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Abstract. The main objective of this paper is to derive an approximate analytical solution for
the mathematical model pertaining to deactivation of immobilized glucose in packed-bed reactors.
The Akbari-Ganji’s method is applied to solve the previously developed mathematical model.
The approximate analytical expressions corresponding to the concentration and current in the steady
state condition have been derived for all values of parameters. Excellent agreement is obtained
between the analytical solution and the numerical simulation. The analytical solution presented in
this paper is presented for the first time. The results of this work will provide a better understanding
of the mathematical model examined.
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1. Introduction
Kinetic studies of enzyme deactivation are essential for the development of an enzymatic
conversion process. Houng et al. [7] studied the effect of substrate protection on a commercial
immobilized glucose isomerise. This was experimentally investigated in a differential bed
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reactor, and a theoretical analysis was performed for a packed bed reactor. Pore network
model is used for converting glucose to fructose by enzymatic isomerisation. This process
takes place in a packed-bed reactor that consists of micro porous particles with a range of
pore sizes, characterized by a pore size distribution. Glucose isomerase was discovered by
Marshall and Kooi [11], who succeeded in producing it in commercially viable amounts using
enzymatic isomerisation. Glucose isomerase is an example of the highly successful application
of enzyme biotechnology to an industrial process that has no commercially viable route through
conventional chemistry. Chen and Wu [3] studied the effect of substrate protection on enzyme
deactivation. Theoretical analysis of enzyme deactivation with substrate protection offers an
effective understanding which is essential for enzyme replacement and process optimization.
Benaiges et al. [2] calculated the intrinsic kinetic constants of the reversible reaction Michaelis-
Menten equation in operational conditions free of mass transfer effects. Dadvar and Sahimi
[4] developed pore-level model of conversion of glucose to fructose by enzymatic isomerisation
and the associated deactivation of the micro porous particles in which the phenomenon takes
place. The purpose of this communication is to derive expressions for the steady-state substrate
concentration and the current in closed form using the Akbari-Ganji’s method for all values of
parameters.

2. Mathematical Formulation of the Problem
The model describes the mechanism by which glucose enzyme moves from the intermediate
complex form to fructose and back to the intermediate to the complex glucose enzyme. This can
be written as

G+F⇋k1
k−1

X⇋k2
k−2

F +E , (2.1)

where G, E and F represent the glucose, enzyme and fructose, X is an intermediate complex
formed during the reaction and k1, k−1, k2 and k−2 are kinetic constants. The non-linear
differential equation for concentration of glucose is given as follows:

Dp(λ)
d2G
dx2 − 2

ra
R = 0 , (2.2)

where Dp is the pore diffusivity in the micro pores, a is the surface area per unit weight of the

particle and λ= RM

r
, where RM is the molecular radius of the reactants and r is the radius of

the micro pore. By introducing the following dimensionless variables

R = vmG
Km +G

, G =G−Ge, vm = Kmrvmr(1+K−1)
Kmr −Kmf

, Km = Kmf Kmr

Kmr −Kmf

[
1+

(
K−1

mf +
K

Kmf

)
Go

1+K

]
.

The eqn. (2.2) becomes

Dp
d2G
dx2 − 2

r
vmG

Km +G
= 0 , (2.3)

where G is the concentration of glucose, Go is an initial concentration of glucose, R is are
action rate, Kmf is the Michaelis-Menten constant, vmf is the maximum velocity of the forward
reaction and Kmr , vmr are maximum velocities of the backward reaction.
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By introducing the following dimensionless quantities

C = G
Go −Ge

, z = x
lp

, β= Co

Km
, φ2 =

2l2
pv′m

rDpKm
.

Now, the eqn. (2.3) becomes
d2C
dz2 −φ2

(
C

1+βC

)
= 0 , (2.4)

where C is the dimensionless concentration, z is the dimensionless distance, lp is pore length

and φ is pore-level Thiele-modulus and v′m = vm

a
.

The boundary conditions are given as follows:

C(z = 0)=α1, C(z = 1)=α2 . (2.5)

The dimensionless current is given by

Ji j =
[

dC
dz

]
z=1

. (2.6)

3. Analytical Solution of the Glucose Concentration and
Current Using Akbari-Ganji’s Method

A variety of powerful analytical methods such as homotopy perturbation method [1,5,9,12,13],
homotopy analysis method [8], adomian decomposition method, and wavelet transform method
[10], etc. are applied to solve the nonlinear problems. In this paper, Akbari-Ganji’s method is
applied to find the analytical expression for the concentration of the glucose [6,14].

