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1. Introduction

The notion of derivations in lattices have been studied by Szász [9], Ferrari [4], and Xin et al. [11].
They studied some properties of derivations, and characterized modular and distributive lattices
by some special derivations. The concept of derivation in lattices has been generalized in several
ways by various authors (see [1–3, 5, 10, 12]). In [8], Öztürk et al. introduced the permuting
tri-derivations in lattices. Yazarli and Ozturk [13] generalized the permuting tri-derivations
to permuting tri- f -derivations. Xin [12] introduced the fixed set of derivations in lattices and
proved that the fixed set of a derivation is an ideal in lattices. Furthermore, by using the fixed
sets of isotone derivations, he established characterizations of a chain, a distributive lattice, a
modular lattice and a relatively pseudo-complemented lattice, respectively.
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Recently, Leerawat and Chotchaya [6] generalized the permuting tri- f -derivations to the
permuting n-( f , g)-derivation, where n is a positive integer, and investigated some related
properties. Moreover, they introduced the concept of trace of permuting n-( f , g)-derivation of a
lattice and discussed some related properties. But the relations among derivations, sublattices,
ideals, fixed sets and kernel sets were not investigated in that paper. In this paper, we
introduce some kind of fixed sets and kernel sets of permuting n-( f , g)-derivations in lattices
and investigate the structure fixed sets, kernel sets, sublattices and ideals in lattices. This
paper is a continuation to the paper [6].

2. Preliminaries

First, we will give some basic definitions and some results used throughout the entire paper.
Details and proofs can be found in Lidl and Pilz [7].

Definition 2.1 ([7]). A lattice (L,∧,∨) is a nonempty set L with two binary operation “∧” and
“∨” (read “meet” and “join”, respectively) on L which satisfy the following conditions for all
x, y, z ∈ L:

(i) x∧ x = x, x∨ x = x.

(ii) x∧ y= y∧ x, x∨ y= y∨ x.

(iii) x∧ (y∧ z)= (x∧ y)∧ z, x∨ (y∨ z)= (x∨ y)∨ z.

(iv) (x∧ y)∨ x = x, (x∨ y)∧ x = x.

In what follows, we denote by L a lattice (L,∧,∨), unless otherwise specified.

Definition 2.2 ([7]). A nonempty subset S of a lattice L is called sublattice of L if S is a lattice
with respect to the restriction of ∧ and ∨ of L onto S.

Lemma 2.3 ([7]). Let L be a lattice. Define the binary operation “⩽” by x ⩽ y if and only if
x∧ y= x. Then (L,⩽) is a poset and for any x, y ∈ L, x∧ y is the greatest lower bound of {x, y} (or
inf{x, y}) and x∨ y is the least upper bound of {x, y} (or sup{x, y}).

Definition 2.4 ([7]). A poset (L,⩽) is a lattice ordered if and only if for every pair x, y of
elements of L both the sup{x, y} and the inf{x, y} exist.

Theorem 2.5 ([7]). (i) Let (L,⩽) be a lattice ordered set. If we define x∧ y = inf{x, y} and
x∨ y= sup{x, y}, then (L,∧,∨) is a lattice.

(ii) Let (L,∧,∨) be a lattice. If we define x ⩽ y if and only if x∧ y = x (or x ⩽ y if and only if
x∨ y= y) then (L,⩽) is a lattice ordered set.

It can be verified that Theorem 2.5 yields a one-to-one relationship between lattice ordered sets
and lattices. Therefore, we shall use the term lattice for both concepts.
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Theorem 2.6 ([7]). (i) Every ordered set is lattice ordered.

(ii) In a lattice ordered set (L,⩽) the following statements are equivalent for all x, y ∈ L:

(a) x⩽ y;

(b) sup{x, y}= y;

(c) inf{x, y}= x.

Definition 2.7 ([7]). If a lattice L contains a least (greatest) element with respect to ⩽ then
this uniquely determined element is called the zero element (one element), denoted by 0 (by 1).

Definition 2.8 ([7]). A lattice L is called distributive if the identity (i) or (ii) holds for all
x, y, z ∈ L:

(i) x∧ (y∨ z)= (x∧ y)∨ (x∧ z).

