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1. Introduction
The problems in the approximation theory related to single-layer neural networks are discussed
by Pinkus in 1999 [19] for an activation function σ :R→R which is expressed by the following
formula:

Nn(x)=
n∑

i=0
ciσ(ai · x+θi), n ∈N+, (1.1)

where x ∈Rs, s ∈N+, 0≤ i ≤ n, θi, ci ∈R, ai,ai · x ∈Rs.

The symbols in eq. (1.1) θi , ci , ai and ai · x denote to be threshold values, coefficients, weights,
and the inner product, respectively.

Many papers are published in this branch, we refer here to some of them [2,3,11–16] and [17].
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For f : R→ R be a bounded function and x in R := [a1,b1]× ·· ·× [as,bs] ⊂ Rs, Costarelli and
Spigler [4,5] are introduced and studied the behavior of artificial neural networks in the case of
the univariate and the multivariate Bernstein, given as:

Fn( f ; x)=

⌊nb1⌋∑
k1=⌈na1⌉

· · ·
⌊nbs⌋∑

ks=⌈nas⌉
f
(k

n
)
Ψσ(nx−k)

⌊nb1⌋∑
k1=⌈na1⌉

· · ·
⌊nbs⌋∑

ks=⌈nas⌉
Ψσ(nx−k)

, n ∈N+ , (1.2)

where Ψσ is a density function that is built from a sigmoidal function σ,k = (k1, . . . ,ks) ∈ Z+.
As usual, the symbols ⌊·⌋, ⌈·⌉ denote taking the “floor” and the “ceiling” of a given number,
respectively.

Costarelli and Spigler [6] used the structure of Kantorovich to the multivariate NN operators
for eq. (1.2) and studied the approximation theorems to this new NN .

Costarelli and Vinti [7] introduced a neural network by using max-product and studied
approximation theorems also estimates the rate of convergence to the multivariate max-product
NN operators and the multivariate quasi-interpolation max-product NN operators.

Gavrea and Ivan [9] defined the square of Bernstein polynomials which is given as:

Bn,2( f ; x)=

n∑
k=0

b2
n,k(x) f

( k
n
)

n∑
k=0

b2
n,k(x)

, n = 1,2, . . . , (1.3)

where b2
n,k(x)= (bn,k(x))2, x ∈ [0,1], f ∈ C[0,1].

Mohammad and Mohammad [18] defined the neural network of type summation-integral
Bernstein operators by using eq. (1.2), then studied pointwise and uniform approximation
theorems for this neural network.

Hassan in 2018 introduce the new modified of Bernstein operators define in [10].

Bajpeyi and Kumar [1] introduced and studied a neural network of exponential type and
studied its behavior in one- and multi-dimensional cases.

Costarelli et al. [8] have used the neural network in eq. (1.2) to introduce and study the
multivariate max-product NN of Kantorovich type.

This paper extends the neural network in eq. (1.2) by using the square Bernstein polynomials
in eq. (1.3) and studies the behavior of the family of the neural network of multivariate square
rational Bernstein operators acting on the sigmoidal functions σ. Finally, gives two numerical
examples for the NN operators Qn(·; x, y) and the NN operators Fn(·; x, y) are applying for two
test functions, it turns out from the figures and numerical results of the table in both examples
that the NN operators Qn(·; x, y) is better than the NN operators Fn(·; x, y).

2. Preliminary Results

Several preliminary results are recalled in this section.
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The measurable functions like the Logistic function σl(x) = (1+ e−x)−1, Hyperbolic tangent
σh(x)= 1

2 [tanh(x)−1], is called a sigmoidal function if satisfying lim
x→−∞σ(x)= 0 and lim

x→+∞σ(x)= 1.

Also, the function Φσ(x)is defined as

Φσ(x)= 1
2

[σ(x+1)−σ(x−1)], x ∈R,

for every non-decreasing function σ satisfying assumptions (Σ1), (Σ2) and (Σ3) in [5].

(i) the odd function gσ, such that gσ(x)=σ(x)−1/2;

(ii) the concave function σ is a function for σ ∈ C2(R), x ≥ 0;

(iii) for some α> 0, the function σ satisfying σ(x)=O(|x|−1−α) as x →−∞.

We will give some definitions that we need:

Definition 2.1 ([5]). Any measurable function with the condition lim
x→−∞ζ(x)= 0, lim

x→+∞ζ(x)= 1,
it’s known as a sigmoidal function.

