Hamacher Operations on Picture Fuzzy Matrices

M. Ramakrishnan and S. Sriram

Department of Mathematics, Annamalai University, Annamalainagar 608002, Tamilnadu, India

*Corresponding author: mrkmaths85@gmail.com

Received: May 6, 2022 Accepted: November 4, 2022

Abstract. In this article, Hamacher operations of Picture Fuzzy Matrices are proposed, which are direct extensions of Hamacher operations of Intuitionistic Fuzzy Matrices. By using these operations scalar multiplication and exponentiation operations are constructed for a picture fuzzy matrix and certain new relations are established.

Keywords. Fuzzy matrix, Intuitionistic fuzzy matrix, Picture fuzzy matrix, Hamacher sum and Hamacher product

Mathematics Subject Classification (2020). 03E72, 08A72, 15B15, 94D05

Copyright © 2023 M. Ramakrishnan and S. Sriram. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Picture Fuzzy Sets (PFSs) are direct extensions of the fuzzy sets and Intuitionistic Fuzzy Sets (IFs) [1][2]. Dogra and Pal [5] define Picture Fuzzy Matrix (PFM) generalizing the concept of Intuitionistic Fuzzy Matrix (IFM). A many works on the IFMs had been done by Murugadas et al. [8], Muthuraji et al. [9], Ramakrishnan and Sriram [10], and Silambarasan and Sriram [11]. Cuong and Kreinovich [4] proposed PFSs, Cuong [3] presented some properties of PFSs, Dutta and Ganju [6] discussed decomposition theorem for PFSs, Thomason [12] introduced the notion of fuzzy matrices, IFMs as a generalization of fuzzy matrices developed by Mondal and Pal [7] is used to represent the intuitionistic fuzzy relation. Motivated by the existing operations, we present Hamacher operations on PFMs and construct scalar multiplication and power operations with respect to these operations.
2. Preliminaries

Definition 2.1 ([1]). An IFS E in X is given by $E = \{ (x, \mu_E(x), \nu_E(x)) | x \in X \}$, where $\mu_E(x) : X \to [0,1]$ and $\nu_E(x) : X \to [0,1]$, with the condition $0 \leq \mu_E(x) + \nu_E(x) \leq 1$.

The numbers $\mu_E(x)$ and $\nu_E(x)$ represent, the membership degree and non-membership degree of the element to the set E.

Definition 2.2 ([4]). A picture fuzzy set E on a universe X is an object in the form of $E = \{ (x, \mu_E(x), \eta_E(x), \nu_E(x)) | x \in X \}$ where $\mu_E(x) \in [0,1]$ is called the degree of positive membership of x in E, $\eta_E(x) \in [0,1]$ is called the degree of neutral membership of x in E and $\nu_E(x) \in [0,1]$ is called the degree of negative membership of x in E and where $\mu_E(x)$, $\eta_E(x)$ and $\nu_E(x)$ satisfy the following condition: $(\forall x \in X) \mu_E(x) + \eta_E(x) + \nu_E(x) \leq 1$.

Now $(1 - (\mu_E(x) + \eta_E(x) + \nu_E(x)))$ could be called the degree of refusal membership of x in E.

Let PFS(X) denote the set of all the picture fuzzy sets on a universe X.

Definition 2.3 ([5]). A picture fuzzy matrices of size $m \times n$ is defined as $E = (\{e_{lm\mu}, e_{lm\eta}, e_{lmv}\})$, where $e_{lm\mu} \in [0,1]$, $e_{lm\eta} \in [0,1]$, $e_{lmv} \in [0,1]$ respectively, the measure of positive, neutral and negative membership of e_{lm} for $l = 1,2,3,\ldots n$ and $m = 1,2,3,\ldots n$ satisfying $0 \leq e_{lm\mu} + e_{lm\eta} + e_{lmv} \leq 1$.

