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Abstract. The linear complementary pairs (LCP) of codes is studied mainly due to their application in
cryptography. It is used in the protection against physical attacks such as the side channel and fault
injection. In this paper, we study the LCP of codes which belong to the class of multi-twisted codes.
We give characterizations for the multi-twisted LCP of codes via their constituents and in terms of the
generator polynomial of the code.
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1. Introduction
Cyclic codes were introduced by E. Prange in 1957 [8]. Thereafter various families of codes were
discovered as generalisations of cyclic codes. These codes have good algebraic structures and
contain various optimal codes. One such family is multi-twisted codes which was introduced
by Aydin and Halilovic [1]. It is a generalisation of already known quasi-twisted codes as well.
They have given various methods to construct multi-twisted codes and studied some of the basic
properties of these codes. They have shown that there are codes with better parameters in this
class compared to the other known linear codes. Later, Sharma et al. [9] described the algebraic
structure of multi-twisted codes and its dual codes. They have obtained some conditions under
which the multi-twisted code is a linear complementary dual (LCD). The LCD codes were
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introduced by Massey [6] in 1992. Later, Yang and Massey obtained characterisation for LCD
of cyclic codes in [10] using the generator polynomial. Due to the application in cryptography
([2,7]), there was a renewed interest in studying LCD and LCP of codes. The work of Yang and
Massey was extended by Carlet et al. [3] for characterisation of LCP of constacyclic codes. In
the same paper, the authors have also obtained characterisation for the quasi-cyclic LCP of
codes. In this work, we obtain characterisations for LCP of multi-twisted codes in terms of its
constituents and generator polynomial.

2. Preliminaries
Let q be a power of a prime p and Fq denote the finite field of order q. Let n,m1,m2, . . . ,md

be natural numbers such that (mi, p) = 1, for all 1 ≤ i ≤ d and n = m1 +m2 +·· ·+md . Let Fn
q

denote the vector space which consists of all n-tuples over Fq. Let µ1,µ2, . . . ,µd be non-zero
elements of Fq. Let Fq[x] be the polynomial ring over Fq and Mi = Fq[x]/〈xmi −µi〉 for 1≤ i ≤ d.

The Fq[x]-module Mi is also a vector space over Fq of dimension mi . Let M =
d∏

i=1
Mi . The map

T : Fn
q → M, given by

T(c1,0, c1,1, . . . , c1,m1−1; c2,0, . . . , c2,m2−1; . . . ; cd,0, . . . , cd,md−1)= (c1(x), c2(x), . . . , cd(x)),

where ci(x)=
mi−1∑
j=0

ci, jx j ∈ Mi for 1≤ i ≤ d defines a vector space isomorphism.

By a multi-twisted code C of length n over Fq, we mean a non-zero Fq[x]-submodule of M.
This is equivalent to a linear code (a non-zero subspace of Fn

q ) satisfying:
if c = (c1,0, c1,1, . . . , c1,m1−1; c2,0, c2,1, . . . , c2,m2−1; . . . ; cd,0, cd,1, . . . , cd,md−1) ∈ C , then the multi-
twisted shift of c given by

T(c)= (µ1c1,m1−1, c1,0, . . . , c1,m1−2;µ2c2,m2−1, c2,0, . . . , c2,m2−2; . . . ;µd cd,md−1, cd,0, . . . , cd,md−2)

is also an element of C .

Let f1(x), f2(x), . . . , fr(x) be the factors of xmi −µi, for 1 ≤ i ≤ d, which are distinct and
irreducible. For 1≤ j ≤ r and 1≤ i ≤ d, define

l ji =
{

1 if f j(x) divides xmi −µi in Fq[x]
0 otherwise.

