Lower Order Eigenvalues of the Schrödinger Operator*

Bingqing Ma
Department of Mathematics, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China bqma@henannu.edu.cn

Abstract

Making use of the method introduced by Brands in [2], we consider lower order eigenvalues of the Schrödinger operator in Euclidean domains. We extend an estimate on eigenvalues obtained by Ashbaugh and Benguria in [1].

Keywords. Membrane eigenvalue; Schrödinger operator; Rayleigh-Ritz inequality
MSC. 35P15; 58C40

Received: October 27, $2013 \quad$ Accepted: July 2, 2014
Copyright © 2014 Bingqing Ma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let Ω be a bounded domain in an n-dimensional Euclidean space \mathbb{R}^{n} with smooth boundary $\partial \Omega$. The eigenvalue problem

$$
\begin{cases}-\Delta u=\lambda u, & \text { in } \Omega \tag{1.1}\\ u=0, & \text { on } \partial \Omega\end{cases}
$$

is called the fixed membrane problem. Let $0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow+\infty$ denote the successive eigenvalues for (1.1), where each eigenvalue is repeated according to its multiplicity. In the case of $n=2$, Payne-Pólya-Weinberger [5] proved

$$
\begin{equation*}
\frac{\lambda_{2}+\lambda_{3}}{\lambda_{1}} \leq 6 \tag{1.2}
\end{equation*}
$$

Subsequently, in 1964, Brands [2] sharpen (1.2) to

$$
\begin{equation*}
\frac{\lambda_{2}+\lambda_{3}}{\lambda_{1}} \leq 5+\frac{\lambda_{1}}{\lambda_{2}} \tag{1.3}
\end{equation*}
$$

[^0]In 1993, for general dimensions $n \geq 2$, Ashbaugh and Benguria [1] proved (see the inequality (6.10) in [1])

$$
\begin{equation*}
\frac{\lambda_{2}+\lambda_{3}+\cdots+\lambda_{n+1}}{\lambda_{1}} \leq n+3+\frac{\lambda_{1}}{\lambda_{2}} . \tag{1.4}
\end{equation*}
$$

Recently, the inequality (1.4) has been extended to some Riemannian manifolds, see [6, 3, 4] and the references therein.

In this note, we consider eigenvalue problem of the following Schrödinger operator

$$
\begin{cases}(-\Delta+V) u=\lambda u, & \text { in } \Omega \tag{1.5}\\ u=0, & \text { on } \partial \Omega\end{cases}
$$

where V is a continuous bounded function on $\bar{\Omega}$. Using the method of Brands [2], we study the eigenvalue problem (1.5) for general dimensions $n \geq 2$ and extend the inequality (1.4) as follows:

Theorem. Let λ_{i} be the i-th eigenvalue of the eigenvalue problem (1.5). Then

$$
\begin{equation*}
\frac{\lambda_{2}+\lambda_{3}+\cdots+\lambda_{n+1}}{\lambda_{1}} \leq n+\frac{(M+1)(3 \xi+4 M+1)}{\xi+M}, \tag{1.6}
\end{equation*}
$$

where $M=\sup _{\bar{\Omega}}|V| / \lambda_{1}$ and $\xi=\lambda_{2} / \lambda_{1}$.
Remark. If $V=0$ in (1.6), from (1.6), it is easy to see that

$$
\frac{\lambda_{2}+\lambda_{3}+\cdots+\lambda_{n+1}}{\lambda_{1}} \leq n+3+\frac{\lambda_{1}}{\lambda_{2}}
$$

(1.4) follows. Hence, (1.6) extends the inequality (1.4).

2. Proof of Theorem

Let u_{i} be the orthonormal eigenvalue function with respect to L^{2} inner product corresponding to λ_{i}, that is,

$$
\int_{\Omega} u_{i} u_{j}=\delta_{i j}, \quad \text { for any } i, j
$$

We choose rectangular coordinates $\widetilde{x}^{1}, \widetilde{x}^{2}, \ldots, \widetilde{x}^{n}$ of the Euclidean space \mathbb{R}^{n} by taking as origin the center of gravity of Ω with mass-distribution u_{1}^{2} such that

$$
\begin{equation*}
\int_{\Omega} \tilde{x}^{i} u_{1}^{2}=0, \quad \text { for } i=1,2, \cdots, n \tag{2.1}
\end{equation*}
$$