Definition 2.2 ([5]). Lipschitz classes are defined as:

Lip(v)= { f ∈ C0(R) : ∃ γ> 0, M > 0 so that ∀ x ∈R, | f (x+ y)− f (x)| ≤ M∥y∥v
2,

∀ ∥y∥2 ≤ γ with (x+ y) ∈R, 0< v ≤ 1}.

3. Auxiliary Results

The multivariate NN operators Qn( f ; x) is defined and studied follow:

Definition 3.1. For a bounded and continuous function f : R → R, the linear positive
multivariate (NN) operators of the multivariate square rational Bernstein operators of f ,
Qn( f ; x) activated by the sigmoidal function σ acting on f , is defined by:

Qn( f ; x)=
∑
k
Ψ2
σ(nx−k) f (k/n)∑
k
Ψ2
σ(nx−k)

,

∑
k
=

⌊nb1⌋∑
k1=⌈na1⌉

· · ·
⌊nbs⌋∑

ks=⌈nas⌉
,

where the multivariate for the Φ2
σ define a function Ψ2

σ(x)=Φ2
σ(x1) ·Φ2

σ(x2) · . . . ·Φ2
σ(xs), observe

that Qn(1; x)= 1, for every x ∈R and n tends to infinity.

Definition 3.2. For v > 0, the discrete absolutely moment of the function Φ2
σ of order v is

defined as

mv(Φ2
σ)= sup

x∈R

∑
k∈Z
Φ2
σ(x−k)|x−k|v.

The properties of the functions Φσ and Ψσ in [4] and [5] are needed to give and prove the
following Lammas 3.1-3.3 directly.
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Lemma 3.1. For the function Φ2
σ(x), one has:

(i) Φ2
σ(x)≥ 0, ∀ x ∈R and lim

x→±∞Φ
2
σ(x)= 0, as well Φ2

σ(1)> 0;

(ii) the function Φ2
σ(x) is even;

(iii)
∑

k∈Z
Φ2
σ(x−k)≃ 0.156517, ∀ x ∈R;

(iv) the series
∑

k∈Z
Φ2
σ(x−k) on the compact subset of Ris uniformly converged;

(v) Φ2
σ(x)=O(|x|−2(1+α)) as x →±∞.

Proof. One can easily prove this lemma by direct computation and the prove of properties the
function Φσ in [4].

The next lemma gives some properties for the function Ψ2
σ(x−k).

Lemma 3.2. For the function Ψ2
σ(x−k), one has:

(i)
∑
k
Ψ2
σ(x−k)≃ (0.156517)s, for all x ∈Rs;

(ii) the series
∑
k
Ψ2
σ(x−k) on the compact subset of Rs are uniformly converged;

(iii) lim
n→∞

∑
∥x−k∥>γn

Ψ2
σ(x−k)= 0 are converges uniformly to x ∈Rs; and∑

∥x−k∥>γn
Ψ2
σ(x−k)=O(n−v) in particularly for 0 < v < α, where γ,α > 0, α is a constant

and ∥x∥∞ =max{|xi|, i = 1, . . . , s}.

Proof. One can easily prove this lemma by direct computation and the prove of properties the
function Ψσ in [5].

Lemma 3.3. (i) For x ∈ [a,b]⊂R, then
1

⌊nb⌋∑
k=⌈na⌉

Φ2
σ(nx−k)

≤ 1
Φ2
σ(1)

;

(ii) for x ∈R then
1

s∏
i=1

⌊nbi⌋∑
ki=⌈nai⌉

Φ2
σ(nxi −ki)

≤ 1
[Φ2

σ(1)]s .

Proof. One can easily prove this lemma by direct computation and using the prove of Lemma 2.7
in [5].

The following theorem studies the pointwise and the uniform convergence for the NN ,
Qn( f ; x).
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Theorem 3.1. For f :R→Rbounded and continuous function,

lim
n→∞Qn( f ; x)= f (x),

where f is continuous at each point x ∈R. If f ∈ C0(R), then

lim
n→∞sup

x∈R
|Qn( f ; x)− f (x)| = lim

n→∞∥Qn( f ; ·)− f (·)∥∞ = 0.

