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Abstract. In this paper, we present novel qualities of the measure of noncommutative (so quantum)
correlations for general quantum systems. In other words, the fundamental difference between
classical and non-commutative probability will be studied. In particular, we introduce the notion
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Quantum Theory.
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1. Introduction
Deviations from classical probability when distant quantum systems become correlated are
interesting both fundamentally and operationally. In particular, this question is very important
topic in discussions of foundations of Quantum Probability Theory as well as it has applications
in the emerging technologies of quantum computing, quantum cryptography.

In the light of the above remarks it is clear that a general definition of a measure of quantum
correlations is of great importance, and this is the goal of this paper. Thus, we will be concerned
with a definition and a characterization of a measure of quantum correlations for general
quantum systems. As we must distinguish classical and quantum features of probability theory
it is crucial to have a rigorous approach. Therefore, to this end, a general C∗-algebraic approach
to Quantum Theory will be employed. In particular, by quantum probability space we mean
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any pair (A,ϕ) with A a C∗-algebra of operators on some Hilbert space H and ϕ a continuous
positive normalized functional on A. For a comprehensive account on quantum correlations
and the complete bibliography we refer the reader to our lectures1. But, for a discussion along
noncommutative integration lines we refer the reader to [8].

The paper is organized as follows. In Section 2 we set up notation and we will provide
preliminaries. Section 3 contains the main result — the definition of measure of quantum
correlations (so entanglement) and the theorem saying that there are quantum correlations if
and only if the measure of correlations is not equal to 0.

2. Preliminaries
Let A1 and A2 be C∗-algebras with unit 1. The (projective) tensor product A =A1 ⊗A2 will
describe a composite system while A1 ≡A1 ⊗1 and A2 ≡1⊗A2 stand for its subsystems.

By the way, we note that in most applications in physics, at least one subalgebra is nuclear
one, so there is the unique tensor product. However, to keep the full generality we will consider
the projective tensor product of A1 and A2.

We write SA (SA1 , SA2 ) for the set of all states (so all linear, normalized, positive forms) on
A (A1, A2, respectively).

In S one can distinguish the subset of classically correlated states, i.e. states which
can be written as a convex combinations of product states. To get some intuition about the
problem we give an example which is extracted from the book of Kadison and Ringrose (see
[6, Exercise 11.5.11]).

Example 2.1. Let A1 = B(H) and A2 = B(K) where H and K are 2-dimensional Hilbert spaces.
Consider the vector state ωx(·) = (x, · x) with x = 1p

2
(e1 ⊗ f1 + e2 ⊗ f2) where {e1, e2} and { f1, f2}

are orthonormal bases in H and K, respectively. Let ρ be any state in the norm closure of the
convex hull of product states, i.e. ρ ∈ conv(S1 ⊗S2). Then, one can show that

∥ωx −ρ∥ ≥ 1
4

. (2.1)

Remark 2.2. The reader should note that ωx can always be approximated by a finite linear
combination of simple tensors. However, here we wish to approximate ωx by a convex
combination of positive (normalized) functionals and this makes the difference.

Guided by Example 2.1 we define:

Definition 2.3. Let Ai , i = 1,2 be a C∗-algebra, S the set of all states on A≡A1⊗A1. The subset
conv(SA1 ⊗SA2) in S will be called the set of separable states and will be denoted by Ssep. The
closure is taken with respect to the norm of A∗. The subset S\Ssep ≡Sent ⊂S is called the
subset of entangled states.

1W. A. Majewski, Quantum correlations; quantum probability approach, arXiv:1407.4754v4 [quant-ph]
https://arxiv.org/pdf/1407.4754.pdf.
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Remark 2.4. As a separable state has the form of an arbitrary classical state, it is naturally
to adopt the convention that Ssep contains only classical correlations. We emphasize that a
classically correlated state may well contain nontrivial correlations. On the other hand, the
set of entangled states is the set where the quantum (so extra) correlations can occur. In other
words, quantum mechanics allows correlations between values of measurements performed at
spatially separated locations that can never occur according to laws of classical physics.