Defining an $n \times n$-matrix B as follows:

$$
B:=\left(b_{i j}\right)
$$

where $b_{i j}=\int_{\Omega} \widetilde{x}^{i} u_{1} u_{j+1}$. Using the orthogonalization of Gram and Schmidt, we know that there exist an upper triangle matrix $R=\left(R_{i j}\right)$ and an orthogonal matrix $Q=\left(q_{i j}\right)$ such that $R=Q B$, that is,

$$
\begin{equation*}
R_{i j}=\sum_{k=1}^{n} q_{i k} b_{k j}=\int_{k} \sum_{k=1}^{n} q_{i k} \widetilde{x}^{k} u_{1} u_{j}=0, \quad 2 \leq j \leq i \leq n . \tag{2.2}
\end{equation*}
$$

Setting $x^{i}=\sum_{j=1}^{n} q_{i j} \tilde{x}^{j}$. From (2.1) and (2.2), we arrive at

$$
\begin{equation*}
\int_{\Omega} x_{i} u_{1} u_{j}=0, \quad \text { for } 1 \leq j \leq i \leq n \tag{2.3}
\end{equation*}
$$

Let $\varphi_{i}=x_{i} u_{1}$. Then $\varphi_{i}=0$ on $\partial \Omega$ and

$$
\int_{\Omega} \varphi_{i} u_{j}=0, \quad \text { for } 1 \leq j \leq i \leq n
$$

One gets from Rayleigh-Ritz inequality that

$$
\begin{equation*}
\lambda_{i+1} \leq \frac{\int_{\Omega} \varphi_{i}(-\Delta+V) \varphi_{i}}{\int_{\Omega} \varphi_{i}^{2}} \tag{2.4}
\end{equation*}
$$

Note that

$$
(-\Delta+V) \varphi_{i}=\lambda_{1} x_{i} u_{1}-2 u_{1, x_{i}}
$$

where $u_{1, x_{i}}=\partial u_{1} / \partial x_{i}$. It follows that

$$
\begin{align*}
\int_{\Omega} \varphi_{i}(-\Delta+V) \varphi_{i} & =\int_{\Omega} \varphi_{i}\left(\lambda_{1} x_{i} u_{1}-2 u_{1, x_{i}}\right) \\
& =\lambda_{1} \int_{\Omega} \varphi_{i}^{2}-2 \int_{\Omega} x_{i} u_{1} u_{1, x_{i}} \\
& =\lambda_{1} \int_{\Omega} \varphi_{i}^{2}-\int_{\Omega} x_{i}\left(u_{1}^{2}\right)_{, x_{i}} \tag{2.5}\\
& =\lambda_{1} \int_{\Omega} \varphi_{i}^{2}+\int_{\Omega} u_{1}^{2} \\
& =\lambda_{1} \int_{\Omega} \varphi_{i}^{2}+1 .
\end{align*}
$$

(2.5) combining with (2.4) yields

$$
\begin{equation*}
\lambda_{i+1} \leq \lambda_{1}+\left(\int_{\Omega}\left(x_{i} u_{1}\right)^{2}\right)^{-1} . \tag{2.6}
\end{equation*}
$$

By integration by parts, it holds that

$$
\int_{\Omega} u_{1}^{\alpha+1}=-\int_{\Omega} x_{i}\left(u_{1}^{\alpha+1}\right)_{, x_{i}}=-(\alpha+1) \int_{\Omega}\left(x_{i} u_{1}\right)\left(u_{1}^{\alpha-1} u_{1, x_{i}}\right) .
$$

