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Abstract. In this paper, we have proposed a SIR fuzzy epidemic model by taking the transmission rate
and recovery rate as fuzzy numbers. The basic reproduction number and the fuzzy basic reproduction
number have been computed. Further by considering the initial values for the susceptible, infected
and recovered population the numerical simulation has been carried out using Runge-Kutta method.
We can predict the transmission of the virus and prevent the COVID-19 outbreak in India with the
results obtained from the proposed SIR model.
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1. Introduction
The noble coronavirus disease 2019 called Covid-19 has affected millions of people in the world
this virus has made a great impact on the whole world as it spread to other persons very
easily. The virus was first identified in Wuhan city of China in December 2019. Coronavirus
was declared as an outbreak pandemic by World Health Organisation (WHO) in March 2020.
Fever, cold, cough, bone pain and respiratory problems are the most common symptoms of this
infection. Apart from these symptoms like loss of smell or taste, fatigue muscle pain and sore
throat where are also observed in corona patients. Vaccines are the safe and effective tool to
end this pandemic. Being vaccinated does not mean that we can throw caution to the wind
and put ourselves and others at risk, particularly because research is still on going into how
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much vaccines protect not only against the disease but also against infection and transmission1.
A mathematical model is a powerful tool which is used to analyse the spread of the virus and
control the disease. Among many models which are used to predict Covid-19, the first model
was conducted using Richard’s method and GLM method [13]. In this modern era, there are
many models which have been developed to describe about the epidemic process the first paper
which emerged under the strength is given by Kermack and McKendrick [8]. In [4] prediction of
the total number of Covid-19 cases is discussed and examples are presented using the measured
data in Austria, France and Poland. Youssef et al. [15] have constructed SEIR model and have
used the real data of Covid-19 of Saudi Arabia for numerical analysis and complex analysis.
Jing et al. [2] proposed and SIR model to predict the epidemic trends of Covid-19 especially
for USA-New York and Italy. By considering two parameters of SIR model Kudryashov et al.
[9] analysed the infection expansion based on the first integrals for Covid-19. A mathematical
model is constructed by considering 8 parameters by Ndaïrou et al. [11,12] where they have
included super spreaders class which is a different feature from other Covid-19 models. The SIR
model is very useful for future prediction, end peak of epidemic disease and other related
activity of outbreak disease.

Among the various paradigm exchanges in science and mathematics in the century one such
change concerns the concept of uncertainty the first stage of transition from the traditional
view to the modern view of uncertainty began in 19th century, and there came the introduction
of Fuzzy by Zadeh; the introduction of uncertainty in biological model was given by Zadeh
[16]. By considering different degrees of infectivity and transmission coefficient as fuzzy set
De Barros et al. [3] constructed SI epidemiological model and applied the fuzzy technique.
The transmission and the treatment control parameter where considered as fuzzy number
by Mondal et al. [10] and they have modified the SIS epidemic model. Abdy et al. [1] have
constructed an SIR model for COVID-19 and computed simulation results by considering data
of Indonesia. In this study we have constructed an SIR model by considering the transmission
rate and the recovery rate as fuzzy parameters, for the which we have compute the graph using
Covid-19 data of India. By computing the graph, we can predict the future and peak of this
Covid-19 epidemic disease.

2. Preliminaries
2.1 Fuzzy Set
Let X be a nonempty crisp sets. A fuzzy subset S of X is denoted by S̃ and is defined as

S̃ = {(x,µS(x)) : x ∈ X }

where µS : X → [0,1] is a membership function associated with a fuzzy set S̃ which describes
the degree of belongingness of x with X .

Here we use the membership function µ(x) to indicate the fuzzy subsets S̃. Also, µ(x) is
called fuzzy number if X is the set of real numbers.

1World Health Organisation (WHO), Coronavirus disease (COVID-19) pandemic, URL: https://www.who.int/
emergencies/diseases/novel-coronavirus-2019.
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2.2 Triangular Fuzzy Number

A Fuzzy set is called Triangular fuzzy number if the membership value can be represented by a

Triangular Function. This function by a three parameters F(x : a,b, c) [5] such as:

F(x : a,b, c)=



0 x < a
x−a
b−a

a ≤ x < b

c− x
c−b

b ≤ x ≤ c

0 x > c

2.3 Fuzzy Measure and Fuzzy Expected Value

Let Ω be a nonempty set and P(Ω) denote the set of all subsets of Ω. Then µ :Ω→ [0,1] is a

fuzzy measure [5], if

(i) µ(φ)= 0 and µ(Ω)= 1,

(ii) for A,B ∈ P(Ω), µ(A)≤µ(B) if A ⊂ B.

