4. Let (X ,G) be a G-metric space and F and g be self-maps on X satisfying (2.3)
and (2.4). If F and g are weakly compatible and (F, g) satisfying (CLRg) property, then F and g
have a unique common fixed point in X .

Proof. Since F and g satisfy (CLRg) property, therefore, there exists a sequence {xn} in X such
that

lim
n→∞Fxn = lim

n→∞ gxn = ga = u, for some u,a in X . (2.21)

Now, we claim that Fa = ga = u.
On putting, x = xn, y= a and z = a in (2.3) and using (2.21), we get∫ G(Fxn,Fa,Fa)

0
ϕ(t)dt ≤α

∫ L(xn,a,a)

0
ϕ(t)dt, (2.22)

where

L(xn,a,a)=max{G(gxn, ga, ga),G(gxn,Fxn,Fxn),G(gxn,Fa,Fa),G(ga,Fa,Fa),

G(ga,Fxn,Fxn),G(ga,Fa,Fa),G(ga,Fxn,Fxn),G(ga,Fa,Fa)}.
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Letting limit as n →∞, we have

lim
n→∞L(xn,a,a)=max{0,0,G(u,Fa,Fa),G(u,Fa,Fa),0,G(u,Fa,Fa),0,G(u,Fa,Fa)}

=G(u,Fa,Fa)

and

0≤
∫ G(u,Fa,Fa)

0
ϕ(t)dt

=
∫ lim

n→∞G(Fxn,Fa,Fa)

0
ϕ(t)dt

≤α
∫ lim

n→∞L(xn,a,a)

0
ϕ(t)dt

≤α
∫ G(u,Fa,Fa)

0
ϕ(t)dt

<
∫ G(u, Fa,Fa)

0
ϕ(t)dt,

a contradiction.
Hence G(u,Fa,Fa)= 0, which implies that ga =Fa = u (say).
Now, since F and g are weakly compatible maps, it follows that

Fga = gFa, i.e., Fu = gu. (2.23)

On putting, x = u, y= u and z = a in (2.3) and using (2.23), we get∫ G(Fu,Fu,Fa)

0
ϕ(t)dt ≤α

∫ L(u,u,a)

0
ϕ(t)dt, (2.24)

where

L(u,u,a)=max{G(gu, gu, ga),G(gu,Fu,Fu),G(gu,Fu,Fu),G(gu,Fa,Fa),

G(gu,Fu,Fu),G(gu,Fu,Fu),G(ga,Fa,Fa),G(ga,Fu,Fu)}

=G(gu, gu,u)

and

0≤
∫ G(gu,gu,u)

0
ϕ(t)dt

=
∫ G(Fu,Fu,Fa)

0
ϕ(t)dt

≤α
∫ L(u,u,a)

0
ϕ(t)dt

≤α
∫ G(gu,gu,u)

0
ϕ(t)dt

<
∫ G(gu,gu,u)

0
ϕ(t)dt,

a contradiction.
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Hence G(gu, gu,u)= 0, which implies that gu = u =Fu, which shows that u is a common fixed
point of F and g. Uniqueness of the common fixed point is easy consequence of inequality (2.3).
This completes the proof of the theorem.

Example 2.1. Let X = [0,1] and let G : X × X × X → R+ be G-metric defined as follows:

G(x, y, z)=max{|x− y|, |y− z|, |z− x|}, for all x, y, z ∈ X .

Then (X ,G) is a G-metric space. Define the self-mappings F and g by

F(x)= x
4

, g(x)= x
2

.

Let {xn}= { 1
n
}

n≥1.
Clearly, we have

FX =
[
0,

1
4

)
⊆

[
0,

1
2

)
= gX ,

lim
n→∞F(xn)= lim

n→∞
1

4n
= 0,

lim
n→∞ g(xn)= lim

n→∞
1

2n
= 0.

Hence, we have

lim
n→∞F(xn)= lim

n→∞ g(xn)= 0 ∈ X .

Therefore, F and g satisfy the E.A property.
Also, we can see that

lim
n→∞F(xn)= lim

n→∞ g(xn)= g(0).

