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Abstract. In this paper, we investigate the magnetohydrodynamic system with exponential type
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argument for the existence results, and Gronwall lemma for the uniqueness. Friedrich approximation
and standard techniques are also used.
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1. Introduction
In this paper, we study the following magnetohydrodynamic system with exponential damping:

(S)


∂tu−∆u+u ·∇u+b ·∇b+α(eβ|u|

2 −1)u =−∇p, in R+×R3,
∂tb−∆b+b ·∇u−u ·∇b = 0, in R+×R3,
divu = 0, divb = 0, in R+×R3,
u(0, x)= u0(x), b(0, x)= b0(x), in R3,
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where u = u(t, x) = (u1,u2,u3), b = b(t, x) = (b1,b2,b3), p = p(t, x) denote respectively the
unknown velocity, the magnetic field and the pressure of the fluid at the point (t, x) ∈R+×R3.
The viscosity of fluid is ν= 1. Reels α> 0 and β> 0 denote the parameters of the damping term
and u0 = (u0

1(x),u0
2(x),u0

3(x)) is an initial given velocity. If u0 is quite regular, the divergence free
condition determines the pressure p. About magnetohydrodynamic equations without damping
terms, the paper ([5]) is one of the most complete references in the literature. Here, our purpose
is to study the well-posedness of the magnetohydrodynamic system with exponential damping
α(eβ|u|

2 − 1)u. To the best of our knowledge, this model has not yet a physical motivation.
However, it is a challenging mathematical model that may be have applications in the future, as
for many mathematical models that were considered first by mathematicians and that turned
to be of importance for scientists and engineers later on. We will show that the Cauchy problem
(S) has a global in time weak solution and a global in time unique strong solutions, for any
α,β ∈ (0,∞). The proofs are based on energy methods and use compactness argument for the
existence results, and Gronwall lemma for the uniqueness. First, we introduce the following
functional spaces:

Eβ = { f :R+×R3 →Rmeasurable; (eβ| f |
2 −1)| f |2 ∈ L1(R+×R3)}

and

Fβ = { f ∈Eβ ; (eβ| f |
2 −1)|∇ f |2, eβ| f |

2 |∇| f |2|2 ∈ L1(R+×R3)}.

Our main results are the following two theorems.

Theorem 1.1. Let u0,b0 ∈ L2(R3) be divergence free vectors fields. Then, there is a global solution
of (S); (u,b) ∈ L∞(R+,L2(R3)∩C(R+,H−1(R3))∩L2(R+, Ḣ1(R3)). Moreover, u ∈Eβ and for all t ≥ 0,
we have

∥(u,b)(t)∥2
L2 +2

∫ t

0
∥∇(u,b)∥2

L2 +2α
∫ t

0
∥(eβ|u|

2 −1)|u|2∥L1 ≤ ∥(u0,b0)∥2
L2 . (1.1)

Theorem 1.2. Let u0,b0 ∈ H1(R3) be divergence free vectors fields, such that ∥(u0,b0)∥H1 ≤ c0 for
some positif constant c0. Then, there is a unique solution of the system (S); (u,b) ∈ L∞(R+,H1(R3)
∩C(R+,L2(R3))∩L2(R+, Ḣ2(R3)). Moreover, u ∈Fβ and for all t ∈R+, we have

∥(u,b)(t)∥2
L2 +2

∫ t

0
∥∇(u,b)∥2

L2 +2α
∫ t

0
∥(eβ|u|

2 −1)|u|2∥L1 ≤ ∥(u0,b0)∥2
L2 (1.2)

and

∥(u,b)(t)∥2
H1 +

∫ t

0
∥∇(u,b)∥2

H1 +α
∫ t

0
∥(eβ|u|

2 −1)|∇u|2∥L1 +αβ
∫ t

0
∥eβ|u|

2 |∇|u|2|2∥L1 ≤ ∥(u0,b0)∥2
H1 .