(ii) x∨ (y∧ z)= (x∨ y)∧ (x∨ z).

In any lattice, the conditions (i) and (ii) are equivalent.

Definition 2.9 ([7]). A nonempty subset I of a lattice L is called ideal of L if the following
conditions holds:

(i) If x, y ∈ L such that x⩽ y and y ∈ I then x ∈ I .

(ii) If x, y ∈ I then x∨ y ∈ I .

Definition 2.10 ([7]). Let L and M be two lattices and f : L → M be a function.

(i) f is called a join-homomorphism if f (x∨ y)= f (x)∨ f (y) for all x, y ∈ L.

(ii) f is called a meet-homomorphism if f (x∧ y)= f (x)∧ f (y) for all x, y ∈ L.

(iii) f is called a lattice-homomorphism if f is both a join-homomorphism and a meet-
homomorphism.

(iv) f is called an order-preserving if x⩽ y implies f (x)⩽ f (y) for all x, y ∈ L.

From now on, let L denote a lattice and f , g : L → L be functions. Let n be a fixed positive
integer and Ln denote L×L×·· ·×L (n terms). We collect some definitions and some results
from [6], which are essential for developing the proofs of our main results.

Definition 2.11 ([6]). A mapping D : Ln → L is said to be permuting if the relation

D(x1, x2, . . . , xn)= D(xπ(1), xπ(2), . . . , xπ(n))

holds for all xi ∈ L and for every permutation π ∈ Sn, where Sn is the permutation group on
{1,2, . . . ,n}.

Definition 2.12 ([6]). A mapping D : Ln → L is called an n-join-homomorphism of L if D
satisfies the following conditions:

D(x1 ∨ y, x2, . . . , xn)= D(x1, x2, . . . , xn)∨D(y, x2, . . . , xn)
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D(x1, x2 ∨ y, . . . , xn)= D(x1, x2, . . . , xn)∨D(x1, y, . . . , xn)
...

D(x1, x2, . . . , xn ∨ y)= D(x1, x2, . . . , xn)∨D(x1, x2, . . . , y)

for all x1, x2, . . . , xn, y ∈ L.

Definition 2.13 ([6]). A mapping D : Ln → L is called an n-( f , g)-derivation of L if D is an
n-join-homomorphism of L and satisfies the following conditions:

D(x1 ∧ y, x2, . . . , xn)= (D(x1, x2, . . . , xn)∧ f (y))∨ (g(x1)∧D(y, x2, . . . , xn))

D(x1, x2 ∧ y, . . . , xn)= (D(x1, x2, . . . , xn)∧ f (y))∨ (g(x2)∧D(x1, y, . . . , xn))
...

D(x1, x2, . . . , xn ∧ y)= (D(x1, x2, . . . , xn)∧ f (y))∨ (g(xn)∧D(x1, x2, . . . , y))

for all x1, x2, . . . , xn, y ∈ L.

Definition 2.14 ([6]). A mapping D : Ln → L is called a permuting n-( f , g)-derivation of L if D
is a permuting and satisfies the following conditions:

D(x1 ∨ y, x2, . . . , xn)= D(x1, x2, . . . , xn)∨D(y, x2, . . . , xn) and

D(x1 ∧ y, x2, . . . , xn)= (D(x1, x2, . . . , xn)∧ f (y))∨ (g(x1)∧D(y, x2, . . . , xn))

for all x1, x2, . . . , xn, y ∈ L.

Theorem 2.15 ([6]). Let D be an n-( f , g)-derivation of L. Then

D(x1, x2, . . . , xn)⩽ f (x1)∨ g(x1)

D(x1, x2, . . . , xn)⩽ f (x2)∨ g(x2)
...

D(x1, x2, . . . , xn)⩽ f (xn)∨ g(xn)

for all x1, x2, . . . , xn ∈ L.