Definition 2.4 ([5]). Let $E = (\{e_{lm\mu}, e_{lm\eta}, e_{lmv}\})$ and $F = (\{f_{lm\mu}, f_{lm\eta}, f_{lmv}\})$ be two Picture fuzzy matrices of order m. Then $E \leq F$. If $e_{lm\mu} \leq f_{lm\mu}$, $e_{lm\eta} \leq f_{lm\eta}$, $e_{lmv} \geq f_{lmv}$ for $l,m = 1,2,3,\ldots n$.

3. Hamacher Operations on Picture Fuzzy Matrices

In this section, we define Hamacher operations on Picture fuzzy matrices and construct the expressions nE and E^n for a Picture fuzzy matrix E.

Definition 3.1. Let $E = (\{e_{lm\mu}, e_{lm\eta}, e_{lmv}\})$ and $F = (\{f_{lm\mu}, f_{lm\eta}, f_{lmv}\})$ be two Picture fuzzy matrices of same size. Then,

(i) $E \oplus_S F = \left[\frac{e_{lm\mu} + f_{lm\mu} - 2e_{lm\mu}f_{lm\mu}}{1 - e_{lm\mu}f_{lm\mu}}, \frac{e_{lm\eta} + f_{lm\eta} - e_{lm\eta}f_{lm\eta}}{1 - e_{lm\eta}f_{lm\eta}}, \frac{e_{lmv} + f_{lmv} - 2e_{lmv}f_{lmv}}{1 - e_{lmv}f_{lmv}} \right]$ is called the Hamacher sum of E and F.

(ii) $E \odot_M F = \left[\frac{e_{lm\mu}f_{lm\mu}}{e_{lm\mu} + f_{lm\mu} - e_{lm\mu}f_{lm\mu}}, \frac{e_{lm\eta} + f_{lm\eta} - 2e_{lm\eta}f_{lm\eta}}{1 - e_{lm\eta}f_{lm\eta}}, \frac{e_{lmv} + f_{lmv} - 2e_{lmv}f_{lmv}}{1 - e_{lmv}f_{lmv}} \right]$ is called the Hamacher Product of E and F.

(iii) $E \vee F = \{ \max(e_{lm\mu}, f_{lm\mu}), \min(e_{lm\eta}, f_{lm\eta}), \min(e_{lmv}, f_{lmv}) \}$.

(iv) $E \wedge F = \{ \min(e_{lm\mu}, f_{lm\mu}), \min(e_{lm\eta}, f_{lm\eta}), \max(e_{lmv}, f_{lmv}) \}$.

(v) $E^t = (e_{ml\mu}, e_{ml\eta}, e_{mlv})$ (the complement of E).

(vi) $E^C = (e_{lm\mu}, e_{lm\eta}, e_{lmv})$ (the complement of E).

(vii) $E @ K F = \left[\frac{e_{lm\mu} + f_{lm\mu}}{2}, \frac{e_{lm\eta} + f_{lm\eta}}{2}, \frac{e_{lmv} + f_{lmv}}{2} \right]$.
Theorem 3.1. Let $E = (e_{im\mu}, e_{im\eta}, e_{im\nu})$ and $F = (f_{im\mu}, f_{im\eta}, f_{im\nu})$ be two PFMs of same size, then, $0 \leq (E \oplus_S F) \leq 1$ is also PFM.

Proof. Since, $0 \leq (e_{im\mu}, e_{im\eta}, e_{im\nu}) \leq 1$ and $0 \leq (f_{im\mu}, f_{im\eta}, f_{im\nu}) \leq 1$ respectively, $0 \leq (e_{im\mu} + e_{im\eta} + e_{im\nu}) \leq 1$, then, $0 \leq e_{im\mu} \leq (1 - e_{im\nu})$ and $e_{im\nu} \leq (1 - e_{im\mu})$ and also, $e_{im\eta} \leq (1 - e_{im\mu})$, $0 \leq (f_{im\mu} + f_{im\eta} + f_{im\nu}) \leq 1$, then, $0 \leq f_{im\mu} \leq (1 - f_{im\nu})$ and $f_{im\nu} \leq (1 - f_{im\mu})$ and also, $f_{im\eta} \leq (1 - f_{im\mu})$.

