
Communications in Mathematics and Applications
Vol. 14, No. 1, pp. 117–129, 2023
ISSN 0975-8607 (online); 0976-5905 (print)
Published by RGN Publications http://www.rgnpublications.com

DOI: 10.26713/cma.v14i1.1831

Research Article

Proximal Point Algorithm Based on AP Iterative
Technique for Nonexpansive Mappings in CAT(0)
Spaces
Anju Panwar1 , Jyoti2 , Prateek Mor3 and Pinki*1

1Department of Mathematics, Maharshi Dayanand University, Rohtak 124001, Haryana, India
2Department of Mathematics, Bhagat Phool Singh Institute of Higher Learning, Khanpur Kalan,

Sonipat 131305, Haryana, India
3Department of Mathematics, Government College Israna, Panipat 132103, Haryana, India
*Corresponding author: yadav.pinki2015@gmail.com

Received: February 27, 2022 Accepted: October 30, 2022

Abstract. In this paper, we introduce the modified proximal point algorithm for solving minimization
problems in CAT(0) spaces. We then show that the sequence converges to a common fixed point
of nonexpansive mapping and a minimizer of a convex function. Finally, we present a numerical
illustration for supporting our main result. The findings in this paper are a generalization of certain
corresponding results given by some authors.

Keywords. Proximal point algorithm, Nonexpansive mapping, CAT(0) space, Convex minimization
problem

Mathematics Subject Classification (2020). 47H10, 54H25, 54E50

Copyright © 2023 Anju Panwar, Jyoti, Prateek Mor and Pinki. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

1. Introduction
Kirk [21] was the first to investigate fixed point theory in a CAT(0) space. Fixed point theory for
various forms of mappings in CAT(0) spaces has gotten a lot of attention since then. Dhompongsa
and Panyanak [10] investigated the convergence of nonexpansive mappings in CAT(0) spaces in
2008. Following that, numerous authors investigated the convergence of nonexpansive mappings
using various iteration procedures. Lamba and Panwar [23] recently developed new fixed point
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results in the context of CAT(0) spaces using AP iteration process, and they also interpreted the
efficiency of new three step iteration process using a numerical example. AP iteration process is
described as follows: x1 ∈ C and

zn = T((1−bn)xn ⊕bnTxn),
yn = T((1−an)Txn ⊕anTzn),
xn+1 = T yn,

for each n ∈N, where {an}, {bn} are sequences in (0,1) and T is a self map defined on a nonempty
subset C of a CAT(0) space.

For example, [14, 24,25] has some interesting results for solving a fixed point problem of
nonlinear mappings in the context of CAT(0) spaces.

Let (X ,d) be a metric space and f : X → (−∞,∞] be a proper and convex function. One of
the major problems in optimization is to find x ∈ X such that

f (x)=min
y∈X

f (y).

The set of minimizers of f is denoted by argmin
y∈X

f (y). The well-known proximal point algorithm

(also known as the PPA) was developed by Martinet [28] in 1970 and has proven to be a
successful and strong technique for tackling this problem. The convergence to a solution of the
convex minimization problem in the framework of Hilbert spaces using PPA was studied by
Rockafellar [31] in 1976.

Indeed, let f be a proper, convex, and lower semi-continuous(lsc) function on a Hilbert space
H that reaches its minimum. The PPA is defined by x1 ∈ H and

xn+1 = argmin
y∈H

(
f (y)+ 1

2λn
∥y− xn∥2

)
,

for each n ∈ N, where λn > 0. It was proved that the sequence {xn} converges weakly to a

minimizer of f provided
∞∑

n=1
λn =∞. However, as Güler [16] has demonstrated, the PPA does

not always converges strongly in general. In the year 2000, Kamimura and Takahashi [19]
combined the PPA and Halpern’s algorithm [17] to ensure strong convergence.

Bačák [5] introduced the PPA in a CAT(0) space (X ,d) in 2013, as follows: x1 ∈ X and

xn+1 = argmin
y∈X

(
f (y)+ 1

2λn
d2(y, xn)

)
,

for each n ∈ N, where λn > 0. It was proven that if f has a minimizer and
∞∑

n=1
λn =∞, then

the sequence {xn} ∆-converges to its minimizer based on the Fejer monotonicity idea (see
also [3]). Bačák [4] used a split version of the PPA in complete CAT(0) spaces to minimize a sum
of convex functions in 2014.