Theorem 2.16 ([6]). Let D be a permuting n-( f , g)-derivation of L. If g(x)⩽ f (x) for all x ∈ L
Then

D(x1, x2, . . . , xn)∧D(y, x2, . . . , xn)⩽ D(x1 ∧ y, x2, . . . , xn)

⩽ D(x1, x2, . . . , xn)∨D(y, x2, . . . , xn)

for all x1, x2, . . . , xn, y ∈ L.

Let D : Ln → L be a mapping. We recall the following notations. For simplicity, we denote from
now on D(x(n−k), y(k)) by D(x, x, . . . , x︸ ︷︷ ︸

n-k copies

, y, y, . . . , y︸ ︷︷ ︸
k copies

), where k = 1,2,3, . . . ,n−1, and x, y ∈ L.

A mapping d : L → L is called a trace of D if d(x)= D(x, x, . . . , x) for all x ∈ L.
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Theorem 2.17 ([6]). Let D be a permuting n-( f , g)-derivation of L and d be a trace of D. Then

d(x∨ y)= d(x)∨d(y)∨ [D(x(n−1), y)∨D(x(n−2), y(2))∨ . . .∨D(x, y(n−1))],

for all x, y ∈ L.

Theorem 2.18 ([6]). Let L be a distributive lattice. Let D be a permuting n-( f , g)-derivation on
L and d be a trace of D. Then

d(x∧y)= (d(x)∧ f (y))∨(g(x)∧d(y))∨[(g(x)∧ f (y))∧[D(x(n−1), y)∨D(x(n−2), y(2))∨·· ·∨D(x, y(n−1))]],

for all x, y ∈ L.

Corollary 2.19 ([6]). Let L be a distributive lattice and D be a permuting n-( f , g)-derivation on
L with a trace d. Then for all x, y ∈ L,

(i) d(x)∨d(y)⩽ d(x∨ y).

(ii) g(x)∧ f (y)∧ [D(x(n−1), y)∨D(x(n−2), y(2))∨·· ·∨D(x, y(n−1))]⩽ d(x∧ y).

(iii) g(x)∧d(y)⩽ d(x∧ y).

(iv) d(x)∧ f (y)⩽ d(x∧ y).

3. Fixed Sets and Kernel Sets of Permuting
n-(f , g)-derivation of Lattice

In this section, let D : Ln → L denote a permuting n-( f , g)-derivation on L. We introduce some
kind of fixed sets and kernel sets of D on L and investigate some related properties.

Definition 3.1. Let D : Ln → L be a permuting n-( f , g)-derivation on L.

(i) An element a ∈ L is called a multivariate fixed point of (D, f , g), if D(a,a, . . . ,a) = f (a) =
g(a).

(ii) An element a ∈ L is called a partial fixed point of (D, f , g), if D(a,a2, . . . ,an)= f (a)= g(a)
for some a2,a3, . . . ,an ∈ L.

(iii) Define a set Fix(L) by

Fix(L)= {x ∈ L | D(x, x, . . . , x)= f (x)= g(x)}.

Then Fix(L) is called a multivariate fixed set of (D, f , g).

(iv) For a2,a3,a4, . . . ,an ∈ L, define a set Fix(L,a2, . . . ,an) by

Fix(L,a2, . . . ,an)= {x ∈ L | D(x,a2, . . . ,an)= f (x)= g(x)}.

Then Fix(L,a2, . . . ,an) is called a partial fixed set of (D, f , g).

Theorem 3.2. Let f and g be lattice-homomorphisms and g(x) ⩽ f (x) for all x ∈ L. If
Fix(L,a2, . . . ,an) ̸= ; for some a2,a3, . . . ,an. Then Fix(L,a2, . . . ,an) is a sublattice of L.
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Proof. Assume that Fix(L,a2, . . . ,an) ̸= ; for some a2,a3, . . . ,an.

Let x, y ∈Fix(L,a2, . . . ,an) then D(x,a2, . . . ,an)= f (x)= g(x) and D(y,a2, . . . ,an)= f (y)= g(y).

So f (x∧ y)= f (x)∧ f (y)= g(x)∧ g(y)= g(x∧ y) and f (x∨ y)= f (x)∨ f (y)= g(x)∨ g(y)= g(x∨ y).

