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Abstract. Automaton is a system that spontaneously gives an output from an input. The input may
be energy, information, materials, etc. The system works without the intervention of man. Simply
automaton (plural: automata or automatons) is a self–operating machine. Its synonym is ROBOT.
In this paper, an attempt has been made to exhibit the relation between linear congruence and
automata theory. Also, an effort has been put to solve certain problems of the Chinese Remainder
theorem using the Cartesian product of finite automata theory. In deterministic finite automata, the
acceptable strings give the solutions of the Chinese Remainder Theorem (CRT). The main result of the
paper is that residue classes can be recognized by finite automaton. This is the novelty of the article.
Finally, we conclude with certain examples and non-examples alike!
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1. Introduction
Automaton (in plural Automata) is an abstract self-operating machine which follows a
predetermined sequence of operation that automatically gives an output from an input. Here
input may be energy, information, materials, etc. The system works without the intervention of
man. Automata theory plays a huge essential role in applied areas. The really important areas
encompass communication, transportation, health care, electronic banking, etc. Mainly, finite
automata are significant in several different areas, including electrical engineering, linguistics,
computer science, philosophy, biology, mathematics, etc. In computer science, automata have
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been extensively utilized in text processing, compilers, software and hardware design, network
protocol, etc. ([8,20]).

Number theory is a topic of pure mathematics mainly concern with the learning of natural
numbers and the integers. Number theory is partly experimental and partly theoretical. Number
theory belongs to the purest of pure mathematics. The number theory, as such, is less utilized
in automata theory in contrast to calculus, geometry, Numerical analysis, algebra, computing,
and so on. The issue was that it could not be applied directly in any application. But, the
number theory, merged with the computational power of Computer science, gives interesting
results to day-to-day life problems. The top familiar application of Number theory in public-key
cryptography, such as the RSA algorithm ([1]).

Many researchers have carried out their research works on Number theory and Automata
theory. Researchers like Adamczewski and Bell [1], Glushkov [6], Muller [13], Wolfram [22],
and Perrin et al. [14] have developed the theory considerably. Authors such as Hartmanis and
Shank [7], Rauzy [17], Restivo [18], Pin [15], Salomaa [20], Ding et al. [4], Allouch [2], and Hsieh
[10] have done considerable work (between 1965-2000) on various aspects of the recognition
of primes by automata, application of finite automata to Number theory and to the theory of
codes, Chinese remainder theorem with application in computing, coding, cryptography, cellular
automata, etc. Moreover recently, the mathematician Rigo [19], Rajasekaran et al. [16], and
Steiner [21], etc. have relevant their extensive works with formal language, automata, and
numerical systems, additive number theory via automata theory, etc.

2. Preliminaries
Mathematics is progressively accepted as a significant apparatus to study multiplex systems. It
helps us to discuss, understand, and develop several fields in real life. Mainly all branches of
mathematics are very convenient in computer science comprising algebra, calculus, number
theory, topology, biology, physics, etc. In this article, an attempt is made to study some results
by utilizing the tools of number theory and automaton theory.

2.1 Mathematical definition of Deterministic Finite Automata (DFA)
A Deterministic Finite Automata (DFA)[6, 9, 12] can be formally defined as a 5-tuple

∑ =
(Q, A,δ, q∗

0 ,F) where Q (̸= φ) is a finite set of states, A is a finite non-empty set of inputs,
δ : Q × A → Q is defined by δ(q∗

0 ,a) = q1; q∗
0 , q1 ∈ Q, a ∈ A, q∗

0 is the initial state, F is the set
of final states and F ⊆ Q. A string x is accepted by finite state automata

∑ = (Q, A,δ, q∗
0 ,F)

if δ(q∗
0 , x) = p for some p ∈ F. A final state is also called an accepting state. The initial state

is denoted by an arrow mark and the final state is denoted by a double circle. The input is
accepted when all input is read and match by transitions and the automaton is in a final state.
Also, the table which represents that list of transition function (rules) of a finite automaton is
called the transition table. A finite-state automaton is a machine that constructs computing
by reading a one-way read-only tape. The input is produced up of ‘words’ written on the tape.
The written words use a describe alphabet which is called the input alphabet and the words
create a string. The Finite automata will be produced up of the input-output relations at every
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state and also the modifications of the states that will appear in receiving the input at a
particular state. At the end of the process, it becomes visible whether the input is accepted
or rejected by the automaton machine. Also, Deterministic refers to the distinctiveness of the
computation. The finite automata are called deterministic finite automata if the machine reads
an input string one symbol at a time.

2.2 Cartesian product of Finite Automata
If

∑
1 = (Q1, A1, q′

0,δ1,F1) and
∑

2 = (Q2, A2, q′′
0,δ2,F2) are two finite automata then the Cartesian

product [5, 10] of
∑

1 and
∑

2 is
∑ = ∑

1×
∑

2 is given by
∑ = (Q, A,δ, q∗

0 ,F) where Q = Q1 ×Q2,
A = A1 = A2, q∗

0 = {(q′
0, q′′

0)}, (pi, q j) ∈ F iff pi ∈ F1, q j ∈ F2, δ= δ1 ×δ2 with transition function
δ : (Q1 ×Q2)× A →Q1 ×Q2 is defined by δ((q1, q2),a)= (δ1(q1,a),δ2(q2,a)), q1 ∈Q1, q2 ∈Q2.