Then, we have
\[
\frac{e_{im\mu}f_{im\mu}}{1 - e_{im\mu}f_{im\mu}} \leq \frac{(1 - e_{im\mu})(1 - f_{im\mu})}{1 + (1 - e_{im\mu})(1 - f_{im\mu})}
\] and
\[
\frac{e_{im\mu}f_{im\mu} - 2e_{im\mu}f_{im\mu}}{1 - e_{im\mu}f_{im\mu}} + \frac{e_{im\mu}f_{im\mu}}{e_{im\mu} + f_{im\mu} - e_{im\mu}f_{im\mu}} + \frac{e_{im\mu}f_{im\mu}}{e_{im\mu} + f_{im\nu} - e_{im\mu}f_{im\nu}} \leq 1
\]

iff
\[
E = (1, 0, 0) \text{ and } F = (1, 0, 0).
\]

Furthermore, we have
\[
\frac{e_{im\mu} + f_{im\mu} - 2e_{im\mu}f_{im\mu}}{1 - e_{im\mu}f_{im\mu}} + \frac{e_{im\mu}f_{im\mu}}{e_{im\mu} + f_{im\mu} - e_{im\mu}f_{im\mu}} + \frac{e_{im\mu}f_{im\mu}}{e_{im\mu} + f_{im\nu} - e_{im\mu}f_{im\nu}} = 0
\]

iff
\[
E = (0, 0, 0) \text{ and } F = (0, 0, 0).
\]

Thus, the solution of
\[
0 \leq \left(\frac{e_{im\mu} + f_{im\mu} - 2e_{im\mu}f_{im\mu}}{1 - e_{im\mu}f_{im\mu}} + \frac{e_{im\mu}f_{im\mu}}{e_{im\mu} + f_{im\mu} - e_{im\mu}f_{im\mu}} + \frac{e_{im\mu}f_{im\mu}}{e_{im\mu} + f_{im\nu} - e_{im\mu}f_{im\nu}} \right) \leq 1.
\]

Similarly, we can prove the following theorems:

Theorem 3.2. Let $E = (e_{im\mu}, e_{im\eta}, e_{im\nu})$ and $F = (f_{im\mu}, f_{im\eta}, f_{im\nu})$ be two PFMs of same size, then, $0 \leq (E \otimes_M F) \leq 1$ is a PFM.

Theorem 3.3. If n is any positive integer and E is a PFM, then the scalar multiplication operation is defined by
\[
nE = E \oplus_S E \oplus_S E \oplus_S \cdots \oplus_S E = \left(\frac{ne_{im\mu}}{1 + (n - 1)e_{im\mu}}, \frac{e_{im\eta}}{n - (n - 1)e_{im\eta}}, \frac{e_{im\nu}}{n - (n - 1)e_{im\nu}} \right).
\]

Proof. Mathematical induction can be used to prove that the above equation holds.

For all positive integer n. The above equation is called $P(n)$.
(i): The above equation $P(n)$ true for $n = 1$. Since,

$$
nE = \left(\begin{array}{c}
(1 + e_{1m\mu})^n - (1 - e_{1m\mu})^n, \\
2(e_{1m\eta})^n, \\
2(e_{1m\nu})^n
\end{array} \right) \\
\left(\begin{array}{c}
(1 + e_{1m\mu})^n + (1 - e_{1m\mu})^n, \\
(2 - e_{1m\eta})^n + (e_{1m\eta})^n, \\
(2 - e_{1m\eta})^n + (e_{1m\eta})^n
\end{array} \right)
$$

$$
= (e_{1m\mu}, e_{1m\eta}, e_{1m\nu}) = E.
$$

Then $P(n)$ is true for $n = 1$, i.e, $P(1)$ holds.