For $\alpha>1 / 2$, it follows from the Cauchy-Schwarz inequality that

$$
\begin{aligned}
\left(\int_{\Omega} u_{1}^{\alpha+1}\right)^{2} & =(\alpha+1)^{2}\left(\int_{\Omega}\left(x_{i} u_{1}\right)\left(u_{1}^{\alpha-1} u_{1, x_{i}}\right)\right)^{2} \\
& \leq(\alpha+1)^{2} \int_{\Omega}\left(x_{i} u_{1}\right)^{2} \int_{\Omega}\left(u_{1}^{\alpha-1} u_{1, x_{i}}\right)^{2} \\
& =\frac{(\alpha+1)^{2}}{2 \alpha-1} \int_{\Omega}\left(x_{i} u_{1}\right)^{2} \int_{\Omega}\left(u_{1}^{2 \alpha-1}\right)_{, x_{i}} u_{1, x_{i}} \\
& =\frac{-(\alpha+1)^{2}}{2 \alpha-1} \int_{\Omega}\left(x_{i} u_{1}\right)^{2} \int_{\Omega} u_{1}^{2 \alpha-1} u_{1, x_{i} x_{i}}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left(\int_{\Omega}\left(x_{i} u_{1}\right)^{2}\right)^{-1} \leq \frac{-(\alpha+1)^{2}}{2 \alpha-1} \frac{\int_{\Omega} u_{1}^{2 \alpha-1} u_{1, x_{i} x_{i}}}{\left(\int_{\Omega} u_{1}^{\alpha+1}\right)^{2}} \tag{2.7}
\end{equation*}
$$

Applying (2.7) to (2.6), one gets

$$
\begin{align*}
\frac{\lambda_{2}+\lambda_{3}+\cdots+\lambda_{n+1}}{\lambda_{1}} & \leq n+\frac{(\alpha+1)^{2}}{2 \alpha-1} A(\alpha) \sup _{\bar{\Omega}}\left(1-\frac{V}{\lambda_{1}}\right) \tag{2.8}\\
& \leq n+(M+1) \frac{(\alpha+1)^{2}}{2 \alpha-1} A(\alpha),
\end{align*}
$$

where $A(\alpha)=\int_{\Omega} u_{1}^{2 \alpha} /\left(\int_{\Omega} u_{1}^{\alpha+1}\right)^{2}$.
In the following, we will find an upper bound of

$$
\begin{equation*}
\frac{(\alpha+1)^{2}}{2 \alpha-1} A(\alpha) \tag{2.9}
\end{equation*}
$$

Define

$$
\phi=u_{1}^{\alpha}-u_{1} \int_{\Omega} u_{1}^{\alpha+1}, \text { for } \alpha>1
$$

Then we have

$$
\int_{\Omega} \phi u_{1}=0
$$

This means that

$$
\begin{equation*}
\lambda_{2} \leq \frac{\int_{\Omega} \phi(-\Delta+V) \phi}{\int_{\Omega} \phi^{2}} \tag{2.10}
\end{equation*}
$$

Note that

$$
\begin{aligned}
\alpha \int_{\Omega} u_{1}^{\alpha-1}\left|\nabla u_{1}\right|^{2} & =\int_{\Omega} u_{1}^{\alpha}(-\Delta) u_{1} \\
& =\int_{\Omega}\left(\lambda_{1}-V\right) u_{1}^{\alpha+1}, \\
(2 \alpha-1) \int_{\Omega} u_{1}^{2 \alpha-2}\left|\nabla u_{1}\right|^{2} & =\int_{\Omega} u_{1}^{2 \alpha-1}(-\Delta) u_{1} \\
& =\int_{\Omega}\left(\lambda_{1}-V\right) u_{1}^{2 \alpha},
\end{aligned}
$$

and

$$
(-\Delta+V) \phi=-\alpha(\alpha-1) u_{1}^{\alpha-2}\left|\nabla u_{1}\right|^{2}+\left(\alpha \lambda_{1}-\alpha V+V\right) u_{1}^{\alpha}-\lambda_{1} u_{1} \int_{\Omega} u_{1}^{\alpha+1} .
$$

Hence, we have

$$
\begin{align*}
\int_{\Omega} \phi(-\Delta+V) \phi & =\frac{\alpha^{2}}{2 \alpha-1} \lambda_{1} \int_{\Omega} u_{1}^{2 \alpha}-\frac{(\alpha-1)^{2}}{2 \alpha-1} \int_{\Omega} V u_{1}^{2 \alpha}-\lambda_{1}\left(\int_{\Omega} u_{1}^{\alpha+1}\right)^{2} \tag{2.11}\\
& \leq\left(\frac{\alpha^{2}}{2 \alpha-1}+\frac{(\alpha-1)^{2}}{2 \alpha-1} M\right) \lambda_{1} \int_{\Omega} u_{1}^{2 \alpha}-\lambda_{1}\left(\int_{\Omega} u_{1}^{\alpha+1}\right)^{2}
\end{align*}
$$

