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1. Introduction
Fixed point theory is an important branch of non-linear analysis due to its application potential.
Banach’s contraction principle [4] is one of the most important result in non-linear analysis.
This theorem has been generalized either by generalizing the underlying space or by viewing it
as a common fixed point theorem along with other selfmaps.

Sedghi et al. [5] introduced D∗-metric spaces. In 2006, Mustafa and Sims [3] have initiated
G-metric spaces as generalization of metric spaces. Later, Sedghi et al. [6] proposed S-metric
spaces in 2012. These S-metric spaces evinced interest in many researchers. Several fixed point
theorems are established on these spaces.

The notion of compatibility of self-maps is introduced as a generalization of commuting
maps by Jungck [1,2]. Recently, common fixed theorems were established by using compatibility
in [7].
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In the present paper, we establish a necessary and sufficient condition for the existence of a
common fixed point for two selfmaps of a S-metric space. Further we deduce two interesting
consequences of our main theorem.

2. Preliminaries
We now recall some basic definitions which will be useful in our later discussion.

Definition 2.1 ([6]). Let X be a non empty set. By S-metric, we mean a function S : X3 → [0,∞)
which satisfies the following conditions for each x, y, z,w ∈ X

(a) S(x, y, z)≥ 0;

(b) S(x, x, y)= 0 if and only if x = y= z;

(c) S(x, y, z)≤ S(x, x,w)+S(y, y,w)+S(z, z,w).

In this case (X ,S) is called a S-metric space.

Example 2.2. Let X =R and S :R3 → [0,∞) be defined by

S(x, y, z)= |y+ z−2x|+ |y− z|, for x, y, z ∈R,

then (X ,S) is a S-metric space.

Remark 2.3. It is shown ([6, Lemma 2.5]) in a S-metric space that

S(x, x, y)= S(y, y, x), for all x, y ∈ X .

Definition 2.4 ([6]). Let (X ,S) be a S-metric space. A sequence {yn} in X is said to be convergent,
if there is a y ∈ X such that S(yn, yn, y)→ 0, that is for each ϵ> 0, there exists an n0 ∈N such
that for all n ≥ n0, we have S(yn, yn, y)< ϵ and in this case we write lim

n→∞ yn = y.

Definition 2.5 ([6]). Let (X ,S) be a S-metric space. A sequence {yn} in X is called a Cauchy
sequence if to each ϵ> 0, there exists n0 ∈N such that S(yn, yn, y)< ϵ for each n,m ≥ n0.

Definition 2.6 ([6]). Let (X ,S) be a S-metric space. If there exists sequences {yn} and {xn} such
that lim

n→∞ yn = y and lim
n→∞xn = x then lim

n→∞S(yn, yn, xn)= S(y, y, x), then we say that S(y, x, z) is
continuous in y and x.

Definition 2.7 ([6]). If B and A are self-maps of a S-metric space (X ,S) such that for every
sequence {yn} in X with

lim
n→∞Byn = lim

n→∞ A yn = u, for some u ∈ X .

We have

lim
n→∞S(BA yn,BA yn, ABxn)= 0,

then B and A are said to be compatible.

Clearly, commuting self-maps of a S-metric space are compatible but not conversely.

Definition 2.8. A function χ : [0,∞)→ [0,∞) is said to be a contractive modulus if χ(0)= 0 and
χ(r)< r for r > 0.
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Definition 2.9. If B and A be self-maps of a non empty set X such that B(X ) ⊆ A(X ), then
for any y0 ∈ X , if {yn} is a sequence in X such that A yn = Byn−1 for n ≥ 1 then {yn} is called an
associated sequence of y0 relative to two self-maps B and A.

3. Main Theorem
Theorem 3.1. Suppose A is continuous selfmap of a S-metric space (X ,S), then A has fixed
point in X if and only if there is a contractive modulus χ and a selfmap B of X such that

(i) A and B are compatible,

(ii) S(Bx,Bx,By)≤ χ(S(Ax, Ax, A y)) for all x, y ∈ X , and

(iii) there is a point y0 ∈ X and an associated sequence {yn} of y0 relative to the selfmaps A and
B such that the sequence {A yn} converges to some point u of X . Further, Bu is the unique
common fixed point of A and B.