The crucial ingredient of a description of Ssep and Sent is the geometrical characterization
of the set of all states S. We remind the reader that in geometrical description of a convex
compact set one can distinguish two types of convex closed sets: simplexes and non-simplexes.
Let K be a convex compact set. A point x ∈ K , if K is simplex, admits the unique decomposition
in the form of convex combination of extreme points of K . This is not the case for K being not
simplex. The following proposition justifies our interest in non-simplexes, cf. [2, Example 4.2.6].

Proposition 2.5. Let A be a C∗-algebra. Then the following conditions are equivalent
(i) The state space SA is a simplex.

(ii) A is abelian algebra.

Therefore in quantum case, where A is a noncommutative C∗-algebra with unit and S is
convex ∗-weakly compact, the set of states S is not a simplex (contrary to the classical case).
Consequently, in quantum case, all possible decompositions of a given state should be taken
into account.

To this end, we need to apply the decomposition theory. Now, for the convenience of the
reader, we repeat the relevant material from [2–5, 9, 10] without proofs thus making our
exposition self-contained. As usually, let A stand for a C∗-algebra with unit, and S its state
space. M1(S) denotes the set of all probability Radon measures on S. We note that M1(S) is a
compact subset of the vector space of real, regular Borel measures on S. As the next step we
recall the concept of the barycenter b(µ) of a measure µ ∈ M1(S). It is defined by

b(µ)=
∫

dµ(ϕ)ϕ , (2.2)

where the integral is understood in the weak sense. We note that b(µ) ∈S. The set Mω(S) is
defined as a subset of M1(S) with the fixed barycenter ω, i.e.

Mω(S)= {µ ∈ M1(S),b(µ)=ω} . (2.3)

Mω(S) is a convex closed subset of M1(S), hence compact in the weak ∗-topology. Thus, it
follows by the Krein-Milman theorem that there are “many” extreme points in Mω(S).

Finally, we briefly sketch an approximation property for a positive measure, see [1], [3, Vol. I],
and [9].

For a Borel measure µ on a locally compact Hausdorff space E and a function f ∈ CK(E)
we denote µ( f )= ∫

E f dµ, where CK(E) stands for the set of continuous functions with compact
support. Denote by M(E) the collection of Radon measures on E. Let {µn}∞n=1 ⊂M(E). We say
that the net {µn} is weakly convergent to µ if µn( f ) → µ( f ) for any function f ∈ CK(E). This
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topology of simple convergence is called the vague topology (and sometimes also called the
weak∗-topology).

Dirac’s (point) measure δa, where a ∈ E is determined by the condition:

δa( f )= f (a) . (2.4)

We say that a measure µ has a finite support if it can be written as a linear (finite)
combination of δa ’s. Now, we are in position to give (see [1, Chapter 3, Section 2, Corollary 3]):

Theorem 2.6. Any positive finite measure µ on E is a limit point, in the vague topology, of a
convex hull of positive measures having a finite support contained in the support of µ.

Remark 2.7. (i) This result will be not valid in the non-commutative setting. It is taken from
the (classical) measure theory.

(ii) A slightly stronger formulation can be find in [9]. Namely, every probability measure λ in
M(E) is a weak limit of discrete (with finite support) measures belonging to the collection
of probability measures in M(E) which have the same barycenter as λ.

3. Measure of Quantum Correlations
Now we are in a position to proceed with the study of coefficient of (quantum) correlations for a
quantum composite system specified by (A=A1 ⊗A2,SA), where Ai are C∗-algebras with unit.
We begin with the definition of the restriction maps

(r1ω)(A)=ω(A⊗1) , (3.1)

(r2ω)(B)=ω(1⊗B) , (3.2)

where ω ∈ SA, A ∈ A1, and B ∈ A2. Clearly, r i : SA → SAi and the restriction map r i is
continuous (in weak-∗ topology), i = 1,2 (see [2, Proposition 4.1.37]). We recall that the
decomposition procedure is starting with a “good” measure on the state space S (so from
Mω(S)). Hence, let us take a “good” measure µ on SA. Define