(ii): When $n = 2$, we have

$$
E \oplus_S E = 2E = \left(\begin{array}{c}
2e_{1m\mu}(1 - e_{1m\mu}), \\
e_{1m\eta}e_{1m\eta}, \\
e_{1m\nu}e_{1m\nu}
\end{array} \right) \\
\left(\begin{array}{c}
(1 - e_{1m\mu}), \\
e_{1m\eta}(2 - e_{1m\eta}), \\
e_{1m\nu}(2 - e_{1m\nu})
\end{array} \right)
$$

Similarly,

$$
2E = \left(\begin{array}{c}
3e_{1m\mu}, \\
e_{1m\eta}, \\
e_{1m\nu}
\end{array} \right)
$$

In general,

$$
nE = \left(\begin{array}{c}
n e_{1m\mu}, \\
e_{1m\eta}, \\
e_{1m\nu}
\end{array} \right)
$$

holds when $n = 2$.

(iii): When $n = m$, we have

$$
mE = E \oplus_S E \oplus_S \cdots \oplus_S E = \left(\begin{array}{c}
m e_{1m\mu}, \\
e_{1m\eta}, \\
e_{1m\nu}
\end{array} \right)
$$

$$
(1 + (m - 1)e_{1m\mu}, (m - (m - 1)e_{1m\eta}, (m - (m - 1)e_{1m\nu}),
$$

$$
(m + 1)e_{1m\mu} - e_{1m\mu} - m e_{1m\mu}, e_{1m\eta}e_{1m\eta}, e_{1m\nu}e_{1m\nu}
$$

$$
(1 + e_{1m\mu} e_{1m\eta}, (1 + e_{1m\mu}) e_{1m\eta}, (1 + e_{1m\mu}) e_{1m\eta}
$$

$$
(1 + m - m e_{1m\mu}) e_{1m\eta}, (1 + m - m e_{1m\mu}) e_{1m\eta},
$$

$$
(1 + m - m e_{1m\mu}) e_{1m\eta}, (1 + m - m e_{1m\mu}) e_{1m\eta}
$$

Thus, when $n = m + 1$,

$$
nE = E \oplus_S E \oplus_S \cdots \oplus_S E = \left(\begin{array}{c}
n e_{1m\mu}, \\
e_{1m\eta}, \\
e_{1m\nu}
\end{array} \right)
$$

$$
(1 + (n - 1)e_{1m\mu}, (n - (n - 1)e_{1m\eta}, (n - (n - 1)e_{1m\nu})
$$

also holds. Using the induction hypothesis that $P(n)$ holds for any positive integer n.

Similarly, we can prove the following theorem:

Theorem 3.4. If n is any positive integer and E is an PFM, then the exponentiation operation is defined by

$$
E^n = \left(\begin{array}{c}
\frac{e_{1m\mu}}{n - (n - 1)e_{1m\mu}}, \frac{n e_{1m\eta}}{1 + (n - 1)e_{1m\eta}}, \frac{n e_{1m\nu}}{1 + (n - 1)e_{1m\nu}}
\end{array} \right)
$$

We prove the result of E^n is also a PFM.
4. Results of Some Algebraic Properties for Hamacher Operations of Picture Fuzzy Matrices

In this chapter, we discuss some algebraic properties with some special operations for Hamacher operations of picture fuzzy matrices.

Theorem 4.1. Let $E = (e_{l_{im}}, e_{l_{mη}}, e_{l_{mv}})$ and $F = (f_{l_{im}}, f_{l_{mη}}, f_{l_{mv}})$ be two PFM's of same size, then

(i) $E \oplus_S F = F \oplus_S E$,

(ii) $E \odot_M F = E \odot_M F$.

Proof. (i): $E \oplus_S F = \begin{pmatrix} e_{l_{im}} + f_{l_{im}} - 2e_{l_{im}}f_{l_{im}} \\ e_{l_{im}} + f_{l_{im}} - e_{l_{im}}f_{l_{im}} \\ e_{l_{im}} + f_{l_{im}} - e_{l_{im}}f_{l_{im}} \end{pmatrix}$

$E \oplus_S F = \begin{pmatrix} e_{l_{mn}} + f_{l_{mn}} - e_{l_{mn}}f_{l_{mn}} \\ e_{l_{mn}} + f_{l_{mn}} - e_{l_{mn}}f_{l_{mn}} \\ e_{l_{mn}} + f_{l_{mn}} - e_{l_{mn}}f_{l_{mn}} \end{pmatrix}$

$E \oplus_S F = \begin{pmatrix} e_{l_{mv}} + f_{l_{mv}} - e_{l_{mv}}f_{l_{mv}} \\ e_{l_{mv}} + f_{l_{mv}} - e_{l_{mv}}f_{l_{mv}} \\ e_{l_{mv}} + f_{l_{mv}} - e_{l_{mv}}f_{l_{mv}} \end{pmatrix}$

$E \oplus_S F = F \oplus_S E$.