By Theorem 2.16, we get f (x ∧ y) = f (x) ∧ f (y) = D(x,a2, . . . ,an) ∧ D(y,a2, . . . ,an) ⩽ D(x ∧
y,a2, . . . ,an). Therefore f (x∧ y)⩽ D(x∧ y,a2, . . . ,an).

By Theorem 2.15, we get D(x∧ y,a2, . . . ,an)⩽ f (x∧ y)∨ g(x∧ y)= f (x∧ y).

Hence D(x∧ y,a2, . . . ,an)= f (x∧ y)= g(x∧ y).

So x∧ y ∈Fix(L,a2, . . . ,an).

Consider D(x∨ y,a2, . . . ,an)= D(x,a2, . . . ,an)∨D(y,a2, . . . ,an)= f (x)∨ f (y)= f (x∨ y)= g(x∨ y).

Hence D(x∨ y,a2, . . . ,an)= f (x∨ y)= g(x∨ y).

So x∨ y ∈Fix(L,a2, . . . ,an).

Therefore Fix(L,a2, . . . ,an) is a sublattice of L.

Theorem 3.3. Let L be a lattice with a greatest element 1. Assume that f (x)= g(x) for all x ∈ L
and f (1) = 1. If D(1,a2, . . . ,an) = 1 for some a2,a3, . . . ,an ∈ L then D(x,a2, . . . ,an) = f (x) for all
x ∈ L and L =Fix(L,a2, . . . ,an).

Proof. Let D(1,a2, . . . ,an)= 1 for some a2,a3, . . . ,an ∈ L. Let x ∈ L. Then

D(x,a2, . . . ,an)= D(x∧1,a2, . . . ,an)

= [D(x,a2, . . . ,an)∧ f (1)]∨ [g(x)∧D(1,a2, . . . ,an)]

= [D(x,a2, . . . ,an)∧1]∨ [ f (x)∧1]

= D(x,a2, . . . ,an)∨ f (x).

So D(x,a2, . . . ,an)= D(x,a2, . . . ,an)∨ f (x), this implies f (x)⩽ D(x,a2, . . . ,an).

D(x,a2, . . . ,an)= D(x∧ x,a2, . . . ,an)

= [D(x,a2, . . . ,an)∧ f (x)]∨ [g(x)∧D(x,a2,∨,an)]

= [D(x,a2, . . . ,an)∧ f (x)]∨ [ f (x)∧D(x,a2, . . . ,an)]

= D(x,a2, . . . ,an)∧ f (x).

So D(x,a2, . . . ,an)= D(x,a2, . . . ,an)∧ f (x), this implies

D(x,a2, . . . ,an)⩽ f (x).

Hence D(x,a2, . . . ,an)= f (x) for all x ∈ L.

Next, we will show that L =Fix(L,a2, . . . ,an).

Clearly, Fix(L,a2, . . . ,an)⊆ L.

Let x ∈ L. Then D(x,a2, . . . ,an)= f (x)= g(x). That is x ∈Fix(L,a2, . . . ,an).

So, L ⊆Fix(L,a2, . . . ,an). Therefore L =Fix(L,a2, . . . ,an).
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Theorem 3.4. Let f be order−preserving and f (x)= g(x) for all x ∈ L. If x, y ∈ L such that x⩽ y
and y⩽Fix(L,a2, . . . ,an) for some a2,a3, . . . ,an ∈ L then x ∈Fix(L,a2, . . . ,an).

Proof. Let x, y ∈ L be such that x⩽ y and y ∈Fix(L,a2, . . . ,an) for some a2,a3, . . . ,an ∈ L. Then
x = x∧ y and D(y,a2, . . . ,an)= f (y)= g(y). Since f is order−preserving and x⩽ y, f (x)⩽ f (y).

By Theorem 2.15, we have D(x,a2, . . . ,an)⩽ f (x)∨ g(x)= f (x). So, D(x,a2, . . . ,an)⩽ f (x)⩽ f (y).
Consider

D(x,a2, . . . ,an)= D(x∧ y,a2, . . . ,an)

= [D(x,a2, . . . ,an)∧ f (y)]∨ [g(x)∧D(y,a2, . . . ,an)]

= [D(x,a2, . . . ,an)∧ f (y)]∨ [ f (x)∧ f (y)]

= D(x,a2, . . . ,an)∨ f (x)

= f (x)= g(x).