µi(Fi)=µ(r−1
i (Fi)) (3.3)

for i = 1,2, where Fi is a Borel subset in SAi . It is easy to check that the formula (3.3) provides
the well defined measures µi on SAi , i = 1,2. Having two measures µ1, µ2 on SA1 , and SA2

respectively, we want to “produce” a new measure ⊠µ on SA1 ×SA2 . To this end, firstly, let us
consider the case of finitely supported probability measure µ:

µ=
N∑

i=1
λiδρ i , (3.4)

where λi ≥ 0,
∑N

i=1λi = 1, and δρ i denotes the Dirac’s measure. We define

µ1 =
N∑

i=1
λiδr1ρ i (3.5)
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and

µ2 =
N∑

i=1
λiδr2ρ i . (3.6)

Then

⊠µ=
N∑

i=1
λiδr1ρ i ×δr2ρ i (3.7)

provides a well defined measure on SA1 ×SA2 . Here SA1 ×SA2 is understood as a measure
space obtained as a product of two measure spaces SA1 and SA2 . A measure structure on SAi

is defined as the Borel structure determined by the corresponding weak-∗ topology on SAi ,
i = 1,2.

We note that an arbitrary fixed decomposition of a state ω ∈SA corresponds to a measure µ
such that ω= ∫

Sνdµ(ν). But, in general, there are many decompositions. Consequently, we will
be interested in measures from the following set

Mω(SA)≡ Mω = {µ :ω=
∫
S
νdµ(ν)},

i.e. the set of all Radon probability measures on SA with the fixed barycenter ω.
Take an arbitrary measure µ from Mω. By Theorem 2.6 (cf. also Remark 2.7) there exists a

net of discrete measures (having a finite support) µk such that µk →µ, and the convergence is
understood in the weak-∗topology on SA.

Defining µk
1 (µk

2 ) analogously as µ1 (µ2 respectively; cf. equations (3.5), (3.6)), one has
µk

1 →µ1 and µk
2 →µ2, where again the convergence is taken in the weak-∗ topology on SA1 (SA2

respectively). To see this, note that µk →µ means that for any continuous function f ∈ C(SA),

µk( f )→µ( f ). (3.8)

But note, that g ◦ r i is in C(SA) for any g ∈ C(SAi ). Thus, plugging f = g ◦ r i in (3.8) one gets
the convergence of µk

i .
Then define, for each k, ⊠µk as it was done in (3.7). We can verify that

{
⊠µk}

is convergent
(in weak ∗-topology) to a measure on SA1 ×SA2 . To see this, take a continuous function g
on SA1 ×SA2 . Observe that this two variable function gives rise to the following function
g(r1·, r2·)= g̃(·), and obviously g̃ is a continuous function on SA. Therefore,

⊠µk(g)=
(

Nk∑
i=1

λi,kδr1ρ i,k ×δr2ρ i,k

)
(g)

=
Nk∑
i=1

λi,k g(r1ρ i,k, r2ρ i,k)

=
Nk∑
i=1

λi,k g̃(ρ i,k)=
(

Nk∑
i=1

λi,kδρ i,k

)
( g̃),

and the last term is convergent, by definition, to µ( g̃).
Consequently, taking the weak-∗ limit we arrive at the measure ⊠µ on SA1 ×SA2 . It follows

easily that ⊠µ does not depend on the chosen approximation procedure.
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To grasp the idea which is behind the construction let us consider a very simple example:

Example 3.1. Let us fix a state ω and take a discrete, finite supported, measure µ0 in Mω(SA);
i.e. µ0 is of the form

µ0 =
N∑

i=1
λiδρ i ,

where λi ≥ 0 and
∑

iλi = 1. Note, that ρ i ∈ suppµ0 for any i. Define, as before, ⊠µ0 =∑
iλiδr1ρ i ×δr2ρ i and note that the measure ⊠µ0 on SA1 ×SA2 defines the new state ω̃ in

the following way:

ω̃(A1 ⊗ A2)=
∫
SA1×SA2

ϕ(A1 ⊗ A2)(d⊠µ0)(ϕ) , (3.9)

where ϕ ∈SA1 ×SA2 , i.e. ϕ= (ϕ1,ϕ2). We have defined ϕ(A1⊗ A2) as ϕ1(A1)ϕ2(A2) which can
be considered as (ϕ1 ⊗ϕ2)(A1 ⊗ A2)≡ϕ(A1 ⊗ A2). Thus

ω̃(A1 ⊗ A2)=
N∑

i=1
λi · (r1ρ i, r2ρ i)(A1 ⊗ A2)

=
N∑

i=1
λi · (r1ρ i)(A1)(r2ρ i)(A2)

=
N∑

i=1
λi · (r1ρ i)⊗ (r2ρ i)(A1 ⊗ A2) . (3.10)

Hence ω̃ is a separable state which originates from the given state ω.