Many PPA convergence techniques for solving optimization problems have recently been
extended to the setting of manifolds from the classical linear spaces such as Euclidean spaces,
Hilbert spaces and Banach spaces [13, 26, 29, 30, 34]. In the field of analysis and geometry,
minimizers of the objective convex functionals in nonlinear spaces play a vital role. A wide
range of applications in computer vision, machine learning, electronic structure computation,
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system balance, and robot manipulation can be considered as addressing optimization problems
on manifolds [1,32,33].

We present a modified proximal point algorithm for two nonexpansive mappings in CAT(0)
spaces using the AP-type iteration process, and show various convergence results of the proposed
process under some moderate conditions, based on earlier work. Our major findings extend the
discoveries of Lamba and Panwar [23] from one nonexpansive mapping to two nonexpansive
mappings in CAT(0) spaces involving the convex and lower semi-continuous functions.

2. Preliminaries
For the sake of simplicity, we recall a few definitions, exceptions and conclusions.

The researchers [7, 8, 15] provide a full overview of CAT(0) spaces and their importance
in several disciplines of mathematics. We compose (1− s)x⊕ sy for the unique point z in the
geodesic segment joining from x to y such that

d(z, x)= sd(x, y), d(z, y)= (1− s)d(x, y).

We also denote by [x, y] the geodesic segment joining from x to y, i.e., [x, y]= {(1− s)x⊕ sy : s ∈
[0,1]}.

Example 2.1 ([6]). When endowed with the induced metric, a convex subset of Euclidean space
En is CAT(0) and any real inner product space (not necessarily complete) is a CAT(0) space.

Example 2.2 ([8]). Attach together three copies of the ray [0,∞)⊂R by gluing at the point 0.
The resulting space has nonpositive curvature.

Lemma 2.3 ([6]). Let X be a CAT(0) space. Then

d ((1− s)x⊕ sy, z)≤ (1− s)d(x, z)+ sd(y, z), for all x, y, z ∈ X and s ∈ [0,1].

Lemma 2.4 ([6]). Let X be a CAT(0) space. Then

d2 ((1− s)x⊕ sy, z)≤ (1− s)d2(x, z)+ sd2(y, z)− s(1− s)d2(x, y), for all x, y, z ∈ X and s ∈ [0,1].

Remember that a function f : C → (−∞,∞] defined on a convex subset C of a CAT(0) space
is convex if the function f ◦γ is convex for any geodesic γ : [a,b]→ C. We say that a function on
C is lower semi-continuous at a point x ∈ C if

f (x)≤ liminf
n→∞ f (xn),

for each sequence xn → x. A function f is said to be lower semi-continuous on C if it is lower
semi-continuous at any point in C.

For any λ> 0, define the Moreau-Yosida resolvent of f in CAT(0) spaces as

Jλ(x)= argmin
y∈X

(
f (y)+ 1

2λ
d2(y, x)

)
for all x ∈ X . The mapping Jλ is well defined for all λ> 0 (see [18,29]).
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Lemma 2.5 ([3]). Let f : X → (−∞,∞] be a proper, convex and lsc function, where (X ,d) is a
complete CAT(0) space. Then the set F(Jλ) of fixed points of the resolvent associated with f
coincides with the set argmin

y∈X
f (y) of minimizers of f .

A self map T defined on a nonempty subset C of a CAT(0) space is said to be nonexpansive if

d(Tx,T y)≤ d(x, y),

for all x, y ∈ C. Also, the fixed point set of T is denoted by F(T) i.e., F(T)= {x ∈ C : x = Tx}.

Lemma 2.6 ([22]). For any λ> 0, the resolvent Jλ of f is nonexpansive.

Lemma 2.7 ([2]). Let f : X → (−∞,∞] be a proper, convex and lsc function, where (X ,d) is a
complete CAT(0) space. Then, for all x, y ∈ X and λ> 0, we have

1
2λ

d2(Jλx, y)− 1
2λ

d2(x, y)+ 1
2λ

d2(x, Jλx)+ f (Jλx)≤ f (y).

