Y-index of Different Corona Products of Graphs

V. Sheeba Agnes ${ }^{10}$ and C. Kannadasan*2
${ }^{1}$ Department of Mathematics, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
${ }^{2}$ Department of Mathematics (Science and Humanities), Jeppiaar Engineering College, Chennai 600119, Tamil Nadu, India
*Corresponding author: cskdasannsp07@gmail.com

Received: March 8, $2022 \quad$ Accepted: November 11, 2022

Abstract

For a molecular graph G, the Y-index is defined as the sum of fourth degree of all vertices of the graph. Among different products, corona product of two graphs is one of the most important. In this paper, we explore the explicit expressions of Y-index of different types of corona product of graphs.

Keywords. Zagreb index, F-index, Y-index, Corona product
Mathematics Subject Classification (2020). 0C07, 05C76, 92E10
Copyright © 2023 V. Sheeba Agnes and C. Kannadasan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

All graphs considered here are simple, connected, finite and undirected. Let $G=(V(G), E(G))$ be a connected graph of order n with $|E(G)|=m$ edges. The degree of a vertex $u \in V(G)$, denoted by $d_{G}(u)$, is the number of edges incident to u. The neighborhood of a vertex $u \in V(G)$ is defined as the set $N_{G}(u)$ consisting of all vertices v which are adjacent to u in G.

In the fields of chemical graph theory, molecular topology and mathematical chemistry, a topological index is a type of molecular descriptor that is calculated as degree based on the molecular graph of a chemical compound. Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. Topological indices are used for example in the development of quantitative structure-activity relationships (QSARs) in which the biological activity or other properties of molecules are correlated with their chemical structure.

Amid various degree-based topological indices, one of the most studied topological index is the Zagreb index, introduced by Gutman and Trinajstić in [11]. The Zagreb indices are defined as

$$
M_{1}(G)=\sum_{v \in V(G)} d_{G}(u)^{2}=\sum_{u v \in E(G)}\left[d_{G}(u)+d_{G}(v)\right]
$$

and

$$
M_{2}(G)=\sum_{u, v \in V(G)} d_{G}(u) d_{G}(v) .
$$

In [10], Furtula and Gutman investigated the F-index or the forgotten topological index. The F index of a graph G is defined as

$$
F(G)=\sum_{v \in V(G)} d_{G}(v)^{3}=\sum_{u v \in E(G)}\left[d_{G}(u)^{2}+d_{G}(v)^{2}\right] .
$$

The Y-index recently introduced by Alameri et al. [4] is defined as

$$
Y(G)=\sum_{u \in V(G)} d_{G}(u)^{4}=\sum_{u v \in E(G)}\left[d_{G}(u)^{3}+d_{G}(v)^{3}\right] .
$$

They also showed that the predictive ability of this index is similar to that of first Zagreb index. There are various recent studies of Y-index (one can refer [2,4]).

Among the most well known products of graphs, the corona product of graphs is one of the most important graph operations as different important classes of graphs can be formed by taking corona product of some general and particular graphs. Also, by specializing the components of corona product of graphs different interesting classes of graph such as t-theory graph, sunlet graph, bottleneck graph, suspension of graphs and some classes of bridge graphs can be formed (see [3, 5]-8] and [14]).

Lu and Mia ${ }^{1}$ has determined spectra of subdivision-vertex and subdivision-edge coronae. In [12], Liu and Lu has determined spectra of subdivision-vertex and subdivision-edge neighborhood corona. In [13], Malpashree has determined some degree and distance based topological indices of vertex-edge corona of two graphs.

We explore the explicit expressions of different types of corona product of graphs such as subdivision-vertex corona, subdivision-edge corona, subdivision-vertex neighborhood, subdivision-edge neighborhood corona and vertex-edge corona of two graphs in this paper.

2. Main Results

Let G_{1} and G_{2} be two simple connected graphs with n_{i} number of vertices and m_{i} number of edges respectively, $i \in\{1,2\}$. The corona product of $G_{1} \circ G_{2}$ of these two graphs is obtained by taking one copy of G_{1} and n_{1} copies of G_{2} and by joining each vertex of the i-th copy of G_{2} to the i-th vertex of G_{1}, where $1 \leq i \leq n_{1}$. The corona product of G_{1} and G_{2} has total number of $\left(n_{1} n_{2}+n_{1}\right)$ vertices and ($m_{1}+n_{1} m_{2}+n_{1} n_{2}$) edges.

Several authors defined other different versions of corona product of graphs such as subdivision-vertex corona, subdivision-edge corona, subdivision-vertex neighborhood corona, subdivision-edge neighborhood corona and vertex-edge corona (see $\left.{ }^{[1]},[12,13]\right)$. The subdivision $\operatorname{graph} S(G)$ of a graph G is a graph obtained by inserting a new vertex onto each edge of G.