Now, again guided by Example 2.1, we are in position to give the definition of the coefficient
of quantum correlations, d(ω, A1, A2)≡ d(ω, A), where A i ∈Ai (see [7]):

Definition 3.2. Let a quantum composite system (A=A1 ⊗A2,SA) be given. Take a ω ∈SA.
We define the coefficient of quantum correlations as

d(ω, A)= inf
µ∈Mω(SA)

∣∣∣∣∣
∫
SA

ξ(A)dµ(ξ)−
∫
SA1×SA2

ξ(A)(d⊠µ)(ξ)

∣∣∣∣∣ (3.11)

The formula (3.11) can be considered as a “measure” of extra non classical type of correlations.
Namely, following the strategy of Kadison-Ringrose example, see Example 2.1, an evaluation of
a distance between the given state ω and the set of approximative separable states is done.

It is a simple matter to see that d(ω, A) is equal to 0 if the state ω is a separable one. To
show this let ω be a separable state, i.e.

ω= lim
N→∞

N∑
i=1

λ(N)
i ω(N)

i (3.12)

where each ω(N)
i is a product state such that ω(N)

i (A⊗B) = ω(N)
i,1 (A)ω(N)

i,2 (B), where ω(N)
i,k (·) is a

state on Ak. Define the sequence of measures µ(N) in the following way:

µ(N) =
N∑

i=1
λ(N)

i δ
ω(N)

i
=

N∑
i=1

λ(N)
i δ

ω(N)
i,1

×δ
ω(N)

i,2
(3.13)
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where δ
ω(N)

i
denotes Dirac’s measure. If necessary, passing to a subsequence, we may suppose

also that µ(N) converges to µ ∈ Mω(SA) (it is always possible as {µ(N)} ⊂ Mω(SA), which a
compact set). Taking a weak limit of {µ(N)} and keeping in mind arguments given prior to
Example 3.1 one gets a measure µ such that∫

ϕdµ(ϕ)=ω, (3.14)

and d(ω, A)= 0. The converse statement is much less obvious. However, we are able to prove it.

Theorem 3.3. Let A be the tensor product of two C*-algebras A1, A2. Then state ω ∈SA is
separable if and only if d(ω, A)= 0 for all A ∈A1 ⊗A2

Proof. Clearly, we need to prove the “only if” part. The basic idea of the proof of the statement
that d(ω, A) = 0 implies separability of ω relies on the study of continuity properties of the
function

Mω(SA) ∋µ 7→
∫
SA

ξ(A)dµ(ξ)−
∫
SA1×SA2

ξ(A)(d⊠µ)(ξ) (3.15)

and the proof falls naturally into few steps.
(i) Mω(SA) is a compact set. It was already stated in the previous section. However, for the

convenience of the reader we give here a proof of this statement.
We begin by recalling that SA is a compact set (A has the unit 1) and the set of positive
Radon measures M+(SA) is also compact (all in weak-∗ topologies!). Take {µα}⊂ Mω(SA)
such that µα→µ (weakly). But this implies∫

Â(ϕ)dµα(ϕ)=ω(A)≡ Â(ω)→
∫

Â(ϕ)dµ(ϕ) .

Thus
∫

Â(ϕ)dµ(ϕ) = ω(A). Hence µ ∈ Mω(SA). So Mω(SA) being a closed subset of a
compact set M+(SA) is a compact set.