Proof. First assume that A has a fixed point say ‘p’, p ∈ X then Ap = p.
Define B : X → X by Bx = p for all x ∈ X .
Now for any x ∈ X , we have BA(x)= B(Ax)= p and (AB)x = ABx = Ap = p giving that AB = BA
showing that A and B are compatible, proving condition (i) of Theorem 3.1.
We have

S(Bx,Bx,By)= S(p, p, p)= 0≤ χ(S(Ax, Ax, A y), for any x, y ∈ X ,

proving condition (ii) of Theorem 3.1.
Now an associated sequence of y0 = p relative to the selfmaps A and B is given by yn = p for

n = 0,1,2, . . . and since {A yn} is a constant sequence converging to p ∈ X .
Proving condition (iii) of Theorem 3.1.
Conversely, assume that there is a selfmap B on X and a contractive modulus χ satisfying
conditions (i), (ii) and (iii) of Theorem 3.1.
Now from condition (iii) of Theorem 3.1, we get an associated sequence {yn} of y0 relative to the
selfmaps A and B such that the sequence A yn = Byn−1 for n = 1,2,3 · · · and A yn → u as n →∞
for some u ∈ X . Then Byn → u as n →∞.
Now we claim that B is continuous on X .
Let {zn} be a sequence in X such that zn → z as n → ∞, z ∈ X . As A is continuous, we
have Azn → Az as n → ∞, combining this with inequality (ii) of the theorem, we obtain
S(Bzn,Bzn,Bz) ≤ χ(S(Azn, Azn, Az) → 0 as n → ∞ from which it follows that Bzn → Bz as
n →∞, proving B is continuous.
Moreover, we have BA yn → Bu, AByn → Au as n →∞, since A yn → t, Byn → t as n →∞ and
by the compatibility of A and B, we have

lim
n→∞S(AByn, AByn,BA yn)= 0

giving S(At, At,Bt)= 0. Hence At = Bt.
In order to prove ABt = BAt, take xn = u for n = 1,2,3 · · · , so that Axn → Au and Bxn → u as
n →∞. Since Au = Bu, A and B are compatible together with continuity of A and B, we have

lim
n→∞S(ABxn, ABxn,BAxn)= 0
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which implies that S(ABu, ABu,BAu)= 0 and hence ABu = BAu.
Further, we have

AAu = ABu = BAu = BBu. (3.1)

If Bu ̸= BBu, then S(Bu,Bu,BBu)> 0.
Hence

χ(S(Bu,Bu,BBu))< S(Bu,Bu,BBu). (3.2)

But from (ii) of Theorem 3.1 and (3.1), we get

S(Bu,Bu,BBu)≤ χ(S(Au, Au, ABu))= χ(S(Bu,Bu,BBu)),

contradicting (3.2).
Therefore Bu = BBu. Using this in (3.1) we get BBu = Bu = ABu, showing that Bu is a common
fixed point of A and B.
Now, it remains to show the uniqueness of the fixed point.
If α,β ∈ X with α ̸=β such that α= Aα= Bα and β= Aβ= Bβ.
Since α ̸=β we have

S(α,α,β) ̸= 0,

thus

χ(S(α,α,β))< S(α,α,β) (3.3)

But from condition (ii) of Theorem 3.1, we have

S(α,α,β)= S(Bα,Bα,Bβ)≤ χ(S(Aα, Aα, Aβ))= χ(S(α,α,β)),

which contradicts (3.3) and hence α=β.
Completing proof of the Theorem 3.1.

Corollary 3.2. Let A be a continuous selfmap of a S-metric space (X ,S), then A has fixed point
in X if and only if there is a contractive modulus χ and a selfmap B of X such that

(i) AB = BA,

(ii) S(Bx,Bx,By)≤ χ(S(Ax, Ax, A y)) for all x, y ∈ X , and

(iii) there is a point y0 ∈ X and an associated sequence {yn} of y0 relative to the selfmaps A
and B such that the sequence {A yn} converges to some point u of X . Further, Bu is unique
common fixed point of A and B.

Proof. Commuting pair of selfmaps are always compatible and hence the proof of the corollary
follows from Theorem 3.1.

Corollary 3.3. Let A and B are selfmaps of a S-metric space (X ,S). Suppose A is continuous
and if there is a contractive modulus χ and a positive integer k such that

(i) AB = BA,

(ii) S(Bmx,Bmx,Bm y)≤ χ(S(Ax, Ax, A y)) for all x, y ∈ X , and

(iii) there is a point y0 ∈ X and an associated sequence {yn} of y0 relative to the selfmaps A and
Bm such that the sequence {A yn} converges to some point u of X . Further, Bu is unique
common fixed point of A and B.
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Proof. From condition (i) of Corollary 3.3, we get ABm = Bm A. Thus A and Bm are commuting
and hence satisfying the hypothesis of Theorem 3.1 and therefore A, Bm have a unique common
fixed point say c, then Bmc = c = Ac. Now BmBc = Bm+1c = BBmc = Bc and ABc = BAc = Bc.
This shows that Bc is a common fixed point of A and Bm.
The uniqueness of c implies Bc = c, since Ac = c, showing that c is a common fixed point of A
and B.
We now prove uniqueness of common fixed point of A and B.
Let α,β ∈ X such that α= Aα= Bα and β= Aβ= Bβ, so that Bmα=α and Bmβ= β, showing
α,β are common fixed points of A and Bm.
From which it follows α=β, since the fixed point of A and Bm is unique.
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