[^0]In this paper, we calculate the Y-index of subdivision-vertex corona, subdivision-edge corona, subdivision-vertex neighborhood corona, subdivision-edge neighborhood corona and vertex-edge corona of two connected simple graphs.

2.1 Subdivision-vertex Corona

Definition 2.1. Let G_{1} and G_{2} be two simple connected graphs with n_{i} number of vertices and m_{i} number of edges respectively, $i \in\{1,2\}$. The subdivision-vertex corona of G_{1} and G_{2}, denoted by $G_{1} \odot G_{2}$, is obtained from $S\left(G_{1}\right)$ and n_{1} copies of G_{2}, all vertex-disjoint, by joining the i-th vertex of $V\left(G_{1}\right)$ to every vertex in the i-th copy of G_{2}.

Let $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{2}}\right\}$. Denote by G_{2}^{i}, the i th copy of G_{2} in $G_{1} \odot G_{2}$. Let $V\left(G_{2}^{i}\right)=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i n_{2}}\right\}, 1 \leq i \leq n_{1}$. Let $W\left(G_{1}\right)=\left\{w_{1}, w_{2}, \ldots, w_{m_{1}}\right\}$ be the set of new vertices inserted on the edges of G_{1}.

From definition it is clear that the subdivision-vertex corona $G_{1} \odot G_{2}$ has $n_{1}\left(1+n_{2}\right)+m_{1}$ vertices and $2 m_{1}+n_{1}\left(n_{2}+m_{2}\right)$ edges.

The degree of a vertex $w \in G_{1} \odot G_{2}$ is given in the following lemma.
Lemma $\left.2.1{ }^{(1)}\right)$. Let G_{1} and G_{2} be two vertex disjoint graphs. Then the degree of $w \in V\left(G_{1} \odot G_{2}\right)$ is

$$
d_{G_{1} \odot G_{2}}(w)= \begin{cases}d_{G_{1}}(w)+n_{2}, & \text { if } w \in V\left(G_{1}\right), \\ 2, & \text { if } w \in W\left(G_{1}\right), \\ d_{G_{2}}(w)+1, & \text { if } w \in V\left(G_{2}^{i}\right) \text { for some } i\end{cases}
$$

Theorem 2.2. The Y-index of the subdivision-vertex corona $G_{1} \odot G_{2}$ is given by

$$
\begin{aligned}
Y\left(G_{1} \odot G_{2}\right)= & Y\left(G_{1}\right)+4 n_{2} F\left(G_{1}\right)+6 n_{2}^{2} M_{1}\left(G_{1}\right)+8 n_{2}^{3} m_{1}+n_{1} n_{2}^{4}+16 m_{1} \\
& +n_{1} Y\left(G_{2}\right)+4 n_{1} F\left(G_{2}\right)+6 n_{1} M_{1}\left(G_{2}\right)+8 n_{1} m_{2}+n_{1} n_{2} .
\end{aligned}
$$

Proof. From definition of subdivision-vertex corona $G_{1} \odot G_{2}$, we get

$$
\begin{aligned}
Y\left(G_{1} \odot G_{2}\right)= & \sum_{w \in V\left(G_{1} \odot G_{2}\right)} d_{G}(w)^{4} \\
= & \sum_{w \in V\left(G_{1}\right)} d_{G}(w)^{4}+\sum_{w \in W\left(G_{1}\right)} d_{G}(w)^{4}+\sum_{w \in V\left(G_{2}^{i}\right)} d_{G}(w)^{4} \\
= & \sum_{i=1}^{n_{1}}\left(d_{G_{1}}\left(u_{i}\right)+n_{2}\right)^{4}+\sum_{i=1}^{m_{1}} 2^{4}+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left(d_{G_{2}}\left(v_{j}\right)+1\right)^{4} \\
= & \sum_{i=1}^{n_{1}}\left(d_{G_{1}}\left(u_{i}\right)^{4}+4 n_{2} d_{G_{1}}\left(u_{i}\right)^{3}+6 n_{2}^{2} d_{G_{1}}\left(u_{i}\right)^{2}+4 n_{2}^{3} d_{G_{1}}\left(u_{i}\right)+n_{2}^{4}\right) \\
& +16 m_{1}+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left(d_{G_{2}}\left(v_{j}\right)^{4}+4 d_{G_{2}}\left(v_{j}\right)^{3}+6 d_{G_{2}}\left(v_{j}\right)^{2}+4 d_{G_{2}}\left(v_{j}\right)+1\right) \\
= & Y\left(G_{1}\right)+4 n_{2} F\left(G_{1}\right)+6 n_{2}^{2} M_{1}\left(G_{1}\right)+8 n_{2}^{3} m_{1}+n_{1} n_{2}^{4}+16 m_{1} \\
& +n_{1}\left(Y\left(G_{2}\right)+4 F\left(G_{2}\right)+6 M_{1}\left(G_{2}\right)+8 m_{2}+n_{2}\right)
\end{aligned}
$$

from where the desired result follows.