This implies F and g satisfy the (CLRg) property.
Also, Fg(0)= gF(0)= 0, implies that F and g are weakly compatible.
Now, we check the condition (2.3) of Theorem 2.2, that is∫ G(Fx,Fy,Fz)

0
ϕ(t)dt ≤α

∫ L(x,y,z)

0
ϕ(t)dt .

Consider α= 1
2 , ϕ(t)= 2t.

Without loss of generality, take x ≤ y≤ z.
Now, we have∫ G(Fx,Fy,Fz)

0
ϕ(t)dt =

∫ z−x
4

0
2tdt =

( z− x
4

)2

and

L(x, y, z)=max{G(gx, gy, gz),G(gx,Fx,Fx),G(gx,Fy,Fy),G(gy,Fy,Fy),

G(gy,Fx,Fx),G(gz,Fz,Fz),G(gz,Fx,Fx),G(gz,Fy,Fy)}

=max
{

z− x
2

,
x
4

,
y−2x

4
,

y
4

,
2y− x

4
,
z
4

,
2z− x

4
,
2z− y

4

}
= 2z− x

4
, for all x, y, z ∈ [0,1).
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One can easily check that∫ G(Fx,Fy,Fz)

0
ϕ(t)dt =

( z− x
4

)2 ≤ 1
2

(
2z− x

4

)2
=α

∫ L(x,y,z)

0
ϕ(t)dt.

Therefore, all the conditions of Theorems 2.2, 2.3 and 2.4 are satisfied. Hence F and g have a
unique common fixed point. In this example, it is clear that 0 is the unique common fixed point
of F and g.

In 2013, Aydi [4] proved a common fixed point theorem satisfying ϕ-contraction integral
type condition in G-metric spaces for (CLRg) property:

Theorem 2.5. Let (X ,G) be a G-metric space and the pair (F, g) of self mappings is weakly
compatible such that∫ G(Fx,Fy,Fz)

0
ϕ(t)dt ≤φ

(∫ L(x,y,z)

0
ϕ(t)dt

)
,

for all x, y, z ∈ X , φ ∈ Φ and ϕ : [0,∞) → [0,∞) is Lebesgue integrable mapping which is
summable, non-negative and such that for each ϵ> 0,∫ ϵ

0
ϕ(t)dt > 0,

where

L(x, y, z)=max{G(gx, gy, gz),G(gx,Fx,Fx),G(gy,Fy,Fy),G(gz,Fz,Fz)}.

If the pair (F, g) satisfies the (CLRg) property then F and g have a unique common fixed point
in X .

Let Φ be the set of all functions φ such that φ : [0,∞)→ [0,∞) is a nondecreasing function
with lim

n→∞φ
n(t)= 0, for all t ∈ (0,∞). If φ ∈Φ, then φ is called Φ-mapping. If φ is a Φ-mapping

then it is obvious that:
(i) φ(t)< t for all t ∈ (0,∞),

(ii) φ(0)= 0.

In rest of the paper, by φ we mean a Φ-mapping.

Now, we prove our next result satisfying ϕ-contraction integral type conditions in G-metric
spaces which generalizes the result of Aydi [4].

Theorem 2.6. Let (X ,G) be a G-metric space and the pair (F, g) of self mappings is weakly
compatible such that∫ G(Fx,Fy,Fz)

0
ϕ(t)dt ≤φ

(∫ L(x,y,z)

0
ϕ(t)dt

)
, (2.25)

for all x, y, z ∈ X , φ ∈ Φ and ϕ : [0,∞) → [0,∞) is Lebesgue integrable mapping which is
summable, non-negative and such that for each ϵ> 0,∫ ϵ

0
ϕ(t)dt > 0,
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where

L(x, y, z)=max{G(gx, gy, gz),G(gx,Fx,Fx),G(gx,Fy,Fy),G(gy,Fy,Fy)

G(gy,Fx,Fx),G(gz,Fz,Fz),G(gz,Fx,Fx),G(gz,Fy,Fy)}.

If the pair (F, g) satisfies the (CLRg) property then F and g have a unique common fixed point
in X .