Hence, (i) holds.

(ii): It can be proved similarly.

Theorem 4.2. Let E and F be two PFM's of same size, then

(i) $nE \oplus_S nF = n(E \oplus_S F)$,

(ii) $n(E \oplus_S E) = n(2E) = 2nE = nE \oplus_S nE$.

Proof.

(i) : $nE \oplus_S nF = \begin{pmatrix} n e_{l_{im}} + f_{l_{im}} - 2n e_{l_{im}}f_{l_{im}} \\ n e_{l_{im}} + f_{l_{im}} - e_{l_{im}}f_{l_{im}} \\ n e_{l_{im}} + f_{l_{im}} - e_{l_{im}}f_{l_{im}} \end{pmatrix}$

$nE \oplus_S nF = \begin{pmatrix} n e_{l_{im}} + f_{l_{im}} - 2n e_{l_{im}}f_{l_{im}} \\ n e_{l_{im}} + f_{l_{im}} - e_{l_{im}}f_{l_{im}} \\ n e_{l_{im}} + f_{l_{im}} - e_{l_{im}}f_{l_{im}} \end{pmatrix}$

$nE \oplus_S nF = \begin{pmatrix} n e_{l_{im}} + f_{l_{im}} - 2n e_{l_{im}}f_{l_{im}} \\ n e_{l_{im}} + f_{l_{im}} - e_{l_{im}}f_{l_{im}} \\ n e_{l_{im}} + f_{l_{im}} - e_{l_{im}}f_{l_{im}} \end{pmatrix}$

$nE \oplus_S nF = F \oplus_S E$.

Hence, (i) holds.

(ii): It can be proved similarly.
Theorem 4.3. Let \(E \) be a PFM, then
(i) \(mE \oplus_S nE = (m+n)E \),

(ii) \(mnE = (mn)E \), where \(m, n > 0 \).

Proof.
(i) \(mE \oplus_S nE = \left(\frac{m e_{\mu \mu}(1 + (m-1)e_{\mu \mu}) + n e_{\mu \mu}(1 + (n-1)e_{\mu \mu}) - 2mn e_{\mu \mu}e_{\mu \mu}}{(1 + (m-1)e_{\mu \mu})(1 + (n-1)e_{\mu \mu}) - mn e_{\mu \mu}e_{\mu \mu}} \right) - \frac{e_{\mu \eta}e_{\mu \eta}}{e_{\mu \nu}e_{\mu \nu}} \).

Hence, (i) holds.

(ii): It can be proved similarly.

Theorem 4.4. Let \(E \) and \(F \) be two PFMs of same size, then
(i) \(E^m \odot_M E^n = E^{m+n} \), where \(m, n > 0 \).

(ii) \(E^n \odot_M F^n = (E \odot_M F)^n \), where \(m, n > 0 \).

Proof.
(i) \(E^m \odot_M E^n = \left(\frac{e_{\mu \mu}e_{\mu \mu}}{m e_{\mu \eta}(1 + (n-1)e_{\mu \eta}) + n e_{\mu \eta}(1 + (m-1)e_{\mu \eta}) - 2mn e_{\mu \eta}e_{\mu \eta}} \right) - \frac{e_{\mu \nu}e_{\mu \nu}}{e_{\mu \nu}e_{\mu \nu}} \).

Communications in Mathematics and Applications, Vol. 14, No. 1, pp. 311–322, 2023
Theorem 4.5. Let E, F and G be three PFM s of same size, then

(i) $(E \oplus_{S} F) \oplus_{S} G = E \oplus_{S} (F \oplus_{S} G)$,

(ii) $(E \odot_{M} F) \odot_{M} G = E \odot_{M} (F \odot_{M} G)$.