Example 2.3. Let C_{n}, P_{n}, K_{n} be the cycle, the path and the complete graph, respectively, on n vertices. Then by Theorem 2.2, we obtain the Y-index of the following graphs.
(1) $Y\left(C_{n} \odot C_{m}\right)=n m^{4}+8 n m^{3}+24 n m^{2}+113 n m+32 n, n, m \geq 3$.
(2) $Y\left(C_{n} \odot P_{m}\right)=n m^{4}+8 n m^{3}+24 n m^{2}+113 n m-98 n, n \geq 3, m \geq 2$.
(3) $Y\left(C_{n} \odot K_{m}\right)=n m^{5}+n m^{4}+8 n m^{3}+24 n m^{2}+32 n m+32 n, n \geq 3, m \geq 1$.

Figure 1. Subdivision-vertex and subdivision-edge corona products of C_{3} and K_{3}

2.2 Subdivision-edge Corona

Definition 2.2. Let G_{1} and G_{2} be two simple connected graphs with n_{i} number of vertices and m_{i} number of edges respectively, $i \in\{1,2\}$. The subdivision-edge corona of G_{1} and G_{2}, denoted by $G_{1} \ominus G_{2}$, is obtained from $S\left(G_{1}\right)$ and m_{1} copies of G_{2}, all vertex-disjoint, by joining the i-th new vertex of $S\left(G_{1}\right)$, obtained by subdividing each edge of G_{1}, to every vertex in the i-th copy of G_{2}.

Let $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{2}}\right\}$. Denote by G_{2}^{i}, the i th copy of G_{2} in $G_{1} \ominus G_{2}$. Let $V\left(G_{2}^{i}\right)=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i n_{2}}\right\}, 1 \leq i \leq n_{1}$. Let $W\left(G_{1}\right)=\left\{w_{1}, w_{2}, \ldots, w_{m_{1}}\right\}$ be the set of new vertices inserted on the edges of G_{1}.

From definition, we have the subdivision-edge corona $G_{1} \ominus G_{2}$ has $m_{1}\left(1+n_{2}\right)+n_{1}$ vertices and $m_{1}\left(n_{2}+m_{2}+2\right)$ edges.

The degree of a vertex $w \in G_{1} \ominus G_{2}$ is given in the following lemma.
Lemma $2.4{ }^{(1)}$. Let G_{1} and G_{2} be two vertex disjoint graphs. Then the degree of $w \in V\left(G_{1} \ominus G_{2}\right)$ is

$$
d_{G_{1} \ominus G_{2}}(w)= \begin{cases}d_{G_{1}}(w), & \text { if } w \in V\left(G_{1}\right) \\ 2+n_{2}, & \text { if } w \in W\left(G_{1}\right), \\ d_{G_{2}}(w)+1, & \text { if } w \in V\left(G_{2}^{i}\right) \text { for some } i\end{cases}
$$

Theorem 2.5. The Y-index of the subdivision-edge corona $G_{1} \ominus G_{2}$ is given by

$$
Y\left(G_{1} \ominus G_{2}\right)=Y\left(G_{1}\right)+m_{1}\left(n_{2}+2\right)^{4}+m_{1} Y\left(G_{2}\right)+4 m_{1} F\left(G_{2}\right)+6 m_{1} M_{1}\left(G_{2}\right)+8 m_{1} m_{2}+m_{1} n_{2}
$$

Proof. From definition of subdivision-edge corona $G_{1} \ominus G_{2}$, we get

$$
\begin{aligned}
Y\left(G_{1} \ominus G_{2}\right) & =\sum_{w \in V\left(G_{1} \ominus G_{2}\right)} d_{G}(w)^{4} \\
& =\sum_{w \in V\left(G_{1}\right)} d_{G}(w)^{4}+\sum_{w \in W\left(G_{1}\right)} d_{G}(w)^{4}+\sum_{w \in V\left(G_{2}^{i}\right)} d_{G}(w)^{4} \\
& =\sum_{i=1}^{n_{1}}\left(d_{G_{1}}\left(u_{i}\right)\right)^{4}+\sum_{i=1}^{m_{1}}\left(2+n_{2}\right)^{4}+\sum_{i=1}^{m_{1}} \sum_{j=1}^{n_{2}}\left(d_{G_{2}}\left(v_{j}\right)+1\right)^{4} \\
& =\sum_{i=1}^{n_{1}} d_{G_{1}}\left(u_{i}\right)^{4}+\sum_{i=1}^{m_{1}}\left(2+n_{2}\right)^{4}+\sum_{i=1}^{m_{1}} \sum_{j=1}^{n_{2}}\left(d_{G_{2}}\left(v_{j}\right)+1\right)^{4} \\
& =Y\left(G_{1}\right)+m_{1}\left(n_{2}+2\right)^{4}+m_{1} \sum_{j=1}^{n_{2}}\left(d_{G_{2}}\left(v_{j}\right)^{4}+4 d_{G_{2}}\left(v_{j}\right)^{3}+6 d_{G_{2}}\left(v_{j}\right)^{2}+4 d_{G_{2}}\left(v_{j}\right)+1\right) \\
& =Y\left(G_{1}\right)+m_{1}\left(n_{2}+2\right)^{4}+m_{1} Y\left(G_{2}\right)+4 m_{1} F\left(G_{2}\right)+6 m_{1} M_{1}\left(G_{2}\right)+8 m_{1} m_{2}+m_{1} n_{2}
\end{aligned}
$$