Let µ :Ω→ [0,1] be an uncertain variable, i.e., µ is a fuzzy subset and µ a fuzzy measure on Ω.

Then fuzzy expected value (FEV) of µ is the real number, defined by the sugeno measure [10].

FEV(µ)=
∫
µdµ= sup{min(α,k(α))}, 0≤α≤ 1

where k(α)=µ{ω ∈Ω :µ(ω)≥α}.

3. Fuzzy System

In this paper, we propose an SIR model by incorporating the transmission rate and recovery rate

as the fuzzy numbers. This model describes the susceptible, infected, and recovered population of

Covid-19 in India. The model consists of three compartments of non-linear ordinary differential

equations. The following is the fuzzy SIR model for COVID-19
ds
dt

=−β(υ)SI ,

dI
dt

=β(υ)SI −γ(υ)I ,

dR
dt

= γ(υ)I ,

where S+ I +R = N .

In the above equations, S is the susceptible population, I is the infected population, R is the

recovered population, and N is the total population, whereas the fuzzy numbers β represents

the transmission rate of the disease and γ represents the recovery rate of the disease. υ is

considered as the virus load.
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4. Analysis of Fuzzy System
Let β=β(υ) be the transmission rate which depend on the amount of virus load υ given by [3]

β(υ)=


0 , if υ< υmin ,
υ−υmin

υM −υmin
, if υmin ≤ υ≤ υM ,

1 , if υM ≤ υ≤ υmax .

Figure 1. Membership of β=β(υ)

The minimum amount of virus which is needed for transmission of the disease is represented
as υmin. The chance of transmission is negligible when the virus load is less than υmin.For a
certain amount of viruses say υM The transmission rate is equal to 1. The amount of virus in an
individual is always limited by υmax. Figure 1 represents the membership function of β(υ).

Let γ= γ(υ) represent the recovery rate. The higher the virus load, the longer it will take to
recover from the infection. The following is the fuzzy membership function of γ(υ) [14]

γ(υ)= (γ0 −1)
υM

γ+1, if 0≤ υ≤ υM ,

where the lowest recovery rate is 0< γ0 < 1. Figure 2 is the representation of γ= γ(υ).

Figure 2. Membership of γ= γ(υ)

We assume that for different individuals, the amount of virus we may be different. So, by
the classification given by the expert, it can be seen as a linguistic variable such as weak,
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medium, and strong. Each classification of the linguistic variable with membership function
Γ(υ) is given by [14]

Γ(υ)=



0 , if υ< υ−δ ,
υ−υ+δ

δ
, if υ−δ≤ υ≤ υ ,

−(υ−υ−δ)
δ

, if υ< υ≤ υ+δ ,

1 , if υ> υ+δ .

Here υ is the representation of the central value, δ is called the dispersion of each one of the
fuzzy set assumed by υ. Figure 3 is a representation of Γ(υ).

5. Reproduction Number
Basic reproduction number is defined as the average number of secondary infections caused by
a single infectious individual during their entire infectious lifetime the number is denoted by
R0 [6,7]:

R0 = β

γ
.

6. Fuzzy Basic Reproduction Number

The basic reproduction number is R0 = β

γ
, which increases with increase in the virus load and

this cannot be a fuzzy set as it can be greater than 1. Thus 0≤ γ0 R0(υ)≤ 1, where γ0 R0(υ) is
a fuzzy set and hence FEV[γ0 R0(υ)] is well defined. In this view we introduce the fuzzy basic
reproduction number.

The fuzzy basic reproduction number is given by

R f
0 = 1

γ0
FEV(γ0 R0(υ))

here FEV(γ0 R0(υ)) = sup{inf(α,k(α))}, 0 ≤ α ≤ 1, where k(α) = µ{v : γ0 R0(υ) ≥ α} = µ(X ), is a
fuzzy measure. To obtain FEV(γ0 R0(υ)) we need to define fuzzy measure µ. For which the
possibility measure is given by

µ(X )= supΓ(υ), ∀ υ ∈ X , X ⊂ R .