Hence D(x,a2, . . . ,an)= f (x)= g(x). That is x ∈Fix(L,a2, . . . ,an).

Theorem 3.5. Let f be a lattice−homomorphisms and order-preserving. If f (x) = g(x) for all
x ∈ L and there exist a2,a3, . . . ,an ∈ L such that Fix(L,a2, . . . ,an) ̸= ; then Fix(L,a2, . . . ,an) is an
ideal of L.

Proof. Assume that f (x) = g(x) for all x ∈ L and there exist a2,a3, . . . ,an ∈ L such that
Fix(L,a2, . . . ,an) ̸= ;.

Let x, y ∈ L be such that x⩽ y and y ∈Fix(L,a2, . . . ,an).

By Theorem 3.4, we have x ∈Fix(L,a2, . . . ,an).

Next, let x, y ∈Fix(L,a2, . . . ,an). Then D(x,a2, . . . ,an)= f (x)= g(x) and D(y,a2, . . . ,an)= f (y)=
g(y). Then

D(x∨ y,a2, . . . ,an)= D(x,a2, . . . ,an)∨D(y,a2, . . . ,an)

= f (x)∨ f (y)

= f (x∨ y).

Hence D(x∨ y,a2, . . . ,an)= f (x∨ y)= g(x∨ y), so x∨ y ∈Fix(L,a2, . . . ,an) .

Therefore, Fix(L,a2, . . . ,an) is an ideal of L. This completes the proof.

Theorem 3.6. Let f be order−preserving and f (x) = g(x) for all x ∈ L. If there exist
y,a2,a3, . . . ,an ∈ L such that y ∈ Fix(L,a2, . . . ,an) then Sy = {x ∈ L | x ⩽ y} is a sublattice of
Fix(L,a2, . . . ,an). Moreover, Sy is an ideal of Fix(L,a2, . . . ,an).

Proof. Assume that there exist y,a2,a3, . . . ,an ∈ L such that y ∈ Fix(L,a2, . . . ,an). Clearly,
Sy = {x ∈ L | x⩽ y} ̸= ;. Now, we will show that Sy ⊆Fix(L,a2, . . . ,an).

Let a ∈ Sy then a⩽ y. By Theorem 3.4, and y ∈Fix(L,a2, . . . ,an) we get

a ∈Fix(L,a2, . . . ,an).
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Therefore Sy ⊆Fix(L,a2, . . . ,an).

Next, let a,b ∈ Sy then a⩽ y and b ⩽ y. Hence a∧ y= a and b∧ y= b.

Therefore, a∧b = (a∧ y)∧ (b∧ y)= (a∧b)∧ y, and so a∧b ⩽ y.

This implies a∧b ∈ Sy. Similarly, a∨b ∈ Sy. Hence Sy is a sublattice of Fix(L,a2, . . . ,an). We
now show that Sy is an ideal of Fix(L,a2, . . . ,an). Let a,b ∈Fix(L,a2, . . . ,an) be such that a⩽ b
and b ∈ Sy. Hence a⩽ b ⩽ y. Thus a ∈ Sy. Therefore Sy is an ideal of Fix(L,a2, . . . ,an).

Theorem 3.7. Let L be a distributive lattice. Let D be a permuting n-( f , g)-derivation on L and
d be a trace of D. If f and g are lattice−homomorphisms and Fix(L) ̸= ;. Then Fix(L) is a
sublattice of L.

Proof. Let x, y ∈ Fix(L), then d(x) = f (x) = g(x) and d(y) = f (y) = g(y). By Theorem 2.18, we
have

d(x∧ y)= (d(x)∧ f (y))∨ (g(x)∧d(y))

∨ [(g(x)∧ f (y))∧ [D(x(n−1), y)∨D(x(n−2), y(2))∨·· ·∨D(x, y(n−1))]]

= ( f (x)∧ f (y))∨ ( f (x)∧ f (y))

∨ [( f (x)∧ f (y))∧ [D(x(n−1), y)∨D(x(n−2), y(2))∨·· ·∨D(x, y(n−1))]]

= ( f (x)∧ f (y))∨ ( f (x)∧ f (y))

= f (x)∧ f (y)= f (x∧ y).