Proof. Suppose x ∈R is a point of continuity of f we have

|Qn( f ; x)− f (x)| =

∣∣∣∣∣∣∣
∑
k
Ψ2
σ(nx−k) f (k/n)∑
k
Ψ2
σ(nx−k)

− f (x)

∣∣∣∣∣∣∣
and by using Lemma 3.3, we get

|Qn( f ; x)− f (x)| ≤ 1
[Φ2

σ(1)]s

∑
k
Ψ2
σ(nx−k)| f (k/n)− f (x)|

∀ n → ∞, n ∈ N+, x ∈ Rs are arbitrary but fixed. Suppose for a fixed ε > 0, and from the
continuity of f at x, ∃ γ> 0: | f (y)− f (x)| < ε, ∀ y ∈R with ∥y− x∥2 < γ, the symbol ∥ ·∥2 denote
to Euclidean norm.

Now,one gets

|Qn( f ; x)− f (x)| ≤ 1
[Φ2

σ(1)]s

{ ∑
∥k/n−x∥< γp

s

Ψ2
σ(nx−k)| f (k/n)− f (x)|

+ ∑
∥k/n−x∥≥ γp

s

Ψ2
σ(nx−k)| f (k/n)− f (x)|

}

:= 1
[Φ2

σ(1)]s (I1 + I2).

Now using the continuity of f and Lemma 3.2, we get that ∥k/n− x∥2 ≤ p
s∥k/n− x∥ ≤ γ.

So estimation I1 is,

I1 < ε
∑

∥k/n−x∥≤ γp
s

Ψ2
σ(nx−k)≤ ε .

From the boundedness of f and Lemma 3.2, for sufficiently large n, we have

I2 ≤ 2∥ f ∥∞
∑

∥k/n−x∥> γp
s

Ψ2
σ(nx−k)< 2∥ f ∥∞ε,

uniformly ∀ x ∈ Rs. The first direction of the theorem holds because ε arbitrarily. When
f ∈ C0(R), the proof of the other direction is readily followed in the same way by exchange γ> 0
with the parameter of the uniform continuity of f on R.

Now, in the following, the order of approximation of (NN) operators in C0(R) is studied.

Theorem 3.2. Suppose f ∈Lip(v) for some 0< v ≤ 1, and let the sigmoidal function σ satisfy the
condition (Σ3) in [5] for some α> 1. Then,

∥Qn( f ; x)− f (·)∥∞ =O(n−v) as n →∞.
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Proof. Let f ∈Lip(v), ∀ x ∈R, for some v ∈ (0,1], by using Lemma 3.3, one obtains

|Qn( f ; x)− f (x)| ≤ 1
[Φ2

σ(1)]s
∑
k
Ψ2
σ(nx−k)| f (k/n)− f (x)| .

Now by using the definition of Lip(v), where γ, C > 0 are constants relative to f one obtains

|Qn( f ; x)− f (x)| ≤ 1
[Φ2

σ(1)]s

{ ∑
∥k/n−x∥≤ γp

s

Ψ2
σ(nx−k)| f (k/n)− f (x)|

+ ∑
∥k/n−x∥> γp

s

Ψ2
σ(nx−k)| f (k/n)− f (x)|

}

:= 1
[Φ2

σ(1)]s (J1 + J2).

Since f ∈Lip(v), we get for ∥k/n−x∥2 ≤
p

s∥k/n−x∥ ≤ γ, and hence | f (k/n)− f (x)| < C∥k/n−x∥v
2 ≤

Cs
v
2 ∥k/n− x∥v.

J1 ≤ n−vCsv/2 ∑
∥k/n−x∥≤ γp

s

Ψ2
σ(nx−k)∥nx−k∥v

≤ n−vCsv/2 ∑
∥k/n−x∥≤ γp

s

Ψ2
σ(nx−k)∥nx−k∥v

for fixed 0< vi <α, by using Lemma 3.2, for a compact subset K ⊂Rs. ∀ x ∈Rs, if n →∞ implies
the following:

J1 ≤ n−vCsv/2 ∑
∥k/n−x∥≤ γp

s

Ψ2
σ(nx−k)∥nx−k∥v

≤ n−vCsv/2
s∑

j=1

{ ∑
k j∈Z

Φ2
σ(nx j −k j)|nx j −k j|v

[ ∑
k[ j]∈Zs−1

Ψ2[ j]
σ (nx[ j] −k[ j])

]}
,

where

Ψ2[ j]
σ (nx[ j] −k[ j])=Φ2

σ(nx1 −k1) · . . . ·Φ2
σ(nx j−1 −k j−1) ·Φ2

σ(nx j+1 −k j+1) · . . . ·Φ2
σ(nxs −ks) .