In 1976, Lim [27] introduced the concept of ∆-convergence in a general metric space. In 2008,
Kirk and Panyanak [22] specialized Lim’s concept to CAT(0) spaces and proved that it is similar
to the weak convergence in Banach space setting. Since the notion of ∆-convergence has been
widely studied. We now give the concept of ∆-convergence and collect some of its basic properties.

Let {xn} be a bounded sequence in a CAT(0) space X . For x ∈ X , we set

r(x, {xn})= limsup
n→∞

d(x, {xn}).

The asymptotic radius r({xn}) of {xn} is given by

r({xn})= inf{r(x, {xn}) : x ∈ X }.

The asymptotic radius rC({xn}) of {xn} with respect to C ⊂ X is given by

rC({xn})= inf{r(x, {xn}) : x ∈ C}.

The asymptotic center A({xn}) of {xn} is the set

A({xn})= {x ∈ X : r(x, {xn})= r({xn})},

and the asymptotic center AC({xn}) of {xn} with respect to C ⊂ X is the set

AC({xn})= {x ∈ C : r(x, {xn})= rC({xn})}.

Proposition 2.8 ([12]). Let X be a complete CAT(0) space, {xn} be a bounded sequence in X and
C be a closed convex subset of X . Then

(i) there exists a unique point u ∈ C such that r(u, {xn})= inf
x∈C

r(x, {xn});

(ii) A({xn}) and AC({xn}) are both singleton.

Definition 2.9 ([22]). Let X be a CAT(0) space. A sequence {xn} in E is said to ∆-converge to
p ∈ X , if p is the unique asymptotic center of {un} for each subsequence {un} of {xn}. In this case
we write ∆- lim

n→∞xn = p and call p the ∆-limit of {xn}.
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Lemma 2.10 ([22]). Every bounded sequence in a complete CAT(0) space admits a ∆-convergent
subsequence.

Lemma 2.11 ([11]). Let X be a complete CAT(0) space, C be closed convex subset of X . If {xn} is
a bounded sequence in C, then the asymptotic center of {xn} is in C.

Lemma 2.12 ([10]). Let C be a closed and convex subset of a complete CAT(0) space X and
T be a nonexpansive self mapping on C. Let {xn} be a bounded sequence in C such that
lim

n→∞d(xn,Txn)= 0 and ∆- lim
n→∞xn = x. Then x = Tx.

Lemma 2.13 ([10]). If {xn} is a bounded sequence in a complete CAT(0) space with A({xn})= {x},
{un} is a subsequence of {xn} with A({un})= {u} and the sequence {d(xn,u)} converges, then x = u.

Lemma 2.14 (The resolvent identity, [18]). Let (X ,d) be a complete CAT(0) space and
f : X → (−∞,∞] be proper convex and lower semi-continuous. Then, the following identity
holds:

Jλx = Jµ
(
λ−µ

λ
Jλx⊕ µ

λ
x
)
, for all x ∈ X and λ>µ> 0.

3. Main Results
Theorem 3.1. Consider f : X → (−∞,∞] is a proper, convex and lsc function, where (X ,d)
is a complete CAT(0) space. Let T1,T2 be nonexpansive self maps defined on X such that
Ω = F(T1)∩ F(T2)∩ argmin

y∈X
f (y) ̸= φ. Consider {an} and {bn} are sequences with 0 < a ≤ an,

bn ≤ b < 1 for all n ∈N and for some a,b ∈ (0,1) and {λn} is a sequence such that λn ≥λ> 0 for
all n ∈N and for some λ. Let {xn} be generated in the following manner:

un = argmin
y∈X

(
f (y)+ 1

2λn
d2(y, xn)

)
,

zn = T1((1−bn)xn ⊕bnT1un),
yn = T2((1−an)T1xn ⊕anT2zn),
xn+1 = T2 yn,

(3.1)

for each n ∈N. Then, we have the following:
(i) lim

n→∞d(xn, q) exists for all q ∈Ω;

(ii) lim
n→∞d(xn,un)= 0;

(iii) lim
n→∞d(xn,T1xn)= lim

n→∞d(xn,T2xn)= 0.