Clearly, f (x∧ y)= g(x∧ y).

Hence x∧ y ∈Fix(L).

Next, we prove that x∨ y ∈Fix(L). By Theorem 2.15, we have

D(x(n−1), y)⩽ f (x)∨ g(x)= f (x)∨ f (x)= f (x).

Similarly,

D(x(n−2), y(2))⩽ f (x), . . . ,D(x, y(n−1))⩽ f (x).

Therefore

D(x(n−1), y)∨D(x(n−2), y(2))∨·· ·∨D(x, y(n−1))⩽ f (x).

By Theorem 2.17, we have

d(x∨ y)= d(x)∨d(y)∨ [D(x(n−1)), y)∨D(x(n−2)), y(2))∨ . . .∨D(x, y(n−1))]

= f (x)∨ f (y)∨ [D(x(n−1)), y)∨D(x(n−2)), y(2))∨ . . .∨D(x, y(n−1))]

= f (x)∨ f (y)= f (x∨ y).

Clearly, f (x∨ y)= g(x∨ y).

Hence x∨ y ∈Fix(L). Therefore Fix(L) is a sublattice of L.
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Theorem 3.8. Let L be a distributive lattice. Let D be a permuting n-( f , g)-derivation on L and
d be a trace of D. Assume that g(x) ⩽ f (x) for all x ∈ L and f is order−preserving. If x, y ∈ L
such that x⩽ y and y ∈Fix(L) then g(x)⩽ d(x)⩽ f (x).

Proof. Let x, y ∈ L such that x⩽ y and y ∈Fix(L), then d(y)= f (y)= g(y).

By Theorem 2.15, we get d(x)= D(x, x, . . . , x)⩽ f (x)∨ g(x)= f (x).

Since f is order−preserving and x⩽ y, f (x)⩽ f (y).

Hence d(x)⩽ f (x)⩽ f (y), and g(x)⩽ f (x)⩽ f (y).

By Theorem 2.18, we get

d(x)= d(x∧ y)

= (d(x)∧ f (y))∨ (g(x)∧d(y))∨ [(g(x)∧ f (y))∧ [D(x(n−1), y)∨D(x(n−2), y(2))∨·· ·∨D(x, y(n−1))]]

= (d(x)∧ f (y))∨ (g(x)∧ f (y))∨ [(g(x)∧ f (y))∧ [D(x(n−1), y)∨D(x(n−2), y(2))∨·· ·∨D(x, y(n−1))]]

= (d(x)∧ f (y))∨ (g(x)∧ f (y))

= d(x)∨ g(x).

So d(x)= d(x)∨ g(x). Therefore g(x)⩽ d(x).

By Theorem 3.7 and Theorem 3.8, we obtain the following corollary.

Corollary 3.9. Let L be a distributive lattice. Let D be a permuting n-( f , g)-derivation on L and
d be a trace of D. Assume that f is a lattice−homomorphisms and order-preserving. If g(x)= f (x)
for all x ∈ L and Fix(L) ̸= ; then Fix(L) is an ideal of L.

Definition 3.10. Let L be a lattice with a least element 0. Let D be a permuting n-( f , g)-
derivation on L and d be a trace of D.

(i) Define a set Ker(d) by Ker(d) = {x ∈ L | d(x) = 0}. Then Ker(d) is called a multiplicative
kernel set of d.

(ii) For a2,a3, . . . ,an ∈ L. Define a set Ker(D,a2, . . . ,an) by

Ker(D,a2, . . . ,an)= {x ∈ L | D(x,a2, . . . ,an)= 0}.

Then Ker(D,a2, . . . ,an) is called a partial kernel set of (D, f , g).

Theorem 3.11. Let L be a distributive lattice with a least element 0. Let D be a permuting
n-( f , g)-derivation on L. If x, y ∈ L such that x⩽ y and y ∈Ker(d) then x ∈Ker(d).