(1.3)

In the following three subsections, we will prove respectively the existence of a global in time
weak solution, the existence of the global in time strong solution and finally the uniqueness of
such strong solution.
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2. Proof of Main Results
2.1 Existence of a Global Weak Solution
For R > 0, let BR = {x ∈R3; |x| < R} and the Friedrichs operator ([1]), JR defined by

JR(D) f =F−1(1BR (ξ) f̂ ).

Let us consider the approximate system of nonlinear ordinary differential equations, where
(t, x) ∈R+×R3 and n ∈N :

(Sn)


∂tu−∆Jnun + Jn(Jnun ·∇Jnun)+ Jn(Jnbn ·∇Jnbn)+αJn[(eβ|Jnun|2 −1)Jnun]=−∇pn,
∂tbn −∆Jnbn + Jn(Jnbn ·∇Jnun)− Jn(Jnun ·∇Jnbn)= 0,
divun = 0, divbn = 0,
un(0, x)= Jnu0(x), bn(0, x)= Jnb0(x).

The unknown pressure is given in terms of the velocity and the magnetic field; this is a standard
procedure based on applying the divergence operator and using the incompressibility condition,
to obtain

pn = (−∆)−1(div Jn(Jnun ·∇Jnun + Jnbn ·∇Jnbn)+αdiv Jn[(eβ|Jnun|2 −1)Jnun]
)
.

System (Sn) has the following form:

∂tUn = Hn(Un), Un(0)=U0
n = (Jnu0, Jnb0),

where Hn is locally Lipschitzienne. Then, by ordinary differential equation theory, we get
a unique maximal solution of (Sn); Un = (un,bn) ∈ C1([0,T∗

n),L2(R3)). By the divergence-free
properties (divun = 0, divbn = 0) and the facts Jnun = un, Jnbn = bn, while taking the inner
product in L2, we obtain

1
2

d
dt

∥Un∥2
L2 +∥∇Un∥2

L2 +α∥(eβ|un|2 −1)|un|2∥L1 ≤ 0. (2.1)

Integrating with respect to time, it holds that

∥Un(t)∥2
L2 +2

∫ t

0
∥∇Un∥2

L2 dτ+2α
∫ t

0
∥(eβ|un|2 −1)|un|2∥L1 dτ≤ ∥U0∥2

L2 .

Following ideas in ([3]), this energy estimate allows to perform a compactness argument
based on Ascoli’s theorem, the Cantor diagonal process. For n tends to infinity, we obtain the
solution subject of Theorem 1.1. This classical compactness argument is frequently used in ([1]).
Continuity in time of the solution can be proved in a standard way as in ([4]), for example.

2.2 Existence of the Global Strong Solution
Now, we turn to the proof of Theorem 1.2. Taking the derivative of the system of equations (Sn)
with respect to the variable x j and taking the dot product with ∂ jUn, then summing up with
respect to index j, we obtain

1
2

d
dt

∥∇Un∥2
L2 +∥∆Un∥2

L2 +α∥(eβ|un|2 −1)|∇un|2∥L1 +αβ∥eβ|un|2 |∇|un|2|2∥L1 ≤
4∑

j=1
I j,n,

where

I1,n =
∣∣∣∣∣ 3∑

j=1
〈∂ j(un∇un)/∂ jun〉L2

∣∣∣∣∣ ,
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I2,n =
∣∣∣∣∣ 3∑

j=1
〈∂ j(bn ·∇bn)/∂ jun〉L2

∣∣∣∣∣ ,

I3,n =
∣∣∣∣∣ 3∑

j=1
〈∂ j(un∇bn)/∂ jbn〉L2

∣∣∣∣∣
and

I4,n =
∣∣∣∣∣ 3∑

j=1
〈∂ j(bn ·∇un)/∂ jbn〉L2

∣∣∣∣∣ .

By definition, we have

I1,n = |〈un∇un/∆un〉L2 |.
Using Cauchy-Schwarz inequality, we obtain

I1,n ≤ ∥un∇un∥L2∥∆un∥L2 .