Since R0(υ) is not decreasing with υ, we have X = [υ,υmax], from FEV[γ0 R0(υ)] and υ is the
solution of the following equation

γ0
β

γ
=α .

Thus,

k(α)=µ[υ′,υmax]= supΓ(υ) with υ′ ≤ υ≤ υmax,

where k(0)= 1 and k(1)=Γ(υmax).
The amount of virus υ in the population which was assumed as a linguistic meaning is

classified into three cases and all of them has fuzzy behaviour. They are weak virus load (υmin),
medium virus load (υM) and strong virus load (υmax).
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Case 1: Weak virus load (υmin)
(i.e.) when χ+δ≤ χmin, we have

FEV(γ0 R0(υ))= 0< γ0 ⇔ R f
0 < 1 .

Thus, we can conclude that corona will be extinct.

Case 2: Medium virus load (υM)
(i.e.) when υ−δ≥ υmin and υ+δ≤ υM

k(α)=


1 , if 0<α≤ γ0 R0(υ) ,
Γ(υ′) , if γ0 R0(υ)<α≤ γ0 R0(υ+δ) ,
0, if γ0 R0(υ+δ)<α≤ 1 .

So, if δ > 0, k(α) is continuous and decreasing function with k(0) = 1 and k(1) = 0. Hence,
FEV(γ0 R0(υ)) is the fixed point of k and

γ0 R0(υ)≤FEV(γ0 R0(υ))≤ γ0 R0(υ+δ),

R0(υ)≤ R f
0 ≤ R0(υ+δ).

As the function R0(υ) is increasing and continuous function then by the intermediate value
theorem there exists υ with υ< υ< υ+δ such that

R f
0 = R0(υ)> R0(υ) .

There exists virus load υ such that R f
0 and R0(υ) coincide. Furthermore, the average number

of secondary cases R f
0 is higher than the number of secondary cases R0(υ) due to the medium

amount of virus.

Case 3: Strong virus load (υmax)
(i.e.) when υ+δ≤ υM and υ+δ≤ υmax, then

k(α)=


1 , if 0<α≤ γ0 R0(υ) ,
Γ(υ′) , if γ0 R0(υ)<α≤ γ0 R0(υ+δ) ,
0 , if γ0 R0(υ+δ)<α≤ 1 .

Similar to Case 2, we have

γ0 R0(υ)≤FEV(γ0 R0(υ))≤ γ0 R0(υ+δ),

R0(υ)≤ R f
0 ≤ R0(υ+δ).

Thus, R f
0 > 1; we can conclude that corona will be endemic.

7. Numerical Simulation
From the data collected from2, S0 = 13.57410, I0 = 0.56340, R0 = 0.18430, β = 0.03156,
γ= 0.0714, ∆t = 0.1407.

The values have been calculated by Runge-Kutta method, considering the initial values of
the susceptible, infected and, recovered population.

As the virus load increases the number of susceptible decreases. There is a decrease in the
curve as the infection starts to spread. Figure 3 shows the susceptible population.

2R.S. Yadav, Mathematical modeling and simulation of SIR model for COVID-2019 epidemic outbreak: A case
study of India, medRxiv (2020), DOI: 10.1101/2020.05.15.20103077.
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Figure 3. Susceptible population

Figure 4. Infected population

Figure 5. Recovered population

Initially when the virus has entered the community of people it starts spreading slowly and
later when the infected population increases the rate of infection also increases. Figure 4 shows
the infected population.
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When the virus is newly entering into the community, the number of infected persons is
relatively low and thus there is no recovered population whereas in the later stage when the
infected population increases and when they undergo treatments the recovered population
becomes higher. Figure 5 shows the recovered population.

Figure 6 is the representation of the dynamical behaviours of the system.

Figure 6. Dynamical behaviour of the system

8. Conclusion
According to the data it is predicted that the rate of transmission of the coronavirus increases
during the months of May, and June and slowly starts decreasing in the month of July. The graph
has been predicted using Runge-Kutta method. Runge-Kutta method gives the more accurate
solutions. This study shows that abiding by the rules of government we can prevent the further
spread of the disease.
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