from where the desired result follows.
Example 2.6. Let C_{n}, P_{n}, K_{n} be the cycle, the path and the complete graph, respectively, on n vertices. Then by Theorem 2.5 , we obtain the Y-index of the following graphs.
(1) $Y\left(C_{n} \ominus C_{m}\right)=n m^{4}+8 n m^{3}+24 n m^{2}+113 n m+32 n, n, m \geq 3$.
(2) $Y\left(C_{n} \ominus P_{m}\right)=n m^{4}+8 n m^{3}+24 n m^{2}+113 n m-98 n, n \geq 3, m \geq 2$.
(3) $Y\left(C_{n} \ominus K_{m}\right)=n m^{5}+n m^{4}+8 n m^{3}+24 n m^{2}+32 n m+32 n, n \geq 3, m \geq 1$.

2.3 Subdivision-vertex Neighborhood Corona

Definition 2.3. Let G_{1} and G_{2} be two simple connected graphs with n_{i} number of vertices and m_{i} number of edges respectively, $i \in\{1,2\}$. The subdivision-vertex neighborhood corona of G_{1} and G_{2}, denoted by $G_{1} \diamond G_{2}$, is obtained from $S\left(G_{1}\right)$ and n_{1} copies of G_{2}, all vertex-disjoint, by joining the neighbors of the i-th vertex of $V\left(G_{1}\right)$ to every vertex in the i-th copy of G_{2}.

Let $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{2}}\right\}$. Denote by G_{2}^{i}, the i th copy of G_{2} in $G_{1} \diamond G_{2}$. Let $V\left(G_{2}^{i}\right)=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i n_{2}}\right\}, 1 \leq i \leq n_{1}$. Let $W\left(G_{1}\right)=\left\{w_{1}, w_{2}, \ldots, w_{m_{1}}\right\}$ be the set of new vertices inserted on the edges of G_{1}.

The degree of a vertex $w \in G_{1} \diamond G_{2}$ is given in the following lemma.
Lemma 2.7 ([12]). Let G_{1} and G_{2} be two vertex disjoint graphs. Then the degree of $w \in$ $V\left(G_{1} \diamond G_{2}\right)$ is

$$
d_{G_{1} \diamond G_{2}}(w)= \begin{cases}d_{G_{1}}(w), & \text { if } w \in V\left(G_{1}\right), \\ 2+2 n_{2}, & \text { if } w \in W\left(G_{1}\right), \\ d_{G_{2}}\left(v_{j}\right)+d_{G_{1}}\left(u_{i}\right), & \text { if } w=v_{i j} \in V\left(G_{2}^{i}\right) \text { for some } i, j .\end{cases}
$$

Theorem 2.8. The Y-index of $G_{1} \diamond G_{2}$ is given by

$$
\begin{aligned}
Y\left(G_{1} \diamond G_{2}\right)= & Y\left(G_{1}\right)+16 m_{1}\left(n_{2}+1\right)^{4}+n_{1} Y\left(G_{2}\right)+8 m_{1} F\left(G_{2}\right) \\
& +6 M_{1}\left(G_{2}\right) M_{1}\left(G_{1}\right)+8 m_{2} F\left(G_{1}\right)+n_{2} Y\left(G_{1}\right) .
\end{aligned}
$$

Proof. From definition of $G_{1} \diamond G_{2}$, we have

$$
\begin{aligned}
Y\left(G_{1} \diamond G_{2}\right)= & \sum_{w \in V\left(G_{1} \diamond G_{2}\right)} d_{G}(w)^{4} \\
= & \sum_{w \in V\left(G_{1}\right)} d_{G}(w)^{4}+\sum_{w \in W\left(G_{1}\right)} d_{G}(w)^{4}+\sum_{w \in V\left(G_{2}^{i}\right)} d_{G}(w)^{4} \\
= & \sum_{i=1}^{n_{1}}\left(d_{G_{1}}\left(u_{i}\right)\right)^{4}+\sum_{i=1}^{m_{1}}\left(2+2 n_{2}\right)^{4}+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{1}}\left(u_{i}\right)\right)^{4} \\
= & Y\left(G_{1}\right)+m_{1}\left(2 n_{2}+2\right)^{4}+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left[d_{G_{2}}\left(v_{j}\right)^{4}+4 d_{G_{2}}\left(v_{j}\right)^{3} d_{G_{1}}\left(u_{i}\right)\right. \\
& \left.+6 d_{G_{2}}\left(v_{j}\right)^{2} d_{G_{1}}\left(u_{i}\right)^{2}+4 d_{G_{2}}\left(v_{j}\right) d_{G_{1}}\left(u_{i}\right)^{3}+d_{G_{1}}\left(u_{i}\right)^{4}\right] \\
= & Y\left(G_{1}\right)+16 m_{1}\left(n_{2}+1\right)^{4}+n_{1} Y\left(G_{2}\right)+8 m_{1} F\left(G_{2}\right)+6 M_{1}\left(G_{2}\right) M_{1}\left(G_{1}\right) \\
& +8 m_{2} F\left(G_{1}\right)+n_{2} Y\left(G_{1}\right)
\end{aligned}
$$