Proof. Let x, y ∈ L be such that x⩽ y and y ∈Ker(d). Then d(y)= 0.

By Corollary 2.19(i) we have d(x)∨d(y)⩽ d(x∨ y).

Since x⩽ y and d(y)= 0, d(x)= d(x)∨0⩽ d(x∨ y)= d(y)= 0.

Hence d(x)⩽ 0. Therefore d(x)= 0, since 0 is the least element.

It follows that x ∈Ker(d).
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Theorem 3.12. Let L be a lattice with a least element 0. Let D be a permuting n-( f , g)-derivation
on L. If Ker(D,a2, . . . ,an) ̸= ; for some a2,a3, . . . ,an ∈ L then Ker(D,a2, . . . ,an) is a sublattice
of L.

Proof. Assume that Ker(D,a2, . . . ,an) ̸= ; for some a2,a3, . . . ,an ∈ L.

Let K =Ker(D,a2, . . . ,an).

Let x, y ∈ K then D(x,a2, . . . ,an)= 0 and D(y,a2, . . . ,an)= 0.

Then

D(x∧ y,a2, . . . ,an)= [D(x,a2, . . . ,an)∧ f (y)]∨ [g(x)∧D(y,a2, . . . ,an)]

= [0∧ f (y)]∨ [g(x)∧0]

= 0∨0= 0,

D(x∨ y,a2, . . . ,an)= D(x,a2, . . . ,an)∨D(y,a2, . . . ,an)

= 0∨0= 0.

Therefore D(x∧ y,a2, . . . ,an)= 0, and D(x∨ y,a2, . . . ,an)= 0.

That is x∧ y ∈ K , and x∨ y ∈ K .

Hence K is a sublattice of L.

Theorem 3.13. Let L be a lattice with a least element 0. Let D be a permuting n-( f , g)-derivation
on L. If x, y ∈ L such that x ⩽ y and y ∈ Ker(D,a2, . . . ,an) for some a2,a3, . . . ,an ∈ L then
x ∈Ker(D,a2, . . . ,an).

Proof. Let K =Ker(D,a2, . . . ,an).

Assume that x, y ∈ L such that x⩽ y and y ∈ K .

Then D(y,a2, . . . ,an)= 0. Since x⩽ y, x∨ y= y.

Then

D(x,a2, . . . ,an)= D(x,a2, . . . ,an)∨0

= D(x,a2, . . . ,an)∨D(y,a2, . . . ,an)

= D(x∨ y,a2, . . . ,an)

= D(y,a2, . . . ,an)

= 0.

Hence D(x,a2, . . . ,an)= 0, and so x ∈ K .

By Theorem 3.12 and Theorem 3.13, we obtain the following corollary.

Corollary 3.14. Let L be a lattice with a least element 0. Let D be a permuting n-( f , g)-derivation
on L. If Ker(D,a2, . . . ,an) ̸= ; for some a2,a3, . . . ,an ∈ L. Then Ker(D,a2, . . . ,an) is an ideal of L.
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Theorem 3.15. Let L be a lattice with a least element 0. Let D be a permuting n-( f , g)-
derivation on L. Suppose that there exists y ∈Ker(D,a2, . . . ,an) for some a2,a3, . . . ,an ∈ L. Then
the set Sy = {x ∈ L | x ⩽ y} is a sublattice of Ker(D,a2, . . . ,an). Moreover, Sy is an ideal of
Ker(D,a2, . . . ,an).

Proof. The proof is similar to the proof of Theorem 3.6.

Acknowledgments

This research was supported by Faculty of Science, Kasetsart University, Bangkok, Thailand
under Grant (Graduate student scholarships).

Competing Interests

The authors declare that they have no competing interests.

Authors’ Contributions

All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] Y. Ceven and M. A. Ozturk, On f -derivations of lattices, Bulletin of the Korean Mathematical

Society 45(4) (2008), 701 – 707, DOI: 10.4134/BKMS.2008.45.4.701.