Proof. If the pair (F, g) satisfies the (CLRg) property, then there exists a sequence {xn} in X
such that

lim
n→∞F(xn)= lim

n→∞ g(xn)= g(a),

for some a ∈ X .
On putting x = xn, y= xn and z = a in inequality (2.25), we have∫ G(Fxn,Fxn,Fa)

0
ϕ(t)dt ≤φ

(∫ L(xn,xn,a)

0
ϕ(t)dt

)
, (2.26)

where

L(xn, yn,a)=max{G(gxn, gxn, ga),G(gxn,Fxn,Fxn),G(gxn,Fxn,Fxn),

G(gxn,Fxn,Fxn),G(gxn,Fxn,Fxn),G(ga,Fa,Fa),

G(ga,Fxn,Fxn),G(ga,Fxn,Fxn)}

=max{0,0,0,0,0,G(ga,Fa,Fa),0}

=G(ga,Fa,Fa), as n →∞.

Now, taking limit as n →∞ in inequality (2.26), we have∫ G(ga,ga,Fa)

0
ϕ(t)dt ≤φ

(
lim

n→∞

∫ L(xn,xn,a)

0
ϕ(t)dt

)
≤φ

(∫ G(ga,Fa,Fa)

0
ϕ(t)dt

)
.

Therefore, we have∫ G(ga,ga,Fa)

0
ϕ(t)dt <

∫ G(ga,Fa,Fa)

0
ϕ(t)dt . (2.27)

Similarly, we can show that∫ G(ga,Fa,Fa)

0
ϕ(t)dt <

∫ G(ga,ga,Fa)

0
ϕ(t)dt . (2.28)

From (2.27) and (2.28), we have∫ G(ga,ga,Fa)

0
ϕ(t)dt <

∫ G(ga,Fa,Fa)

0
ϕ(t)dt

<
∫ G(ga,ga,Fa)

0
ϕ(t)dt,

which is a contradiction. Hence Fa = ga. Suppose that b = Fa = ga. Since the pair (F, g) is
weakly compatible and b = Fa = ga, therefore Fb = gFa = Fga = gb. Finally, we prove that
b =Fb.
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Let, on contrary b ̸=Fb, then inequality (2.25) implies that∫ G(Fb,Fb,Fa)

0
ϕ(t)dt ≤φ

(∫ L(b,b,a)

0
ϕ(t)dt

)
, (2.29)

where

L(b,b,a)=max{G(gb, gb, ga),G(gb,Fb,Fb),G(gb,Fb,Fb),G(gb,Fb,Fb)

G(gb,Fb,Fb),G(ga,Fa,Fa),G(ga,Fb,Fb),G(ga,Fb,Fb)}

=G(Fb,Fb,b).

From (2.29), we have∫ G(Fb,Fb,b)

0
ϕ(t)dt ≤φ

(∫ G(Fb,Fb,b)

0
ϕ(t)dt

)
<

∫ G(Fb,Fb,b)

0
ϕ(t)dt,

which is a contradiction, hence b =Fb = gb.
Therefore, b is a common fixed point of the mappings F and g.
For uniqueness of common fixed point, let a and b be two common fixed points of F and g.
From (2.25), we can obtain∫ G(Fa,Fa,Fb)

0
ϕ(t)dt ≤φ

(∫ L(a,a,b)

0
ϕ(t)dt

)
,

where

L(a,a,b)=max{G(ga, ga, gb),G(ga,Fa,Fa),G(ga,Fa,Fa),G(ga,Fa,Fa)

G(ga,Fa,Fa),G(gb,Fb,Fb),G(gb,Fa,Fa),G(gb,Fa,Fa)}

=G(a,a,b),

which implies that∫ G(a,a,b)

0
ϕ(t)dt ≤φ

(∫ L(a,a,b)

0
ϕ(t)dt

)
<

∫ G(a,a,b)

0
ϕ(t)dt,

a contradiction. Hence F and g have unique common fixed point.
This completes the proof of the theorem.

3. Conclusion
In Theorem 2.2, we have generalized the results proved by Aydi [3] in the setting of G-metric
spaces for a pair of weakly compatible maps. Furthermore, Theorem 2.3 is proved for a pair of
weakly compatible self-maps along with E.A property and Theorem 2.4 is proved for a pair of
weakly compatible self-maps along with (CLR) property to show the existence of unique common
fixed point. A suitable example is also provided to prove the validity of our results.
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