from where the desired result follows.
Example 2.9. Let C_{n}, P_{n}, K_{n} be the cycle, the path and the complete graph, respectively, on n vertices. Then by Theorem 2.8, we obtain the Y-index of the following graphs.
(1) $Y\left(C_{n} \diamond C_{m}\right)=16 n m^{4}+64 \mathrm{~nm}^{3}+96 \mathrm{~nm}^{2}+320 \mathrm{~nm}+32 n, n, m \geq 3$.
(2) $Y\left(C_{n} \diamond P_{m}\right)=16 \mathrm{~nm}^{4}+64 \mathrm{~nm}^{3}+96 \mathrm{~nm}^{2}+320 \mathrm{~nm}-318 n, n \geq 3, m \geq 2$.
(3) $Y\left(C_{n} \diamond K_{m}\right)=n m^{5}+20 n m^{4}+70 n m^{3}+100 \mathrm{~nm}^{2}+65 n m+32 n, n \geq 3, m \geq 1$.

Figure 2. Subdivision-vertex and subdivision-edge neighborhood corona products of C_{3} and K_{3}

2.4 Subdivision-edge Neighborhood Corona

Definition 2.4. For two vertex disjoint graphs G_{1} and G_{2}, the subdivision-edge neighborhood corona of G_{1} and G_{2}, denoted by $G_{1} \diamond G_{2}$, is obtained from $S\left(G_{1}\right)$ and m_{1} copies of G_{2}, all vertex-disjoint, by joining the neighbors of the i-th new vertex of $S\left(G_{1}\right)$ to every vertex in the i-th copy of G_{2}.

Let $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n_{1}}\right\}, E\left(G_{1}\right)=\left\{e_{1}, e_{2}, \ldots, e_{m_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{2}}\right\}$. Let $V\left(G_{2}^{i}\right)=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i n_{2}}\right\}, 1 \leq i \leq n_{1}$. Let $W\left(G_{1}\right)=\left\{w_{1}, w_{2}, \ldots, w_{m_{1}}\right\}$ be the set of new vertices inserted on the edges of G_{1}.

The degree of a vertex $w \in G_{1} \diamond G_{2}$ is given in the following lemma.
Lemma 2.10 ([12]). Let G_{1} and G_{2} be two vertex disjoint graphs. Then the degree of $w \in V\left(G_{1} \diamond G_{2}\right)$ is

$$
d_{G_{1} \diamond G_{2}}(w)= \begin{cases}\left(n_{2}+1\right) d_{G_{1}}(w), & \text { if } w \in V\left(G_{1}\right), \\ 2, & \text { if } w \in W\left(G_{1}\right), \\ d_{G_{2}}\left(v_{j}\right)+2, & \text { if } w=v_{i j} \in V\left(G_{2}^{i}\right) \text { for some } i, j\end{cases}
$$

Theorem 2.11. The Y-index of $G_{1} \diamond G_{2}$ is given by

$$
Y\left(G_{1} \diamond G_{2}\right)=\left(n_{2}+1\right)^{4} Y\left(G_{1}\right)+16 m_{1}+n_{1} Y\left(G_{2}\right)+8 n_{1} F\left(G_{2}\right)+24 n_{1} M_{1}\left(G_{2}\right)+64 n_{1} m_{2}+16 n_{1} n_{2}
$$