(ii) The mapping Mω(SA) ∋µ 7→⊠µ ∈ M+(SA1 ×SA2) is weakly continuous.
To prove this, we should show that for any µ0 ∈ Mω(SA) and any neighborhood
V (⊠µ0; g1, . . . , gk) of ⊠µ0 there exists a neighborhood U(µ0; f1, . . . , fk) of µ0 such that
⊠

(
U(µ0; f1, . . . , fk)

) ⊆ V (⊠µ0; g1, . . . , gk) where V ≡ V (⊠µ0; g1, . . . , gk) = {⊠µ : |⊠µ0(g i)−
⊠µ(g i)| < ϵ, i = 1, . . . ,k}, g i ∈ C(SA1 ×SA2) while U ≡U(µ0; f1, . . . , fk)= {µ : |µ0( f i)−µ( f i)| <
ϵ1, i = 1, . . . ,k}, f i ∈ C(SA).

The first step of the proof is to take µ0 and µ in Mω(SA) such that

|µ0( f )−µ( f )| < ϵ for f ∈ C(SA). (3.16)

So, for simplicity, we put k = 1 in the definition of neighborhoods U and V . Let f be of the
form

f (ρ)= g(r1(ρ), r2(ρ)) ρ ∈SA, (3.17)

where g(·, ·) is a continuous (two variables) function on SA1 ×SA2 . We note that f is
satisfying (3.16).
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Let µn
0 (µn) be a weak-∗ Riemann approximation for µ0 (µ respectively). Then

|µn
0 ( f )−µn( f )| ≤ |µn

0 ( f )−µ0( f )|+ |µ0( f )−µ( f )|+ |µ( f )−µn( f )| < ϵ,
for all f of the form (3.17).

As a next step, let us consider a sequence ⊠µn
0 (⊠µn) defining ⊠µ0 (⊠µ respectively).

Note, that for any f of the form (3.17), one has

|⊠µn
0 ( f )−µn

0 ( f )| =
∣∣∣∣∣Nn∑
i=1

λi,nδr1ρ i,n ×δr2ρ i,n( f )−
Nn∑
i=1

λi,nδρ i,n( f )

∣∣∣∣∣
=

∣∣∣∣∣Nn∑
i=1

λi,n g(r1(ρ i,n), r2(ρ i,n))−
Nn∑
i=1

λi,n g(r1(ρ i,n), r2(ρ i,n))

∣∣∣∣∣
= 0,

where Nn <∞, and analogously for the second sequence. Therefore for any f of the form
(3.17) one has

|⊠µ0(g)−⊠µ(g)| ≤ |⊠µ0(g)−⊠µn
0 (g)|+ |⊠µn

0 (g)−µn
0 ( f )|+ |µn

0 ( f )−µ0( f )|
+ |µ0( f )−µ( f )|+ |µ( f )−µn( f )|+ |µn( f )−⊠µn(g)|
+ |⊠µn(g)−⊠µ(g)|

< 5ϵ,

for large enough n. Thus we have shown that for any g ∈ C(SA1 ×SA2)

|⊠µ0(g)−⊠µ(g)| < 5ϵ, (3.18)

provided that |µ0( f )−µ( f )| < ϵ. Therefore, if V = {⊠µ; |⊠µ0(g i)−⊠µ(g i)| < ϵ, i = 1, . . . ,k}
with g i ∈ C(SA1 ×SA2) then there exists U = {µ; |µ0( f i)−µ( f i)| < 1

5ϵ, i = 1, . . . ,k} with f i

of the form (3.17) such that ⊠(U) ⊆ V . But this means the continuity of the considered
mapping.

(iii) The continuity proved in the second step implies that the function (3.15) is a real valued,
continuous function defined on a compact space. Hence, by Weierstrass theorem, infimum
is attainable. Therefore, the condition d(ω, A)= 0 means that

ω(A)=
∫
SA

ξ(A)dµ0(ξ)=
∫
SA1×SA2

ξ(A)d⊠µ0(ξ), (3.19)

for all A = A1 ⊗ A2. But, this means the separability of ω.

Finally, we wish to end the paper with a brief remark. The presented study of geometrical
properties of SA through decomposition theory (so the important part of the measure theory)
allows a definition of a nice measure of quantum correlations. On the other hand, we note that
in [7] properties of the coefficient d(ω, A) were studied within the theory of positive linear maps.
Thus, in that analysis, a very different approach was used.
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