Proof. Suppose q ∈Ω. Then q = T1q = T2q and since f is lsc function, therefore f (q)≤ f (y) for
all y ∈ X . Also, f (q)+ 1

2λn
d2(q, q) ≤ f (y)+ 1

2λn
d2(y, q) for all y ∈ X and hence q = Jλn q for all

n ∈N.

(i) First, we prove that lim
n→∞d(xn, q) exists. Writing un = Jλn xn ∀ n ∈N. Using Lemma 2.6, we

have

d(un, q)= d(Jλn xn, Jλn q)≤ d(xn, q)
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Also, by Lemma 2.3 and (3.1)

d(zn, q)= d (T1((1−bn)xn ⊕bnT1un, q))

≤ d ((1−bn)xn ⊕bnT1un, q)

≤ (1−bn)d(xn, q)+bnd(T1un, q)

≤ (1−bn)d(xn, q)+bnd(un, q)

≤ (1−bn)d(xn, q)+bnd(xn, q)

= d(xn, q). (3.2)

Using (3.2), we get

d(yn, q)= d (T2((1−an)T1xn ⊕anT2zn, q))

≤ d((1−an)T1xn ⊕anT2zn, q)

≤ (1−an)d(T1xn, q)+and(T2zn, q)

≤ (1−an)d(xn, q)+and(zn, q)

≤ (1−an)d(xn, q)+and(xn, q)

= d(xn, q). (3.3)

Using (3.3),

d(xn+1, q)= d(T2 yn, q)

≤ d(yn, q)

≤ d(xn, q). (3.4)

Hence lim
n→∞d(xn, q) exists and lim

n→∞d(xn, q)= c for some c.

(ii) Now we prove lim
n→∞d(xn,un)= 0. Using Lemma 2.5, we see that

1
2λn

d2(Jλn(xn), q)− 1
2λn

d2(xn, q)+ 1
2λn

d2(xn, Jλn(xn))+ f (Jλn(xn))≤ f (q) ,

1
2λn

d2(un, q)− 1
2λn

d2(xn, q)+ 1
2λn

d2(xn,un)+ f (un)≤ f (q) ,

1
2λn

d2(un, q)− 1
2λn

d2(xn, q)+ 1
2λn

d2(xn,un)≤ f (q)− f (un).

But f (q)≤ f (un) ∀ n ∈N, hence

d2(un, q)−d2(xn, q)+d2(xn,un)≤ 0 ,

d2(xn,un)≤ d2(xn, q)−d2(un, q).

To prove lim
n→∞d(xn,un)= 0, suppose that lim

n→∞d(un, q)= c for c > 0.
Now,

d(xn+1, q)≤ d(yn, q).

So, we have

c = liminf
n→∞ d(xn, q)= liminf

n→∞ d(xn+1, q)≤ liminf
n→∞ d(yn, q),
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and also,

limsup
n→∞

d(yn, q)≤ limsup
n→∞

d(xn, q)= c.

Thus,

lim
n→∞d(yn, q)= c

and

d(zn, q)≤ (1−bn)d(xn, q)+bnd(xn, q) ,

d(xn, q)≤ d(xn, q)−d(zn, q)
bn

+d(un, q) .

It gives that

c = liminf
n→∞ d(xn, q)≤ liminf

n→∞ d(un, q) .

Also,

limsup
n→∞

d(un, q)≤ c .

It shows that

lim
n→∞d(xn,un)= 0 .

(iii) To show

lim
n→∞d(xn,T1xn)= lim

n→∞d(xn,T2xn)= 0.

We observe that

d2(zn, q)= d2(T1((1−bn)xn ⊕bnT1un, q))

= d2((1−bn)xn ⊕bnT1un, q)

= (1−bn)d2(xn, q)+bnd2(T1un, q)−bn(1−bn)d2(xn,T1un)

= d2(xn, q)−a(1−b)d2(xn,T1un),

d2(xn,T1un)≤ 1
a(1−b)

(d2(xn, q)−d2(zn, q))

→ 0 as n →∞.

Hence

lim
n→∞d(xn,T1un)= 0.

It follows that

d(xn,T1xn)≤ d(xn,T1un)+d(T1un +T1xn)

→ 0 as n →∞.