Proof. From definition of $G_{1} \diamond G_{2}$, we have

$$
\begin{aligned}
Y\left(G_{1} \diamond G_{2}\right) & =\sum_{w \in V\left(G_{1} \diamond G_{2}\right)} d_{G}(w)^{4} \\
& =\sum_{w \in V\left(G_{1}\right)} d_{G}(w)^{4}+\sum_{w \in W\left(G_{1}\right)} d_{G}(w)^{4}+\sum_{w \in V\left(G_{2}^{i}\right)} d_{G}(w)^{4} \\
& =\sum_{i=1}^{n_{1}}\left(n_{2}+1\right)^{4} d_{G_{1}}\left(v_{i}\right)^{4}+\sum_{i=1}^{m_{1}} 2^{4}+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left(d_{G_{2}}\left(v_{j}\right)+2\right)^{4} \\
& =\left(n_{2}+1\right)^{4} Y\left(G_{1}\right)+16 m_{1}+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left(d_{G_{2}}\left(v_{j}\right)^{4}+8 d_{G_{2}}\left(v_{j}\right)^{3}+24 d_{G_{2}}\left(v_{j}\right)^{2}+32 d_{G_{2}}\left(v_{j}\right)+16\right) \\
& =\left(n_{2}+1\right)^{4} Y\left(G_{1}\right)+16 m_{1}+n_{1}\left(Y\left(G_{2}\right)+8 F\left(G_{2}\right)+24 M_{1}\left(G_{2}\right)+64 m_{2}+16 n_{2}\right)
\end{aligned}
$$

from where the desired result follows.
Example 2.12. Let C_{n}, P_{n}, K_{n} be the cycle, the path and the complete graph, respectively, on n vertices. Then by Theorem 2.11, we obtain the Y-index of the following graphs.
(1) $Y\left(C_{n} \diamond C_{m}\right)=16 \mathrm{~nm}^{4}+64 n \mathrm{~m}^{3}+96 \mathrm{~nm}^{2}+320 \mathrm{~nm}+32 n, n, m \geq 3$.
(2) $Y\left(C_{n} \diamond P_{m}\right)=16 \mathrm{~nm}^{4}+64 \mathrm{~nm}^{3}+96 \mathrm{~nm}^{2}+320 \mathrm{~nm}-318 n, n \geq 3, m \geq 2$.
(3) $Y\left(C_{n} \diamond K_{m}\right)=n m^{5}+20 \mathrm{~nm}^{4}+70 \mathrm{~nm}^{3}+100 \mathrm{~nm}^{2}+65 \mathrm{~nm}+32 n, n \geq 3, m \geq 1$.

2.5 The Vertex-edge Corona

Definition 2.5. The vertex-edge corona of two graphs G_{1} and G_{2} is denoted by $G_{1} \otimes G_{2}$, is the graph obtained by taking one copy of G_{1}, n_{1} copies of G_{2} and also m_{1} copies of G_{2}, then
joining the i-th vertex of G_{1} to every vertex in the i-th vertex copy of G_{2} and also joining the end vertices of j-th edge of G_{1} to every vertex in the j-th edge copy of G_{2}, where $1 \leq i \leq n_{1}$ and $1 \leq j \leq m_{1}$.

Let the vertex set of the j-th edge copy of G_{2} is denoted by $V_{j_{e}}\left(G_{2}\right)=\left\{u_{j 1}, u_{j 2}, \ldots, u_{j_{2}}\right\}$ and the vertex set of the i-th vertex copy of G_{2} is denoted by $V_{i_{v}}\left(G_{2}\right)=\left\{w_{i 1}, w_{i 2}, \ldots, w_{i n_{2}}\right\}$. Also, let us denote the edge set of the j-th edge and i-th vertex copy of G_{2} by $E_{j_{e}}\left(G_{2}\right)$ and $E_{i_{v}}\left(G_{2}\right)$ respectively. From definition we have the vertex-edge corona $G_{1} \otimes G_{2}$ has $m_{1}+m_{1}\left(m_{2}+2 n_{2}\right)+n_{1}\left(n_{2}+m_{2}\right)$ edge and $n_{1}+n_{2}\left(n_{1}+m_{1}\right)$ vertices.

The degree of the vertices of $G_{1} \otimes G_{2}$ is given in the following lemma.
Lemma 2.13 ([13]). Let G_{1} and G_{2} be two vertex disjoint graphs. Then the degree of $G_{1} \otimes G_{2}$ is

$$
d_{G_{1} \otimes G_{2}}= \begin{cases}\left(n_{2}+1\right) d_{G_{1}}\left(v_{i}\right)+n_{2}, & \forall v_{i} \in V\left(G_{1}\right), \\ d_{G_{2}}\left(u_{j}\right)+2, & \forall u_{i j} \in V_{i_{e}}\left(G_{2}\right), \\ d_{G_{2}}\left(w_{j}\right)+1, & \forall w_{i j} \in V_{i_{e}}\left(G_{2}\right) .\end{cases}
$$

Theorem 2.14. The Y-index of $G_{1} \otimes G_{2}$ is given by

$$
\begin{aligned}
Y\left(G_{1} \otimes G_{2}\right)= & \left(n_{2}+1\right)^{4} Y\left(G_{1}\right)+4 n_{2}\left(n_{2}+1\right)^{3} F\left(G_{1}\right)+6 n_{2}^{2}\left(n_{2}+1\right)^{2} M_{1}\left(G_{1}\right)+8 n_{2}^{3}\left(n_{2}+1\right) m_{1} \\
& +n_{1} n_{2}^{4}+m_{1} Y\left(G_{2}\right)+m_{1} 8 F\left(G_{2}\right)+24 m_{1} M_{1}\left(G_{2}\right)+64 m_{1} m_{2}+16 m_{1} n_{2} \\
& +n_{1} Y\left(G_{2}\right)+4 n_{1} F\left(G_{2}\right)+6 n_{1} M_{1}\left(G_{2}\right)+8 n_{1} m_{2}+n_{1} n_{2} .
\end{aligned}
$$