Classical Sobolev product laws imply that

I1,n ≤ C∥un∥Ḣ1∥∇un∥Ḣ1/2∥∆un∥L2 .

By definition of Sobolev norms, it comes that

I1,n ≤ C∥∇un∥3/2
L2 ∥∆un∥3/2

L2 .

By interpolation inequality, we have

I1,n ≤ C∥un∥1/2
L2 ∥∇un∥1/2

L2 ∥∆un∥2
L2 .

Using Sobolev embedding, we obtain

I1,n ≤ C1∥un∥H1∥∆un∥2
L2 .

As Un = (un,bn), we deduce that

I1,n ≤ C∥Un∥H1∥∆Un∥2
L2 .

Proceeding as in the case of I1,n, it holds that

I2,n = |〈bn ·∇bn/∆un〉L2 |
≤ ∥bn ·∇bn∥L2∥∆un∥L2

≤ C∥bn∥Ḣ1∥∇bn∥Ḣ1/2∥∆un∥L2

≤ C∥Un∥Ḣ1∥∇Un∥Ḣ1/2∥∆Un∥L2

≤ C∥∇Un∥3/2
L2 ∥∆Un∥3/2

L2

≤ C∥Un∥1/2
L2 ∥∇Un∥1/2

L2 ∥∆Un∥2
L2

≤ C∥Un∥H1∥∆Un∥2
L2 .

Moreover,

I3,n =
∣∣∣∣∣ 3∑

j=1
〈∂ j(un∇bn)/∂ jbn〉L2

∣∣∣∣∣
= |〈un∇bn/∆bn〉L2 |
≤ ∥un∇bn∥L2∥∆bn∥L2
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≤ C∥un∥Ḣ1∥∇bn∥Ḣ1/2∥∆bn∥L2

≤ C∥Un∥Ḣ1∥∇Un∥Ḣ1/2∥∆Un∥L2

≤ C∥Un∥H1∥∆Un∥2
L2

and

I4,n ≤ C∥Un∥H1∥∆Un∥2
L2 .

It follows that
1
2

d
dt

∥∇Un∥2
L2 +∥∆Un∥2

L2 +α∥(eβ|un|2 −1)|∇un|2∥L1 +αβ∥eβ|un|2 |∇|un|2|2∥L1

≤ 4C∥Un∥H1∥∆Un∥2
L2 .

Summing up inequality above with the L2 energy estimate (2.1), we get
1
2

d
dt

∥Un∥2
H1 +∥∇Un∥2

H1 +α∥(eβ|un|2 −1)|∇un|2∥L1 +αβ∥eβ|un|2 |∇|un|2|2∥L1 +α∥(eβ|un|2 −1)|un|2∥L1

≤ 4C∥Un∥H1∥∆Un∥2
L2 .

We suppose that c0 ∈ (0,1/8C). As

4C∥U0
n∥H1 ≤ 4C∥U0∥H1 < 1⇐⇒∥U0

n∥H1 ≤ ∥U0∥H1 < 1
4C

and by continuity of the function (t 7−→ ∥Un(t)∥H1), we get

tn = sup
{

t ≥ 0/ ∥Un∥L∞([0,t],H1) <
1
2

(
∥U0∥H1 + 1

4C

)}
∈ (0,∞].

As, 1
2 (∥U0∥H1 + 1

4C ) ∈ (∥U0∥H1 , 1
4C ). Then, for t ∈ [0, tn), we have

1
2

d
dt

∥Un∥2
H1 +∥∇Un∥2

H1 +α∥(eβ|un|2 −1)|∇un|2∥L1 +αβ∥eβ|un|2 |∇|un|2|2∥L1 +α∥(eβ|un|2 −1)|un|2∥L1

≤ 4C
1
2

(∥U0∥H1 + 1
4C

)∥∆Un∥2
L2 .