Similarly, we obtain

d2(yn, q)= d2(T2((1−an)T1xn ⊕anT2zn, q))

≤ d2((1−an)T1xn ⊕anT2zn, q)

≤ (1−an)d2(T1xn, q)+and2(T2zn, q)−an(1−an)d2(T1xn,T2zn)
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≤ (1−an)d2(xn, q)+and2(zn, q)−an(1−an)d2(T1xn,T2zn)

≤ d2(xn, q)−an(1−an)d2(T1xn,T2zn)

d2(T1xn,T2zn)≤ 1
a(1−b)

(d2(xn, q)−d2(yn, q))

⇒ lim
n→∞d(T1xn,T2zn)= 0. (3.5)

Also,

d(un,T1un)≤ d(un, xn)+d(xn,T1un)

→ 0 as n →∞.

Now,

d(zn,un)= d(T1((1−bn)xn ⊕bnT1un),un)

≤ d((1−bn)xn ⊕bnT1un,un)

≤ (1−bn)d(xn,un)+bnd(T1un,un)

→ 0 as n →∞
and

d(xn, zn)≤ d(xn,un)+d(un, zn)

0 as n →∞.

So, it follows that

d(xn,T2xn)≤ d(xn,T1xn)+d(T1xn,T2zn)+d(zn, xn)

→ 0 as n →∞.

So, this completes the proof.

Next, we prove the ∆-convergence of our iteration.

Theorem 3.2. Consider f : X → (−∞,∞] is a proper, convex and lsc function, where (X ,d)
is a complete CAT(0) space. Let T1,T2 be nonexpansive self maps defined on X such that
Ω = F(T1)∩ F(T2)∩ argmin

y∈X
f (y) ̸= φ. Consider {an} and {bn} are sequences with 0 < a ≤ an,

bn ≤ b < 1 for all n ∈N and for some a,b ∈ (0,1) and {λn} is a sequence such that λn ≥λ> 0 for
all n ∈ N and for some λ. If {xn} is the sequence formed by (3.1), then {xn} ∆-converges to an
element of Ω.

Proof. In fact, it follows from Lemma 2.14 and Theorem 3.1(ii), that

d(xn, Jλxn)≤ d(xn,un)+d(un, Jλxn)

= d(Jλxn, Jλn xn)+d(xn,un)

= d
(
Jλxn, Jλ

(
λn −λ

λn
Jλn xn ⊕ λ

λn
xn

))
+d(xn,un)

≤ d
(
xn,

(
1− λ

λn

)
Jλn xn ⊕ λ

λn
xn

)
+d(xn,un)
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≤
(
1− λ

λn

)
d(xn, Jλn xn)+ λ

λn
d(xn, xn)+d(xn,un)

=
(
1− λ

λn

)
d(xn,un)+d(xn,un)

→ 0

as n →∞. Now, this theorem can easily be proved in the similar fashion in [9, Theorem 3.2].

If T1 = T2 = T in Theorem 3.2, then we obtain the following result.

Corollary 3.3. Consider f : X → (−∞,∞] is a proper, convex and lsc function, where (X ,d)
is a complete CAT(0) space. Let T be nonexpansive self map defined on X such that Ω =
F(T)∩argmin

y∈X
f (y) ̸=φ. Consider {an} and {bn} are sequences with 0< a ≤ an, bn ≤ b < 1 for all

n ∈N and for some a,b ∈ (0,1) and {λn} is a sequence such that λn ≥λ> 0 for all n ∈N and for
some λ. Let {xn} be generated in the following manner:

un = argmin
y∈X

(
f (y)+ 1

2λn
d2(y, xn)

)
,

zn = T((1−bn)xn ⊕bnTun),
yn = T((1−an)Txn ⊕anTzn),
xn+1 = T yn,

for each n ∈N, then {xn} ∆-converges to an element of Ω.

Now, we prove strong convergence theorem.

Theorem 3.4. Suppose all the assumptions are same as of Theorem 3.1, then {xn} strongly
converges to a point of Ω if and only if

liminf
n→∞ d(xn,Ω)= 0,

where d(x,Ω)= inf{d(x, p∗) : p∗ ∈Ω}.