Proof.

(i) $(E \oplus_{S} F) \oplus_{S} G$

\[
\begin{align*}
&= \left(\frac{(m \ e_{lm} + n \ e_{ln})}{(1 - e_{ln}) + (m \ e_{lm} + n \ e_{ln})} \right) \\
&= \left(\frac{e_{lm} + (m + n) e_{ln}}{(m + n) - ((m + n) - 1) e_{lm} + 1 + ((m + n) - 1) e_{ln}} \right)
\end{align*}
\]

$= E^{m+n}$.

Hence, (i) holds.

(ii): It can be proved similarly. \qed
\[
\frac{f_{lmv}w_{lmv}}{f_{lmv} + w_{lmv} - f_{lmv}w_{lmv}} = E \oplus_S (F \oplus_S G).
\]

Hence, (i) holds.

(ii): It can be proved similarly. \qed

Theorem 4.6. Let \(E \) be a PFM. Then

(i) \(E \oplus_S J = J \oplus_S E = J \),

(ii) \(E \ominus_M J = J \ominus_M E = E \).

Proof. Let \(J = ((1, 0, 0)) \)

\[
E \oplus_S J = (e_{lm\mu}, e_{lm\eta}, e_{lmv}) \oplus_S J = J \oplus_S E,
\]

\[
E \ominus_M J = (e_{lm\mu}, e_{lm\eta}, e_{lmv}) \ominus_M J = E \ominus_M E.
\]

Theorem 4.7. Let \(E \) be a PFM. Then

(i) \(J \oplus_S O = O \oplus_S J = J \),

(ii) \(J \ominus_M O = O \ominus_M J = O \).

Theorem 4.8. Let \(E, F \) and \(G \) be three PFMs of same size, then

(i) \((E \land F) \oplus_S G = (E \oplus_S G) \land (F \oplus_S G) \),

(ii) \((E \lor F) \oplus_S G = (E \oplus_S G) \lor (F \oplus_S G) \).

Proof.

(i) \((E \land F) \oplus_S G = \left(\frac{\min(e_{lm\mu}, f_{lm\mu}) + g_{lm\mu} - 2\min(e_{lm\mu}, f_{lm\mu}) g_{lm\mu}}{1 - \min(e_{lm\mu}, f_{lm\mu}) g_{lm\mu}}, \right. \)

\[
\left. \frac{\min(e_{lm\eta}, f_{lm\eta}) + g_{lm\eta} - \min(e_{lm\eta}, f_{lm\eta}) g_{lm\eta}}{\max(e_{lmv}, f_{lmv}) g_{lmv}} \right)
\]

\[
\left(\frac{\max(e_{lmv}, f_{lmv}) + g_{lmv} - \max(e_{lmv}, f_{lmv}) g_{lmv}}{1 - \frac{e_{lm\mu} + g_{lm\mu} - 2e_{lm\mu}g_{lm\mu}}{f_{lm\mu} + g_{lm\mu} - 2f_{lm\mu}g_{lm\mu}}}, \right.
\]

\[
\left. \frac{\max(e_{lmv}, f_{lmv}) + g_{lmv} - \max(e_{lmv}, f_{lmv}) g_{lmv}}{1 - \frac{e_{lm\eta} + g_{lm\eta} - e_{lm\eta}g_{lm\eta}}{f_{lm\eta}g_{lm\eta}}}, \right)
\]

\[
\left. \frac{\max(e_{lmv}, f_{lmv}) + g_{lmv} - \max(e_{lmv}, f_{lmv}) g_{lmv}}{1 - \frac{e_{lm\eta} + g_{lm\eta} - e_{lm\eta}g_{lm\eta}}{f_{lm\eta}g_{lm\eta}}}, \right)
\]

\[
\left. \frac{\max(e_{lmv}, f_{lmv}) + g_{lmv} - \max(e_{lmv}, f_{lmv}) g_{lmv}}{1 - \frac{e_{lm\eta} + g_{lm\eta} - e_{lm\eta}g_{lm\eta}}{f_{lm\eta}g_{lm\eta}}}, \right)
\]

Thus, (i) holds.