Notice that, for every j=1, . . . , s, x[ j]=(x1, . . . , x j−1, x j+1, . . . , xs)∈Rs−1, k[ j] = (k1, . . . ,k j−1,k j+1, . . . ,
ks) ∈Zs−1. Now, let k[ j] ⊂R the set of j-th projection of a compact set K for all elements. By using
Lemma 3.2 and for all sufficiently large N ∈N+, then

J1 ≤ (0.156517)s−1n−vCsv/2
s∑

j=1

{ ∑
k j∈Z

Φ2
σ(nx j −k j)|nx j −k j|v

}
≤ (0.156517)s−1n−vCs1+v/2mv(Φ2

σ).

Note that mv(Φ2
σ)<∞, where mv(Φ2

σ) give in Definition 3.2 since v <α, therefore

J1 =O(n−v), n →∞.

Now, the estimation of J2is done by using the other direction of Lemma 3.2, i.e.

J2 ≤ 2∥ f ∥∞
∑

∥k/n−x∥> γp
s

Ψ2
σ(nx−k)=O(n−v) , as n →∞ .
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Theorem 3.3. Let the function σ for some α ∈ (0,1] satisfy the condition (Σ3) in [5], and let
f ∈Lip(v) for some v ∈ (0,1]. Then,

(i) ∥Qn( f ; ·)− f (·)∥∞ =O(n−v), as n →∞, if v <α.

(ii) ∥Qn( f ; ·)− f (·)∥∞ =O(n−α+ε), as n →∞, ∀ 0< ε<α, if α≤ v < 1.

Proof. (i) Using the same step of Theorem 3.2 one obtains proving

∥Qn( f ; ·)− f (·)∥∞ =O(n−v), as n →∞
for function f ∈Lip(v) at 0< v <α.

(ii) As a special case for all f ∈ Lip(v) with α ≤ v ≤ 1, with ε is fixed but arbitrary choose
β :=α−ε, and get 0<β<α, by based on part (i), then

∥Qn( f ; ·)− f (·)∥∞ =O(n−β)=O(n−α+ε), as n →∞
for function f ∈Lip(β), at 0< ε<α.

4. Numerical Examples

In this part, two numerical examples for the NN operators Qn(·; x, y) and the NN operators
Fn(·; x, y) are applying for two test functions f (x, y) = cos(9xy) + 2sin(x + y) and g(x, y) =
(2x−1)2 − (2y−1)2, (x, y) ∈ [0,1]× [0,1] for the values of n = 10,30,60. The numerical results
obtained are described in the figures and compared with the convergence of the two NN . Also,
at able of the maximum error function for the two NN is given. It turns out from the figures
and numerical results of the table in both examples that the NN operators Qn(·; x, y) is better
than the NN operators Fn(·; x, y).

Example 4.1. For n = 10,30,60, the convergence of NN operators Qn( f ; x, y), Fn( f ; x, y) to test
function f (x, y) can be described in Figure 1.

n = 10 n = 30 n = 60

Figure 1. The numerical convergence of NN operators Fn( f ; x, y) (red) and Qn( f ; x, y) (yellow) to f (x, y)
(blue)

Example 4.2. For n = 10,30,60, the convergence of NN operators Qn(g; x, y), Fn(g; x, y) to test
function g(x, y) can be described in Figure 2.
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n = 10 n = 30 n = 60

Figure 2. The numerical convergence of NN operators Fn(g; x, y) (red) and Qn(g; x, y) (yellow) to g(x, y)
(blue)

Now, the following table calculation maximum error values between the test function and
NN in R2, by using test functions f (x, y), g(x, y):

Table 1. The maximum error

NN n = 10 n = 30 n = 60

Fn( f ; x, y) 0.221650351 0.050239325 0.031124401

Qn( f ; x, y) 0.490870074 0.091746325 0.042499216

Fn(g; x, y) 1.082000283×10−10 2.034676091×10−10 4.215129055×10−10

Qn(g; x, y) 0.2810197385 0.0888466031 0.0428823462

5. Conclusions
The two numerical examples above and Table 1, are shown that the NN operators Qn(·; x, y)
gives better numerical results with smaller maximum error than the classical NN operators
Fn(·; x, y) for the two test functions f and g.
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