[2] Y. Çeven, Symmetric bi-derivations of lattices, Quaestiones Mathematicae 32 (2009), 241 – 245,
DOI: 10.2989/QM.2009.32.2.6.799.

[3] M. A. Chaudhry and Z. Ullah, On generalized (α,β)-derivations on lattices, Quaestiones
Mathematicae 34(4) (2011), 417 – 424, DOI: 10.2989/16073606.2011.640439.

[4] L. Ferrari, On derivations of lattices, Pure Mathematics and Applications 12 (2001), 365 – 382,
URL: http://web.math.unifi.it/users/ferrari/derlat.pdf.

[5] S. Harmaitree and U. Leerawat, On f -derivations in lattices, Far East Journal of Mathematical
Sciences 51(1) (2011), 27 – 40, URL: http://www.pphmj.com/abstract/5779.html.

[6] U. Leerawat and P. Chotchaya, On permuting n-( f , g)-derivations of lattices, International Journal
of Mathematics and Computer Science 17(1) (2022), 485 – 497, URL: http://ijmcs.future-in-tech.net/
17.1/R-Leerawat-Chotchaya.pdf.

[7] R. Lidl and G. Pilz, Applied Abstract Algebra, Springer-Verlag, Inc., New York, USA (1984),
DOI: 10.1007/978-1-4615-6465-2.

[8] M. A. Öztürk, H. Yazarl and K. H. Kim, Permuting tri-derivations in lattices, Quaestiones
Mathematicae 32 (2009), 415 – 425, DOI: 10.2989/QM.2009.32.3.10.911.

[9] G. Szász, Derivations of lattices, Acta Scientiarum Mathematicarum (Szeged) 37 (1975), 149 – 154.

[10] J. Wang, Y. Jun, X. Xin and Y. Zou, On derivations of bounded hyperlattices, Journal of
Mathematical Research with Applications 36 (2016), 151 – 161, DOI: 10.3770/j.issn:2095-
2651.2016.02.003.

Communications in Mathematics and Applications, Vol. 13, No. 3, pp. 1075–1086, 2022

http://doi.org/10.4134/BKMS.2008.45.4.701
http://doi.org/10.2989/QM.2009.32.2.6.799
http://doi.org/10.2989/16073606.2011.640439
http://web.math.unifi.it/users/ferrari/derlat.pdf
http://www.pphmj.com/abstract/5779.html
http://ijmcs.future-in-tech.net/17.1/R-Leerawat-Chotchaya.pdf
http://ijmcs.future-in-tech.net/17.1/R-Leerawat-Chotchaya.pdf
http://doi.org/10.1007/978-1-4615-6465-2
http://doi.org/10.2989/QM.2009.32.3.10.911
http://doi.org/10.3770/j.issn:2095-2651.2016.02.003
http://doi.org/10.3770/j.issn:2095-2651.2016.02.003


1086 Some Results on Fixed Sets and Kernel Sets of Permuting. . . : P. Chotchaya and U. Leerawat

[11] X. L. Xin, T. Y. Liu and J. H. Lu, On derivations of lattices, Information Sciences 178(2) (2008), 307
– 316, DOI: 10.1016/j.ins.2007.08.018.

[12] X. L. Xin, The fixed set of a derivation in lattices, Fixed Point Theory Applications (A Springer
Open Journal) 218 (2012), DOI: 10.1186/16871812-2012-218.

[13] H. Yazarli and M. A. Ozturk, Permuting tri- f -derivations in lattices, Communications of the Korean
Mathematical Society 26(1) (2011), 13 – 21, DOI: 10.4134/CKMS.2011.26.1.013.

Communications in Mathematics and Applications, Vol. 13, No. 3, pp. 1075–1086, 2022

http://doi.org/10.1016/j.ins.2007.08.018
http://doi.org/10.1186/16871812-2012-218
http://doi.org/10.4134/CKMS.2011.26.1.013

	Introduction
	Preliminaries
	Fixed Sets and Kernel Sets of Permuting bold0mu mumu nnnnnn-bold0mu mumu (f,g)(f,g)(f,g)(f,g)(f,g)(f,g)-derivation of Lattice
	References