Then, for t ∈ [0, tn), we have

∥Un(t)∥2
H1 +2(1−4C∥U0∥H1)

∫ t

0
∥∇Un∥2

H1 +2α
∫ t

0
∥(eβ|un|2 −1)|∇un|2∥L1

+2αβ
∫ t

0
∥eβ|un|2 |∇|un|2|2∥L1 +α

∫ t

0
∥(eβ|un|2 −1)|un|2∥L1

≤ ∥U0∥2
H1 ,

which gives tn =∞ and for t ∈ [0,∞), we have, under the condition 4C∥U0∥H1 < 1/2,

∥Un(t)∥2
H1 +

∫ t

0
∥∇Un∥2

H1 +2α
∫ t

0
∥(eβ|un|2 −1)|∇un|2∥L1

+2αβ
∫ t

0
∥eβ|un|2 |∇|un|2|2∥L1 +α

∫ t

0
∥(eβ|un|2 −1)|un|2∥L1 ≤ ∥U0∥2

H1 .

This implies that (Un) is bounded in

L∞(R+,H1(R3)∩C(R+,L2(R3))∩L2(R+, Ḣ2(R3))∩Eβ∩Fβ.

As for the week solution above, following ideas in ([3]), this energy estimate allows to perform a
classical compactness argument ([1]) in order to finish the proof of the existence of the strong

Communications in Mathematics and Applications, Vol. 13, No. 3, pp. 935–942, 2022



940 Analytical Study of a 3D-MHD System with Exponential Damping: R. Selmi et al.

solution, in theorem 1.2, that satisfies the energy estimate:

∥U(t)∥2
H1 +

∫ t

0
∥∇U∥2

H1 +2α
∫ t

0
∥(eβ|u|

2 −1)|∇u|2∥L1

+2αβ
∫ t

0
∥eβ|u|

2 |∇|u|2|2∥L1 +α
∫ t

0
∥(eβ|u|

2 −1)|u|2∥L1 ≤ ∥U0∥2
H1 .

Continuity in time of the solution can be proved in a standard way, see for example ([4]).

2.3 Uniqueness of the Global Strong Solution
Now, we will prove the uniqueness of the strong solution to the system (S). To do so, let
U = (u,b) be a solution given by the precedent subsection, and let V = (v, c) be an other solution
of (S) having the same initial data. We take the difference of the corresponding systems, we
denote w = u−v, d = b− c, where p is the pressure term corresponding to U and q is the one
corresponding to V . Thus, we get for (t, x) ∈R+×R3,

(δS)


∂tw−∆w+w ·∇u+v ·∇w+d ·∇b+ c ·∇d+α(eβ|u|

2 −1)u−α(eβ|v|
2 −1)v =−∇(p− q)

∂td−∆d+d ·∇u+ c ·∇w−w ·∇b−v ·∇d = 0
divw = 0, divd = 0
w(0, x)= 0, d(0, x)= 0,

Taking the L2-scalar product of the first equation with w and the L2-scalar product of the
second equation with d, we obtain

1
2

d
dt

(∥w∥2
L2 +∥d∥2

L2)+∥∇w∥2
L2 +∥∇d∥2

L2α〈(eβ|u|
2 −1)u−α(eβ|v|

2 −1)v,w〉L2

+〈w ·∇u,w〉L2 −〈d ·∇b,w〉L2 +〈d ·∇u,d〉L2 −〈w ·∇b,d〉L2 = 0.

In fact, by the divergence free condition, we have

〈∇(p− q),w〉L2 = 0,

〈v ·∇w,w〉L2 = 0,

〈v ·∇d,d〉L2 = 0.

Also, since

〈c ·∇d,w〉L2 +〈c ·∇w,d〉L2 = 〈c ·∇(d+w), (d+w)〉L2 −〈c ·∇d,d〉L2 −〈c ·∇w,w〉L2 ,

it vanishes thanks to the divergence free condition.
It holds that

1
2

d
dt

(∥w∥2
L2 +∥d∥2

L2)+∥∇w∥2
L2 +∥∇d∥2

L2α〈(eβ|u|
2 −1)u−α(eβ|v|

2 −1)v,w〉L2

≤ |〈w ·∇u,w〉L2 |+ |〈d ·∇b,w〉L2 |+ |〈d ·∇u,d〉L2 |+ |〈w ·∇b,d〉L2 |.
As for the exponential damping term, in the left hand side, we recall the following lemma from
([2]).