The approximate analytical expression for glucose concentration using Akbari-Ganji’s
method is given by

C(z)=α1 coshbz+ (α2 −α1 coshb)sinhbz
sinhb

. (3.1)

The dimensionless current is given by

Ji j =α1bsinhb+ b(α2 −α1 coshb)coshb
sinhb

, (3.2)

where b = φ√
1+α2β

.

4. Results and Discussion
The analytical expressions for the dimensionless glucose concentration and dimensionless
current have been derived using the Akbari-Ganji’s method. The analytical solution derived has
been compared with the numerical simulation, and is found to make an excellent fit. Further
from Figures 1 to 7, we observe that the dimensionless glucose concentration varies directly
with β, but inversely with φ. The dimensionless current varies inversely with β, but directly
with φ. The basic concept of the Akbari-Ganji’s method is given in Appendix A. The MATLAB

program is given in Appendix B.
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(a) (b)

(c)

Figure 1. Dimensionless glucose concentration C versus dimensionless distance z. The dotted lines
represent the analytical solution and the solid lines represent the numerical solution
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(a) (b)

(c)

Figure 2. Dimensionless glucose concentration C versus dimensionless distance z for various values of φ.
The dotted lines represent the analytical solution and the solid lines represent the numerical simulation
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(a) (b)

(c)

Figure 3. Dimensionless glucose concentration C versus dimensionless distance z for various values of β.
The dotted lines represent the analytical solution and the solid lines represent the numerical simulation
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(a) (b)

Figure 4. Plot of dimensionless current versus φ for various values of β

(a) (b)

Figure 5. Plot of dimensionless current versusβ for various values of φ
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Figure 6. Plot of dimensionless current versus β for various values of α1

Figure 7. Plot of dimensionless current versus φ for various values of α2

5. Conclusion
A pore network model of deactivation of immobilized glucose isomerase in packed-bed reactors
is solved using the Akbari-Ganji’s method to obtain approximate analytical expressions for
dimensionless glucose concentration and dimensionless current. The result obtained in this
paper may be used to make prediction in future experiments.
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Appendices

A. Basic Concept of Akbari-Ganji’s Method
Consider the following nonlinear differential equation and boundary conditions

f (u′′,u′,u,Fo(sinω t))= 0, (A.1)

u(0)= A, u′(0)= B. (A.2)

Choose an initial guess which satisfies eqn. (A.2), as follows

u(x)= e−at{bcos(ωt+φ)}, (A.3)

where {a,b,ω,φ} are constant coefficients.
Using the initial conditions of eqn. (A.2) the following two cases arises:

(a) u(t)= u(IC), (A.4)

(b) u(t)= g(t). (A.5)

Substituting eqn. (A.5) in eqn. (A.1), we get

f (t)= f (g′′(t), g′(t), g(t),Fo(sinω t))= 0 . (A.6)

Substituting eqn. (A.4) in eqn. (A.6) and its derivatives, the following is obtained

f (IC)= f (g′′(IC), g′(IC), g(IC), . . .)= 0, (A.7)

f ′(IC)= f (g′′(IC), g′(IC), g(IC), . . .)= 0, (A.8)

f ′′(IC)= f (g′′(IC), g′(IC), g(IC), . . .)= 0. (A.9)

From the eqn. (A.7), the set of n-algebraic equations with n-unknowns can be determined.
From these equations, the constant coefficients {a,b,ω,φ} can be obtained.

B. MATLAB Program to Find the Numerical Solution of eqns. (2.4) and
(2.5)

function pdex4

m=0;

x=linspace(0,1);

t=linspace(0,100000);

sol=pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);

u1=sol(:,:,1);

figure

plot(x,u1(end,:))

title('u1(x,t)')

xlabel('Distance x')

ylabel('u1(x,2)')

%-

function [c,f,s] = pdex4pde(x,t,u,DuDx)

c=1;

f=DuDx;
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q=2;

B=0.01;

F=-q∧2*u(1)/(1+B*u(1));
s=F;

%����������

function u0 = pdex4ic(x); %create a initial conditions

u0=1;

%����������

function [pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t) %create a boundary conditions

pl=[ul(1)-1];

ql=[0];

pr=[ur(1)-0.5];

qr=[0];
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