Then for 1≤ i ≤ d, we have xmi −µi =
r∏

j=1
f j(x)l ji . Let F j = Fq[x]

〈 f j(x)〉 . As f j(x) is irreducible, we

have F j is a field. As (mi, p)= 1, from [9] we have Mi =
r∏

j=1
l jiF j , where l jiF j = (0) if l ji = 0 and

l jiF j = F j otherwise. Hence, we have

M ∼=
r⊕

j=1

(
d∏

i=1
l jiF j

)
. (2.1)
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Let l j =
d∑

i=1
l ji for each 1≤ j ≤ r, then N j =

d∏
i=1

l jiF j is an l j-dimensional vector space over F j .

Recall that the reciprocal polynomial of a non-zero f (x) of degree k is defined as f ∗(x) =
xk f (1/x) (see [4, p. 88]). A polynomial f (x) is said to be self-reciprocal if f (x)= f ∗(x) and a pair
( f (x), g(x)) of polynomials is called a reciprocal pair if g(x)= f ∗(x). Let X = { f1(x), f2(x), . . . , fr(x)},
A = { f (x) ∈ X | f (x) is self reciprocal}, B = { f (x) ∈ X | f (x) has a reciprocal in X different from
f (x)} and C = { f (x) ∈ X | f (x) has no reciprocal in X }. By reordering the set X if necessary,
we may assume that A = { f1(x), f2(x), . . . , fr0(x)}, B = { fr0+1(x), f ∗r0+1(x), . . . , fr1(x), f ∗r1

(x)} and
C = { fr1+1(x), fr1+2(x), . . . , fr′(x)} where r′ = r− (r1 − r0). Let

Fα = Fq[x]
〈 fα(x)〉 , 1≤α≤ r0,

Fβ =
Fq[x]
〈 fβ(x)〉 , F ′

β =
Fq[x]
〈 f ∗

β
(x)〉 , r0 +1≤β≤ r1, and

Fγ =
Fq[x]
〈 fγ(x)〉 , r1 +1≤ γ≤ r′.

Let Nα = (lα1Fα, lα2Fα, . . . , lαdFα) for 1 ≤ α ≤ r0, Nβ = (lβ1Fβ, lβ2Fβ, . . . , lβdFβ), N ′
β

=
(l′
β1F ′

β
, l′
β2F ′

β
, . . . , l′

βdF ′
β
) for r0 +1 ≤ β ≤ r1 and Nγ = (lγ1Fγ, lγ2Fγ, . . . , lγdFγ) for r1 +1 ≤ γ ≤ r′,

where for r0 +1≤β≤ r1 and 1≤ i ≤ d,

l′βi =
{

1 if f ∗
β

(x) divides xmi −µi in Fq[x],

0 otherwise.

By (2.1), we have an isomorphism φ from M to(
r0⊕
α=1

Nα

)
⊕

(
r1⊕

β=r0+1
[Nβ⊕N ′

β]

)
⊕

(
r′⊕

γ=r1+1
Nγ

)
.

Let C be a multi-twisted code of M over Fq. From (2.2), M is a semi-simple Fq[x]-module.
The multi-twisted code C , being a submodule of a semi-simple Fq[x]-module M, is also semi-
simple (see [3, Proposition 2.2]). Hence, C is also a direct sum of simple Fq[x]-modules. That is,
we have

M ≃
(

r0⊕
α=1

Nα

)
⊕

(
r1⊕

β=r0+1
[Nβ⊕N ′

β]

)
⊕

(
r′⊕

γ=r1+1
Nγ

)
(2.2)

and hence we have

C ∼=
(

r0⊕
α=1

Cα

)
⊕

(
r1⊕

β=r0+1
[Cβ⊕C ′

β]

)
⊕

(
r′⊕

γ=r1+1
Cγ

)
,

where Cα =φ(C )∩Nα for 1≤α≤ r0, Cβ =φ(C )∩Nβ and C ′
β
=φ(C )∩N ′

β
for r0 +1≤β≤ r1 and

Cγ =φ(C )∩Nγ for r1 +1≤ γ≤ r′. We call Cα, Cβ, C ′
β

and Cγ as the constituents of C .