2.3 Statement of Chinese Remainder Theorem
If m1,m2,m3, . . . ,mk are pairwise relatively prime positive integers, and if a1,a2,a3, . . . ,ak

are any integers, then the simultaneous congruences x ≡ a1(mod m1), x ≡ a2(mod m2), . . . , x ≡
ak(mod mk) have a solution, and the solution is unique modulo M, where M = m1 ·m2 ·m3 · . . . ·
mk [3].

In the system of numeration each number is depicted by its base. If the base is 2 it is a binary
number, if the base is 8 it is an octal number, if the base is 10, then it is called the decimal
number, and so on. The conversion of decimal numbers to any other number system is an easy
method. The principal motivation of this work is to utilizing automata structure, i.e., transition
table, state figure to solve some important theorems which naturally arise in number theory.
A study of the problems of CRT by finite automata is presented in this paper.

3. Main Results
A well-designed automata method can go easy of mundane and unnecessary manual tasks with
speedy, efficiency reduce test cost of maintenance with lower risks. In this section, an automata
theory is used with a new idea on Chinese Remainder Theorems (CRT). An effort is made to fit
automata which are really obliging to traverse the characteristic on CRT of Number theory.

Theorem 3.1. The binary representation of an unsigned decimal integer which is divided by n,
n ∈N gives a set of all acceptable binary strings of deterministic finite automata, i.e., the binary
representation of the congruence x ≡ 0(mod n), x,n ∈N gives us a set of all acceptable binary
strings of DFA [11].

Proof. When a number is divided by n, the possible remainders are 0,1,2, . . . ,n−1. So, we can
assign each state as q0, q1, q2, . . . , qn−1. Also, we know that, for any binary string, if we add
a bit at Least Significant Bit (LSB), then the previous value becomes twice. (Let us consider
a string 1001. The decimal value is 9, if we add another 1 at LSB, the string becomes 10010
then the decimal value becomes 18.) Generally, we can write that n becomes 2n+b, where n
the previous number and b is the added bit. So (2n+ b)(mod n)= 2n(mod n)+ b(mod n). As b
is either 0 or 1,b(mod n)= b, 2n(mod n) is any one of 0,1,2, . . . ,n−1, i.e., 2(state number)+a.
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For this, we consider
∑= (Q, A,δ, q∗

0 ,F), where Q = {q0, q1, q2, . . . , qn−1}, A = {0,1}, q∗
0 = F = {q0}

and state transition Table 1 and the state transition Diagram 1.

Table 1. State transition table of
∑

PPPPPPPPPStates ↓
δ Input →

0 1

q0 2.0+0= 0 means q0 2.0+1= 1 means q1

q1 2.1+0= 2 means q2 2.1+1= 3 means q3

q2 2.2+0= 4 means q4 2.2+1= 5 means q5

q3 2.3+0= 6 means q6 2.3+1= 7 means q7

. . . . . . . . .

qn−2 2.(n−2)+0= (2n−4)(mod n)= n−4 means qn−4 2.(n−2)+1= (2n−3)(mod n)= n−3 means qn−3

qn−1 2.(n−1)+0= (2n−2)(mod n)= n−2 means qn−2 2.(n−1)+1= (2n−1)(mod n)= n−1 means qn−1

Diagram 1. A DFA for divisible by n

Therefore, we see in the diagram that the collection of those acceptable binary strings which
gives the final state of the automata represent the solution of the linear congruence in decimal
systems. Hence, a linear congruence x ≡ 0(mod n), x,n ∈N gives a set of all acceptable binary
strings of DFA. We denote this DFA by x ≡ 0(mod n).

Example 3.1. Construct a DFA with remainder 2 accepts the set of all binary strings that
interpreted as the binary representation of an unsigned decimal integer, is divisible by 3.

Since, when a number is divided by 3, the possible remainders are 0,1,2. So, we can
assign each state as q0, q1, q2. For this, consider