(ii): It can be proved similarly. \qed
Theorem 4.9. Let E, F and G be three PFM s of same size, then

(i) $(E \land F) \circ M G = (E \circ M G) \land (F \circ M G)$,

(ii) $(E \lor F) \circ M G = (E \circ M G) \lor (F \circ M G)$.

Proof.

(i) $(E \land F) \circ M G = \left(\min \left(\frac{e_{lm\mu}, f_{lm\mu}}{2}, g_{lm\mu} \right) \right) \land \left(\min \left(\frac{e_{lm\eta}, f_{lm\eta}}{2}, g_{lm\eta} \right) \right) \land \left(\max \left(\frac{e_{lm\nu}, f_{lm\nu}}{2}, g_{lm\nu} \right) \right) = (E \circ M G) \land (F \circ M G)$.

Thus, (i) holds.

(ii) It can be proved similarly.

Theorem 4.10. Let E, F and G be three PFM s of same size, then

(i) $(E \land F) @ K G = (E @ K G) \land (F @ K G)$,

(ii) $(E \lor F) @ K G = (E @ K G) \lor (F @ K G)$.

Proof.

(i) $(E \land F) @ K G = \left(\min \left(\frac{e_{lm\mu}, f_{lm\mu}}{2}, g_{lm\mu} \right) \right) \land \left(\min \left(\frac{e_{lm\eta}, f_{lm\eta}}{2}, g_{lm\eta} \right) \right) \land \left(\max \left(\frac{e_{lm\nu}, f_{lm\nu}}{2}, g_{lm\nu} \right) \right) = (E @ K G) \land (F @ K G)$.
Thus, (i) holds.

(ii): It can be proved similarly.

Theorem 4.11. Let E and F be an two PFMs of same size, then

(i) $E@_K E = E$,

(ii) $E@_K F = F@_K E$,

(iii) $(E@_K F)^C = E^C@_K F^C$,

(iv) $(E^C@_K F^C)^C = E@_K F$.

Proof.

(i) $E@_K E = \left(\frac{e_{lm\mu} + e_{lm\mu}}{2}, \frac{e_{lm\eta} + e_{lm\eta}}{2}, \frac{e_{lmv} + e_{lmv}}{2}\right)$

$= (e_{lm\mu}, e_{lm\eta}, e_{lmv}) = E$.

(ii) $E@_K F = \left(\frac{e_{lm\mu} + f_{lm\mu}}{2}, \frac{e_{lm\eta} + f_{lm\eta}}{2}, \frac{e_{lmv} + f_{lmv}}{2}\right)$

$= (f_{lm\mu}, f_{lm\eta}, f_{lmv}) = F@_K E$.

(iii) $(E@_K F)^C = \left(\frac{e_{lm\mu} + f_{lm\mu}}{2}, \frac{e_{lm\eta} + f_{lm\eta}}{2}, \frac{e_{lmv} + f_{lmv}}{2}\right)^C$

$= (e_{lm\mu}, e_{lm\eta}, e_{lmv}@_K (f_{lmv}, f_{lm\eta}, f_{lm\mu})$

$= E^C@_K F^C$.

(iv) $(E^C@_K F^C)^C = \left((e_{lm\mu}, e_{lm\eta}, e_{lmv}@_K (f_{lmv}, f_{lm\eta}, f_{lm\mu})^C$

$= \left(\frac{e_{lm\mu} + f_{lm\mu}}{2}, \frac{e_{lm\eta} + f_{lm\eta}}{2}, \frac{e_{lmv} + f_{lmv}}{2}\right)$

$= E@_K F$.

Theorem 4.12. Let E and F be an two PFMs of same size, then

(i) $(E^C \oplus_S F^C)^C \neq (E \odot_M F)$,

(ii) $(E^C \odot_M F^C)^C \neq (E \oplus_S F)$.