3. Linear Complementary Pairs(LCP) of Codes

When m1 = m2 = ·· · = md = m and µ1 = µ2 = ·· · = µd = 1, then the code C is a quasi-cyclic
code of length n (= md) over Fq. Two linear codes C and D of length n over Fq are said to
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be linear complementary pairs (LCP) of codes if C ⊕D = Fn
q . In a paper by Carlet et al. [3],

a characterisation for quasi cyclic LCP of codes is obtained via their constituents. We shall
consider in this paper LCP of multi-twisted codes of M. Two multi-twisted codes C and D are
said to be LCP of codes of M if C ⊕D = M. From the above section, C and D can be expressed
as

C ∼=
( r0⊕
α=1

Cα

)
⊕

(
r1⊕

β=r0+1
[Cβ⊕C ′

β
]

)
⊕

(
r′⊕

γ=r1+1
Cγ

)

D ∼=
( r0⊕
α=1

Dα

)
⊕

(
r1⊕

β=r0+1
[Dβ⊕D ′

β
]

)
⊕

(
r′⊕

γ=r1+1
Dγ

)
 (3.1)

We prove the following theorem.

Theorem 3.1. The pair (C ,D ) is an LCP in M if and only if (Cα,Dα) is LCP in Nα for 1≤α≤ r0,
(Cβ,Dβ) and (C ′

β
,D ′

β
) are LCP in Nβ and N ′

β
respectively for r0 +1≤β≤ r1 and (Cγ,Dγ) is LCP

in Nγ for r1 +1≤ γ≤ r′.

Proof. Assume that (C ,D ) is LCP in M. Therefore M =C ⊕D . From (2.2) and (3.1) we have

φ(C )⊕φ(D )=
(

r0⊕
α=1

Nα

)
⊕

(
r1⊕

β=r0+1
[Nβ⊕N ′

β]

)
⊕

(
r′⊕

γ=r1+1
Nγ

)
. (3.2)

Therefore, for 1≤α≤ r0, r0 +1≤β≤ r1 and r1 +1≤ γ≤ r′, we have

Cα+Dα ⊆ Nα, Cβ+Dβ ⊆ Nβ, C ′
β+D ′

β ⊆ N ′
β and Cγ+Dγ ⊆ Nγ

By (3.2) and since Nα, Nβ, N ′
β

and Nγ are finite dimensional vector spaces over their
corresponding fields, we have

Cα+Dα = Nα, Cβ+Dβ = Nβ, C ′
β+D ′

β = N ′
β and Cγ+Dγ = Nγ.

Then,

dim Nα = dim(Cα+Dα)= dimCα+dimDα−dim(Cα∩Dα).

Therefore, for each α, dimCα+dimDα is greater than or equal to dim Nα. Similarly, it follows
for the addition of dimensions of every constituent pair in β and γ. Since (C ,D ) is LCP, we have

n =
r0∑
α=1

deg fα(dimCα+dimDα)+
r1∑

β=r0+1
deg fβ[(dimCβ+dimDβ)

+ (dimC ′
β+dimD ′

β)]+
r′∑

γ=r1+1
deg fγ(dimCγ+dimDγ).

By (2.2), it follows that

n =
r0∑
α=1

deg fαdim Nα+
r1∑

β=r0+1
deg fβ(dim Nβ+dim N ′

β)+
r′∑

γ=r1+1
deg fγdim Nγ.

Hence for each α,

dimCα+dimDα = dim Nα

and similarly, it follows for the addition of dimensions of every constituent pair in β and γ.
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Therefore, (Cα,Dα) is LCP in Nα for 1 ≤ α≤ r0, (Cβ,Dβ) and (C ′
β
,D ′

β
) are LCP in Nβ and N ′

β

respectively for r0 +1≤β≤ r1 and (Cγ,Dγ) is LCP in Nγ for r1 +1≤ γ≤ r′.
To prove the converse, we can follow similar arguments and conclude that (C ,D) is LCP

in M.