Proof. The necessity is obvious from Theorem 3.1. Conversely, let liminf
n→∞ d(xn,Ω)= 0.

Since

d(xn+1, p∗)≤ d(xn, p∗)

for all p∗ ∈Ω. Hence

d(xn+1,Ω)≤ d(xn,Ω).

So, lim
n→∞d(xn,Ω) exists. Following [20, Proof of Theorem 2], we can easily show that {xn} is

a Cauchy sequence in X . This implies that {xn} converges to a point p∗ in X and hence
d(p∗,Ω)= 0. Since Ω is closed, p∗ ∈Ω. This completes the proof.

A family {P,Q,R} of mappings is said to satisfy the condition (Ω) if there exists a
nondecreasing function f : [0,∞) → [0,∞) with f (0) = 0, f (r) > 0 for all r ∈ (0,∞) such
that d(x,Px) ≥ f (d(x,F)) or d(x,Qx) ≥ f (d(x,F)) or d(x,Rx) ≥ f (d(x,F)) for all x ∈ X . Here,
F = F(P)∩F(Q)∩F(R).
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Theorem 3.5. Suppose all the assumptions are same as in Theorem 3.1. If {T1,T2, Jλ} satisfies
the condition (Ω), then {xn} converges strongly to a point of Ω.

Proof. From Theorem 3.1, we know that lim
n→∞d(xn, p∗) exists for all p∗ ∈Ω. This implies that

lim
n→∞d(xn,Ω) exists.

Also, by the condition (Ω), we have

lim
n→∞ f (d(xn,Ω))≤ lim

n→∞d(xn,T1xn)= 0,

or

lim
n→∞ f (d(xn,Ω))≤ lim

n→∞d(xn,T2xn)= 0,

or

lim
n→∞ f (d(xn,Ω))≤ lim

n→∞d(xn, Jλxn)= 0.

Thus, we have

lim
n→∞ f (d(xn,Ω))= 0.

By using the property of f , we obtain lim
n→∞d(xn,Ω) = 0. Thus, the proof follows from

Theorem 3.4.

A mapping T : C → C is said to be semi-compact if any sequence {xn} in C satisfying
d(xn,Txn)→ 0 has a convergent subsequence.

Theorem 3.6. Under the hypothesis of Theorem 3.1, suppose that T1 or T2 or Jλ is semi-compact,
then the sequence {xn} generated by (3.1) strongly converges to a common element of Ω.

Proof. Suppose that T1 is semi-compact. By Theorem 3.1, we have d(xn,T1xn)→ 0 as n →∞.
Thus, there exists a subsequence {xnk } of {xn} such that xnk → p∗ ∈ X . Since d(xn, Jλxn) → 0
and d(xn,Tixn)→ 0 for all i ∈ {1,2}, we have d(p∗, Jλp∗)= 0, and d(p∗,T1 p∗)= d(p∗,T2 p∗)= 0,
which shows that p∗ ∈Ω. In other cases, we can prove the strong convergence of {xn} to an
element of Ω. This completes the proof.

Now, we give the numerical example to show the convergence of our iteration scheme and
support our main theorem in a space of real numbers.

Example 3.7. Let X =R with the Euclidean norm and C = {x :−4≤ x ≤ 4}. For each x ∈ C, we
define mappings T1 and T2 on C as follows:

T1x = x,

and

T2x = x
5

.

Clearly, T1 and T2 are nonexpansive mappings.
Also, for each x ∈ C, we define f : C → (−∞,∞] by

f (x)= x2.
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We can easily check that f is a proper, convex and lower semi-continuous function.
We choose an = n+3

n+4 and bn = n
n+3 . Also, we set λ = 1

2 ∀ n. It can be observed that all the
assumptions of Theorem 3.4 are satisfied. Hence, the sequence {xn} generated by (3.1) converges
to 0 which is the fixed point of T1, T2 and minimizer of f (x).

4. Conclusion
Our primary findings build on the results of Khan and Abbas [20], Cholamjiak et al. [9] and
Lamba and Panwar [23]. Indeed, for two nonexpansive mappings in CAT(0) spaces, we provide
a new modified proximal point algorithm for addressing convex minimization problems as well
as common fixed point problems. Finally, we presented a numerical example to back up our
main result.
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