Figure 3. Vertex-edge corona product of C_{3} and K_{3}
Communications in Mathematics and Applications, Vol. 14, No. 1, pp. 131, 141, 2023

Proof. From definition of $G_{1} \otimes G_{2}$, we have

$$
Y\left(G_{1} \otimes G_{2}\right)=\sum_{v_{i} \in V\left(G_{1}\right)} d_{G}\left(v_{i}\right)^{4}+\sum_{e_{i} \in E\left(G_{1}\right)} \sum_{u_{i j} \in V\left(G_{2}\right)} d_{G}\left(U_{i j}\right)^{4}+\sum_{v_{i} \in V\left(G_{1}\right)} \sum_{w_{i j} \in V\left(G_{2}\right)} d_{G}\left(w_{i j}\right)^{4} .
$$

Now to calculate the contribution of A_{1}, we have

$$
\begin{aligned}
A_{1}= & \sum_{v_{i} \in V\left(G_{1}\right)} d_{G}\left(v_{i}\right)^{4} \\
= & \sum_{v i \in V\left(G_{1}\right)}\left(\left(n_{2}+1\right) d_{G_{1}}\left(v_{i}\right)+n_{2}\right)^{4} \\
= & \sum_{v_{i} \in V\left(G_{1}\right)}\left(\left(n_{2}+1\right)^{4} d_{G_{1}}\left(v_{i}\right)^{4}+4 n_{2}\left(n_{2}+1\right)^{3} d_{G_{1}}\left(v_{i}\right)^{3}+6 n_{2}^{2}\left(n_{2}+1\right)^{2} d_{G_{1}}\left(v_{i}\right)^{2}\right. \\
& \left.+4 n_{2}^{3}\left(n_{2}+1\right) d_{G_{1}}\left(v_{i}\right)+n_{2}^{4}\right) \\
= & \left(n_{2}+1\right)^{4} Y\left(G_{1}\right)+4 n_{2}\left(n_{2}+1\right)^{3} F\left(G_{1}\right)+6 n_{2}^{2}\left(n_{2}+1\right)^{2} M_{1}\left(G_{1}\right)+8 n_{2}^{3}\left(n_{2}+1\right) m_{1}+n_{1} n_{2}^{4}, \\
A_{2}= & \sum_{e_{i} \in E\left(G_{1}\right) u_{i j} \in V\left(G_{2}\right)} d_{G}\left(u_{i j}\right)^{4} \\
= & \sum_{e_{i} \in E\left(G_{1}\right)} \sum_{u_{i j} \in V\left(G_{2}\right)}\left(d_{G_{2}}\left(u_{i j}\right)+2\right)^{4} \\
= & \sum_{e_{i} \in E\left(G_{1}\right)} \sum_{u_{j} \in V_{e}\left(G_{2}\right)}\left(d_{G_{2}}\left(u_{j}\right)^{4}+8 d_{G_{2}}\left(u_{j}\right)^{3}+24 d_{G_{2}}\left(u_{j}\right)^{2}+32 d_{G_{2}}\left(u_{j}\right)+16\right) \\
= & m_{1}\left(Y\left(G_{2}\right)+8 F\left(G_{2}\right)+24 M_{1}\left(G_{2}\right)+64 m_{2}+16 n_{2}\right) .
\end{aligned}
$$

Similarly, we get the contribution of A_{3} as follows,

$$
\begin{aligned}
A_{3} & =\sum_{v_{i} \in V\left(G_{1}\right)} \sum_{w_{i j} \in V\left(G_{2}\right)} d_{G}\left(w_{i j}\right)^{4} \\
& =\sum_{v_{i} \in V\left(G_{1}\right)} \sum_{w_{i j} \in V_{i v}\left(G_{2}\right)}\left(d_{G_{2}}\left(w_{i j}\right)+1\right)^{4} \\
& =\sum_{v_{i} \in V\left(G_{1}\right)} \sum_{w_{i j} \in V_{i v}\left(G_{2}\right)}\left(d_{G_{2}}\left(w_{i j}\right)^{4}+4 d_{G_{2}}\left(w_{i j}\right)^{3}+6 d_{G_{2}}\left(w_{i j}\right)^{2}+4 d_{G_{2}}\left(w_{i j}\right)+1\right) \\
& =n_{1}\left(Y\left(G_{2}\right)+4 F\left(G_{2}\right)+6 M_{1}\left(G_{2}\right)+8 m_{2}+n_{2}\right) .
\end{aligned}
$$