A multi-twisted code C of length n over Fq is said to be a k-generator code if k is the least
positive integer such that there exists k number of codewords in C say, a1(x),a2(x) . . . ,ak(x) with
the property that every c(x) ∈C can be expressed as c(x)= g1(x)a1(x)+g2(x)a2(x)+·· ·+gk(x)ak(x)
for some g1(x), g2(x), . . . gk(x) ∈ Fq[x] and we denote C = 〈a1(x),a2(x), . . . ,ak(x)〉 where at(x) =
(at,1(x),at,2(x), . . . ,at,d(x)) for 1≤ t ≤ k.

When k = 1, C is said to be a 1-generator multi-twisted code. Let C = 〈a(x)〉 be a 1-generator

multi-twisted code where a(x) = (a1(x),a2(x) . . . ,ad(x)). By (2.1) we have M ∼=
r⊕

j=1

(
d∏

i=1
l jiF j

)
and F j ∼= Fq(ζ j), where ζ j is a root of f j(x) for 1 ≤ j ≤ r. Thus we have an isomorphism from

M to
r⊕

j=1

(
d∏

i=1
l jiFq(ζ j)

)
given by (a1(x),a2(x), . . . ,ad(x)) 7→

r∑
j=1

(l j1a1(ζ j), l j2a2(ζ j), . . . , l jdad(ζ j)).

Therefore, for a 1-generator multi-twisted code C = 〈(a1(x),a2(x), . . . ,ad(x))〉 its constituents are
of the form C j = 〈(l j1a1(ζ j), l j2a2(ζ j), . . . , l jdad(ζ j))〉 for 1≤ j ≤ r.

Let µ1,µ2, . . . ,µd ∈ F∗q and { f1, f2, . . . , fr} be the collection of all irreducible factors of xmi −µi ,
1≤ i ≤ d. Now consider that each irreducible factor divides xmi −µi for exactly two distinct i’s,
in that case we prove the following for 1-generator multi-twisted codes.

Theorem 3.2. Let µ1,µ2, . . . ,µd be such that for each 1≤ j ≤ r, f j(x) divides xmi −µi for exactly
two distinct i’s, say u,v. Suppose C = 〈(a1(x),a2(x), . . . ,ad(x))〉 and D = 〈(b1(x),b2(x), . . . ,bd(x))〉
are 1-generator multi-twisted codes of length n. Then the pair (C ,D) is LCP if and only if for
every j,1≤ j ≤ r and any s ∈ F∗

j , we have

gcd( f j(x),ai(x)− sbi(x))= 1, for i = u,v.

Proof. Let C = 〈(a1(x),a2(x), . . . ,ad(x))〉 and D = 〈(b1(x),b2(x), . . . ,bd(x))〉 be 1-generator multi-
twisted codes. Here all the constituents C j and D j of C and D respectively are 1-dimensional
subspaces of 2-dimensional space N j over F j . Therefore, to prove that the pair (C ,D) is LCP,
it is enough to show that C j ∩D j = {0} for 1 ≤ j ≤ r. Since f j(x) divides xmi −µi for exactly
two distinct i’s, say u,v, we have l ji = 1 if i = u,v and l ji = 0 otherwise. Therefore, we have
C j = 〈(0, . . . ,au(ζ j), . . . ,av(ζ j), . . . ,0)〉 and D j = 〈(0, . . . ,bu(ζ j), . . . ,bv(ζ j), . . . ,0)〉, where ζ j is a root
of f j(x). Then C j ∩D j ̸= {0} if and only if there exists s ∈ F∗

j such that f j(x) divides ai(x)− sbi(x),
for i = u,v. Therefore, C j ∩D j = {0} if and only if for any s ∈ F∗

j ,

gcd( f j(x),ai(x)− sbi(x))= 1, for i = u,v.