Lemma 2.1. If β> 0, then, for all x, y ∈Rd , we have(
(eβ|x|

2 −1)x− (eβ|y|
2 −1)y

) · (x− y)≥ 1
2

[
(eβ|x|

2 −1)+ (eβ|y|
2 −1)

]|x− y|2.
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This lemma allows to control the difference of damping terms in the right hand side, by a
positive lower bound. Thus, we obtain

1
2

d
dt

(∥w∥2
L2 +∥d∥2

L2)+∥∇w∥2
L2 +∥∇d∥2

L2

≤ |〈w ·∇u,w〉L2 |+ |〈d ·∇b,w〉L2 |+ |〈d ·∇u,d〉L2 |+ |〈w ·∇b,d〉L2 |.
By the divergence free condition, I2 := |〈d ·∇b,w〉L2 | = |〈d⊗ b,∇w〉L2 |. Using Cauchy-Schwarz
inequality, it holds that I2 ≤ (

∫ |d| |b|dx)1/2∥∇w∥L2 . By Hölder inequality, we have I2 ≤
∥d∥L3∥b∥L6∥∇w∥L2 . Since ∥b∥L6 ≤ C∥b∥Ḣ1 , it comes that ∥b∥L6 ≤ C0, where C0 = C∥(u0,b0)∥H1 ,
according to the energy estimate in the existence theorem. That is I2 ≤ C0∥d∥L3∥∇w∥L2 . As,
Ḣ1/2(R3) ,→ L3(R3), it comes that I2 ≤ C′

0∥d∥Ḣ1/2∥∇w∥L2 . Interpolation inequality leads to

I2 ≤ C′
0∥d∥1/2

L2 ∥d∥1/2
Ḣ1∥w∥Ḣ1 ≤ C′

0∥(w,d)∥1/2
L2 ∥(w,d)∥3/2

Ḣ1 .

By Young’s product inequality xy≤ 1
4 x4 + 3

4 y4/3, we obtain

I2 ≤ C′
0∥(w,d)∥2

L2 +
1
4
∥(w,d)∥2

Ḣ1 .

Similarly, we obtain

I3 := |〈d ·∇u,d〉L2 |
≤ ∥d∥L3∥u∥L6∥∇d∥L2

≤ 2C′
0∥d∥1/2

L2 ∥d∥3/2
Ḣ1

≤ C′
0∥d∥2

L2 +
1
4
∥d∥2

Ḣ1

≤ C′
0∥(w,d)∥2

L2 +
1
4
∥(w,d)∥2

Ḣ1 ,

I1 := |〈w ·∇u,w〉L2 |
≤ 2C′

0∥w∥1/2
L2 ∥w∥3/2

Ḣ1

≤ C′
0∥w∥2

L2 +
1
4
∥w∥2

Ḣ1

≤ C′
0∥w∥2

L2 +
1
4
∥(w,d)∥2

Ḣ1

and

I4 := |〈w ·∇b,d〉L2 |
≤ ∥w∥L3∥b∥L6∥∇d∥L2

≤ C0∥w∥1/2
L2 ∥w∥1/2

Ḣ1∥d∥Ḣ1

≤ C0∥(w,d)∥1/2
L2 ∥(w,d)∥3/2

Ḣ1

≤ C′
0∥(w,d)∥2

L2 +
1
4
∥(w,d)∥2

Ḣ1 .

Then,
d
dt

∥(w,d)∥2
L2 +∥(w,d)∥2

Ḣ1 ≤ 4C′
0∥(w,d)∥2

L2 .

Since ∥(w,d)(0)∥2
L2 = 0, then Gronwall lemma gives the uniqueness.
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