Proof.

(i) $(E^C \oplus_S F^C)^C$

$= \left((e_{lm\mu}, e_{lm\eta}, e_{lmv}@_S (f_{lmv}, f_{lm\eta}, f_{lm\mu})^C$

$= \left(\frac{e_{lm\mu} + f_{lm\mu} - 2e_{lmv}f_{lmv}}{1 - e_{lmv}f_{lmv}}, \frac{e_{lm\eta} + f_{lm\eta} - e_{lm\eta}f_{lm\eta}}{e_{lm\eta}f_{lm\eta}}, \frac{e_{lmv} + f_{lmv} - e_{lmv}f_{lmv}}{e_{lmv}f_{lmv}}\right)^C$

$\neq (E \odot_M F)$.

Thus, (i) holds.
Theorem 4.13. Let E and F be an two PFMs of same size, then
(i) $(E \lor F) = ((E) \land (F))$,
(ii) $(E \land F) = ((E) \lor (F))$,
(iii) $((E) \lor (F)) = (E \land F)$,
(iv) $((E) \land (F)) = (E \lor F)$,
(v) $(E \lor F)@K(E \land F) = (E@K F)$,
(vi) $(E \land F)@K(E \lor F) = (F@K E)$.

Proof.
(i): $\quad (E \lor F)^C = (\max(e_{lm\mu}, f_{lm\mu}), \min(e_{lm\eta}, f_{lm\eta}), \min(e_{lm\nu}, f_{lm\nu}))$
\hfill \lor
\hfill $\min(e_{lm\mu}, f_{lm\mu}), \min(e_{lm\eta}, f_{lm\eta}), \max(e_{lm\nu}, f_{lm\nu})$
\hfill \land
\hfill $((e_{lm\nu}, e_{lm\eta}, e_{lm\mu}) \land (f_{lm\nu}, f_{lm\eta}, f_{lm\mu}))$
\hfill \land
\hfill $((E) \land (F))$,
(ii): $\quad (E \land F)^C = (\min(e_{lm\mu}, f_{lm\mu}), \min(e_{lm\eta}, f_{lm\eta}), \max(e_{lm\nu}, f_{lm\nu}))$
\hfill $\min(e_{lm\nu}, e_{lm\eta}, e_{lm\mu}) \land (f_{lm\nu}, f_{lm\eta}, f_{lm\mu})$
\hfill \land
\hfill $((E) \lor (F))$,
(iii): $\quad ((E) \lor (F)) = (\min(e_{lm\mu}, f_{lm\mu}), \min(e_{lm\eta}, f_{lm\eta}), \max(e_{lm\nu}, f_{lm\nu}))$
\hfill $\min(e_{lm\nu}, e_{lm\eta}, e_{lm\mu}) \lor (f_{lm\nu}, f_{lm\eta}, f_{lm\mu})$
\hfill \lor
\hfill $((E) \land (F))$,
(v): $\quad ((E \lor F)@K(E \land F)) = \left(\left(\frac{\max(e_{lm\mu}, f_{lm\mu}) + \min(e_{lm\mu}, f_{lm\mu})}{2}\right), \left(\frac{\min(e_{lm\eta}, f_{lm\eta}) + \min(e_{lm\eta}, f_{lm\eta})}{2}\right), \left(\frac{\min(e_{lm\nu}, f_{lm\nu}) + \max(e_{lm\nu}, f_{lm\nu})}{2}\right)\right)$
\hfill $\min(e_{lm\nu} + f_{lm\nu})$, $\frac{e_{lm\eta} + f_{lm\eta}}{2}$, $\frac{e_{lm\nu} + f_{lm\nu}}{2}$
\hfill \land
\hfill $((E@K F)$.
Thus, (i), (ii), (iii), (v) holds.
(iv) and (vi): It can be proved similarly.

5. Conclusion

We have developed Hamacher operations of Picture Fuzzy Matrices including scalar multiplication and power operation, which provide a good complement to the existing operations on Hamacher operations of picture fuzzy matrices. The properties of these operations are investigated.
Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