Hence (C ,D ) is LCP if and only if for every j, 1≤ j ≤ r and any s ∈ F∗
j we have

gcd( f j(x),ai(x)− sbi(x))= 1, for i = u,v.
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Corollary 3.1. Let µ1,µ2, . . . ,µd ∈ F∗q be such that xm1 −µ1, xm2 −µ2, . . . , xmd−1 −µd−1 are pairwise

coprime polynomials in Fq[x] and xmd −µd =
d−1∏
i=1

xmi −µi . Let
d−1∏
i=1

xmi −µi = f1(x) f2(x) . . . fr(x),

where f i ’s are distinct irreducible polynomials. Suppose C = 〈(a1(x), . . . ,ad−1(x),1)〉 and D =
〈(b1(x), . . . ,bd−1(x),1)〉 are 1-generator multi-twisted codes of length n. Then the pair (C ,D) is
LCP if and only if for every j, 1≤ j ≤ r we have gcd( f j(x),ai(x)−bi(x))= 1 for i such that l ji = 1.

Proof. The constituents of C and D are of the form C j = 〈(0, . . . ,ai(ζ j), . . . ,1)〉 and D j =
〈(0, . . . ,bi(ζ j), . . . ,1)〉 for i such that l ji = 1, and ζ j is a root of f j(x). Then, C j ∩D j ̸= {0} if and
only if f j(x) divides ai(x)−bi(x). Therefore, C j∩D j = {0} if and only if gcd( f j(x),ai(x)−bi(x))= 1.

Since C j and D j are 1-dimensional subspaces of the 2-dimensional space N j =
d∏

i=1
l jiF j for

1≤ j ≤ r, we have the pair (C j,D j) is LCP if and only if C j ∩D j = {0}.

Hence, (C ,D) is LCP if and only if for every j, 1≤ j ≤ r we have gcd( f j(x),ai(x)−bi(x))= 1
for i such that l ji = 1.

When xm1 −µ1, xm2 −µ2, . . . , xmd −µd are pairwise coprime polynomials in Fq[x], we have

M =
d∏

i=1
Mi =

d∏
i=1

Fq[x]
〈xmi −µi〉

= Fq[x]〈
d∏

i=1
xmi −µi

〉 .

Clearly, M is a ring and any multi-twisted code can be considered as an ideal of M. Since M is
a principle ideal ring, the multi-twisted codes are generated by monic polynomials. Then we
have the following theorem.

Theorem 3.3. Let µ1,µ2, . . . ,µd ∈ F∗q be such that xm1 −µ1, xm2 −µ2, . . . , xmd −µd are pairwise
coprime polynomials in Fq[x]. Let C and D be multi-twisted codes of M over Fq generated by
monic polynomials a(x) and b(x), respectively. Then the pair (C ,D) is LCP in M if and only if

a(x)b(x)=
d∏

i=1
xmi −µi .

Proof. By our assumption, {xmi −µi | 1 ≤ i ≤ d} are pairwise coprime polynomials in Fq[x].
First, let us assume that the pair (C ,D) is LCP. Then C ⊕ D ∼= Fn

q
∼= Fq[x]〈

d∏
i=1

xmi−µi

〉 and

gcd(a(x),b(x))= 1. Since C ∩D has the generating polynomial lcm(a(x),b(x)) and C ∩D = {0},

we get lcm(a(x),b(x))=
d∏

i=1
xmi −µi . As gcd(a(x),b(x))= 1, we have a(x)b(x)=

d∏
i=1

xmi −µi .

Conversely, suppose a(x)b(x) =
d∏

i=1
xmi −µi . Since (mi, q) = 1 for 1 ≤ i ≤ d, the irreducible

factors of the polynomials xmi − µi are distinct. Therefore, gcd(a(x),b(x)) = 1. Then

lcm(a(x),b(x)) =
d∏

i=1
xmi −µi which implies that C ∩D = {0}. Now, gcd(a(x),b(x)) = 1 implies

that C +D = Fq[x]
d∏

i=1
xmi−µi

. Hence, the pair (C ,D ) is LCP in M. □
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4. Conclusion
In this paper we obtained characterisations of linear complementary pairs of multi-twisted

codes using their constituents and generator polynomial. The characterisation obtained via

their constituents extends the characterisation of LCP of quasi-cyclic codes due to Carlet et
al. [3]. Further it will be interesting to obtain characterisations for the linear complementary

dual of skew multi-twisted codes, which are generalisations of multi-twisted codes.
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