From (2.10) and (2.11), we arrive at

$$
\begin{equation*}
\frac{\lambda_{2}}{\lambda_{1}} \leq \frac{\left(\frac{\alpha^{2}}{2 \alpha-1}+\frac{(\alpha-1)^{2}}{2 \alpha-1} M\right) A(\alpha)-1}{A(\alpha)-1} \tag{2.12}
\end{equation*}
$$

Again, by using the Cauchy-Schwarz inequality, one gets

$$
\left(\int_{\Omega} u_{1}^{\alpha+1}\right)^{2}=\left(\int_{\Omega} u_{1}^{\alpha} u_{1}\right)^{2} \leq \int_{\Omega} u_{1}^{2 \alpha} \int_{\Omega} u_{1}^{2}=\int_{\Omega} u_{1}^{2 \alpha} .
$$

This means that $A(\alpha)>1$ for $\alpha>1$. If α is restricted to the condition

$$
\xi-\left(\frac{\alpha^{2}}{2 \alpha-1}+\frac{(\alpha-1)^{2}}{2 \alpha-1} M\right)>0
$$

that is

$$
\begin{equation*}
1<\alpha<\frac{(M+\xi)+\sqrt{(M+\xi)(\xi-1)}}{M+1} \tag{2.13}
\end{equation*}
$$

Then (2.12) is equivalent to

$$
\begin{equation*}
A(\alpha) \leq \frac{\xi-1}{\xi-\left(\frac{\alpha^{2}}{2 \alpha-1}+\frac{(\alpha-1)^{2}}{2 \alpha-1} M\right)} \tag{2.14}
\end{equation*}
$$

where $\xi=\lambda_{2} / \lambda_{1}$. Inserting (2.14) into (2.8) yields

$$
\begin{equation*}
\frac{\lambda_{2}+\lambda_{3}+\cdots+\lambda_{n+1}}{\lambda_{1}} \leq n+(M+1)(\xi-1) f(\alpha), \tag{2.15}
\end{equation*}
$$

where

$$
f(\alpha)=\frac{(\alpha+1)^{2}}{(2 \alpha-1) \xi-\left[\alpha^{2}+(\alpha-1)^{2} M\right]}
$$

The minimum of $f(\alpha)$ as a function of α in the range (2.13) is

$$
\frac{(M+1)(3 \xi+4 M+1)}{(\xi+M)(\xi-1)}
$$

and this is attained at

$$
\alpha=\frac{2 \xi+2 M}{\xi+2 M+1} .
$$

Hence, (2.15) yields

$$
\begin{aligned}
\frac{\lambda_{2}+\lambda_{3}+\cdots+\lambda_{n+1}}{\lambda_{1}} & \leq n+(M+1)(\xi-1) f\left(\frac{2 \xi+2 M}{\xi+2 M+1}\right) \\
& =n+\frac{(M+1)(3 \xi+4 M+1)}{\xi+M}
\end{aligned}
$$

This concludes the proof of theorem.

References

${ }^{[1]}$ M. S. Ashbaugh, R. D. Benguria, More bounds on eigenvalue ratios for Dirichlet Laplacians in n dimensions, SIAM J. Math. Anal. 24 (1993), 1622-1651.
${ }^{[2]}$ J. J. A. M. Brands, Bounds for the ratios of the first three membrane eigenvalues, Arch. Rational Mech. Anal. 16 (1964), 265-268.
${ }^{[3]}$ D. G. Chen, Q. M. Cheng, Extrinsic estimates for eigenvalues of the Laplace operator, J. Math. Soc. Japan 60 (2008), 325-339.
${ }^{[4]}$ G. Y. Huang, X. X. Li, R. W. Xu, Extrinsic estimates for the eigenvalues of Schrödinger operator, Geom. Dedicata 143 (2009), 89-107.
${ }^{[5]}$ L. E. Payne, G. Pólya, H. F. Weinberger, On the ratio of consecutive eigenvalues, J. Math. Phys. 35 (1956), 289-298.
${ }^{[6]}$ H. J. Sun, Q. M. Cheng, H. C. Yang, Lower order eigenvalues of Dirichlet Laplacian, Manuscripta Math. 125 (2008), 139-156.

[^0]: *Supported by NSFC (No. 11371018; 11171368).