Adding A_{1}, A_{2} and A_{3}, we get the desired result.
Example 2.15. Let C_{n}, P_{n}, K_{n} be the cycle, the path and the complete graph, respectively, on n vertices. Then by Theorem (2.14), we obtain the Y-index of the following graphs.
(1) $Y\left(C_{n} \otimes C_{m}\right)=81 \mathrm{~nm}^{4}+216 \mathrm{~nm}^{3}+216 \mathrm{~nm}^{2}+433 \mathrm{~nm}+16 \mathrm{n}, \mathrm{n}, m \geq 3$.
(2) $Y\left(C_{n} \otimes K_{m}\right)=2 \mathrm{~nm}^{5}+85 \mathrm{~nm}^{4}+222 \mathrm{~nm}^{3}+220 \mathrm{~nm}^{2}+97 \mathrm{~nm}+16 n, n \geq 3, m \geq 1$.

3. Conclusion

We calculated the Y-index of many types of corona product of two graphs such as subdivisionvertex corona, subdivision-edge corona, subdivision-vertex neighborhood corona, subdivisionedge neighborhood corona and vertex-edge corona. As an application we have given some explicit expressions for corona products of some graphs. For further study, other topological indices of these corona product of graphs can be computed.

Communications in Mathematics and Applications, Vol. 14, No. 1, pp. 131,141, 2023

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

[1] H. Abdo, D. Dimitrov and I. Gutman, On extremal trees with respect to the F-index, Kuwait Journal of Science 44(3) (2017), 1-8, URL: https://journalskuwait.org/kjs/index.php/KJS/article/view/1616.
[2] V. S. Agnes and C. Kannadasan, Y-index of four new tensor products of graphs and their complements, Indian Journal of Natural Sciences 12(70) (2022), 38995-39004.
[3] V. S. Agnes, Degree distance and Gutman index of corona product of graphs, Transactions on Combinatorics 4(3) (2015), $11-23$, DOI: 10.22108/toc.2015.6332.
[4] A. Alameri, N. Al-Naggar, M. Al-Rumaima and M. Alsharafi, Y-index of some graph operations, International Journal of Applied Engineering Research 15(2) (2020), 173-179.
[5] Y. Alizadeh, A. Iranmanesh, T. Došlić and M. Azari, The edge wiener index of suspensions, bottlenecks, and thorny graphs, Glasnik Matematicki 49(69) (2014), 1 - 12 DOI: 10.3336/gm.49.1.01
[6] H. Bian, X. Ma and E. Vumar, The Wiener-type indices of the corona of two graphs, Ars.Combin. 107(2012), 193-199, DOI: ref.
[7] N. De, Computing F-index of different corona products of graphs, Bulletin of Mathematical Sciences and Applications 19 (2017), 24 - 30, DOI: 10.18052/www.scipress.com/BMSA.19.24.
[8] N. De, S. M. A. Nayeem and A. Pal, Modified eccentric connectivity index and polynomial of corona product of graphs, International Journal of Computer Applications 132(9) (2015), 1 - 5 , DOI: 10.5120/ijca2015907536.
[9] N. De, S. M. A. Nayeem and A. Pal, Total eccentricity index of the generalized hierarchical product of graphs, International Journal of Applied and Computational Mathematics 1 (2015), 503-511, DOI: 10.1007/s40819-014-0016-4.
[10] B. Furtula and I. Gutman, A forgotten topological index, Journal of Mathematical Chemistry 53(4) (2015), 1184 - 1190, DOI: $10.1007 / \mathrm{s} 10910-015-0480-\mathrm{z}$.
[11] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons, Chemical Physics Letters 17(4) (1972), 535 - 538, DOI: 10.1016/0009-2614(72)85099-1.
[12] X. Liu and P. Lu, Spectra of subdivision-vertex and subdivision-edge neighbourhood coronae, Linear Algebra and its Applications 438(8) (2013), 3547 - 3559, DOI: 10.1016/j.laa.2012.12.033.
[13] R. Malpashree, Some degree and distance based topological indices of vertex-edge corona of two graphs, Journal of the International Mathematics Virtual Institute 6 (2016), 1 - 29, URL: http: //www.imvibl.org/journal/6_16/journal_imvi_6_2016_1_29.pdf.

Communications in Mathematics and Applications, Vol. 14, No. 1, pp. 131,141, 2023
[14] Z. Yarahmadi and A. R. Ashrafi, The Szeged, vertex PI, first and second Zagreb indices of corona product of graphs, Filomat 26(3) (2012), 467 - 472, URL: https://www.jstor.org/stable/24895746.

[^0]: ${ }^{1}$ P. Lu and Y. Miao, Spectra of the subdivision-vertex and subdivision-edge coronae, arXiv:1302.0457v2, URL: https://arxiv.org/pdf/1302.0457.pdf.