∑ = (Q, A,δ, q∗
0 ,F), where Q = {q0, q1, q2},

A = {0,1}, q∗
0 = {q0}, F = {q2} and state transition Table 2 and the state transition Diagram 2.
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Table 2. State transition table of
∑

`````````````̀States ↓
δ Input →

0 1

q0 q0 q1

q1 q2 q0

q2 q1 q2

Diagram 2. A DFA of remainder 2 when it is divisible by 3

Here binary acceptable strings in this DFA are {10,101,1000,1011,1110, . . .} which represents
{2,5,8,11,14, . . .} in decimal system. Therefore, we see in the above diagram that the collection
of those acceptable binary strings which gives the final state of the automata represents the
solutions of the linear congruence x ≡ 2(mod 3) in decimal systems.

3.1 Automata in Chinese Remainder Theorem
CRT is one of the pearl of number theory. The CRT is a theorem which gives a unique solution to
simultaneous linear congruences with co-prime moduli. Now, we discuss some problems based
on CRT by using finite automata with recent concepts.

Example 3.2. Solve the linear congruences x ≡ 1(mod 2), x ≡ 2(mod 3).

First, we solve the problem by using CRT, here a1 = 1, a2 = 2, m1 = 2, m2 = 3, M = m1.m2 =
2.3= 6, M1 = M

m1
= 3, M2 = M

m2
= 2. We have to find solutions for 3y1 ≡ 1(mod 2)⇒ y1 ≡ 1(mod 2)

and 2y2 ≡ 1(mod 3), by inspection, y1 = 1, y2 = 2. Therefore, x ≡ (a1M1 y1 +a2M2 y2)(mod M)≡
(1.3.1+2.2.2)(mod 6)≡ 5(mod 6).

Now, solve the problem by using automata theory. Let us consider
∑

1 = (Q1, A1, q′
0,δ1,F1),

q′
0 ∈Q1, F1 ⊆Q1 with Q1 = {p0, p1}, A1 = {0,1}, F1 = {p1}, δ1 : Q1 × A1 →Q1 defined by the state

transition Table 3 and the state transition Diagram 3.

Table 3. State transition table of
∑

1

`````````````̀States ↓
δ1 Input →

0 1

p0 p0 p1

p1 p0 p1
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Diagram 3. A DFA of remainder 1 when it is divisible by 2

Here binary acceptable strings in this DFA are {1,11,101,111,1001,1011, . . .} which represents
{1,3,5,7,9,11, . . .} in decimal system. Therefore, we see in the above diagram that the collection
of those acceptable binary strings which gives the final state of the automata represents the
solutions of the linear congruence x ≡ 1(mod 2) in decimal systems.
Again, consider another automaton

∑
2 = (Q2, A2, q′′

0,δ2,F2), q′′
0 ∈ Q2, F2 ⊆ Q2 with Q2 =

{q0, q1, q2}, q′′
0 = {q0}, A2 = {0,1}, F2 = {q2}, δ2 : Q2 × A2 → Q2 defined by the state transition

Table 4 and the state transition Diagram 2.

Table 4. State Transition table of
∑

2

`````````````̀States ↓
δ2 Input →

0 1

q0 q0 q1

q1 q2 q0

q2 q1 q2

Here binary acceptable strings in this DFA are {10,101,1000,1011,1110, . . .} which represents
{2,5,8,11,14, . . .} in decimal system. Therefore, we see in the above diagram that the collection
of those acceptable binary strings which gives the final state of the automata represents the
solutions of the linear congruence x ≡ 2(mod 3) in decimal systems.
Now, used the definition of Cartesian product of finite automata on

∑
1 and

∑
2. Therefore,∑ = ∑

1×
∑

2 is given by
∑ = (Q, A,δ, q∗

0 ,F) where Q = Q1 ×Q2 = {(p0, q0), (p0, q1), (p0, q2),
(p1, q0), (p1, q1), (p1, q2)}, A = A1 = A2 = {0,1}, q∗

0 = {(p0, q0)}, F = {(p1, q2)}, δ = δ1 ×δ2 with
transition function δ : (Q1 ×Q2)× A →Q1 ×Q2 is defined by the transition Table 5 and the state
transition Diagram 4.

Table 5. State Transition table of
∑

`````````````̀States ↓
δ Input →

0 1

(p0, q0) (p0, q0) (p1, q1)

(p0, q1) (p0, q2) (p1, q0)

(p0, q2) (p0, q1) (p1, q2)

(p1, q0) (p0, q0) (p1, q1)

(p1, q1) (p0, q2) (p1, q0)

(p1, q2) (p0, q1) (p1, q2)
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Diagram 4. A DFA of remainder 5 when it is divisible by 6

Here binary acceptable strings in this DFA are {101,1011,10001,10111,11101, . . .} which
represents {5,11,17,23,29, . . .} in decimal system. Therefore, we see in the above diagram
that the collection of those acceptable binary strings which gives the final state of the automata
represents the solutions of the linear congruence x ≡ 5(mod 6) in decimal systems.

Example 3.3. Solve the linear congruences x ≡ 2(mod 3), x ≡ 3(mod 5).

First, we solve the problem by using CRT, here a1 = 2, a2 = 3, m1 = 3, m2 = 5, M = m1.m2 = 3.5=
15, M1 = M

m1
= 5, M2 = M

m2
= 3. We have to find solutions for 5y1 ≡ 1(mod 3) ⇒ 2y1 ≡ 1(mod 3)

and 3y2 ≡ 1(mod 5), by inspection, y1 = 2, y2 = 2. Therefore, x ≡ (a1M1 y1 +a2M2 y2)(mod M) ≡
(2.5.2+3.3.2)(mod 15)≡ 8(mod 15).

Now, solve the problem by using automata theory. Let us consider
∑

1 = (Q1, A1, q′
0,δ1,F1),

q′
0 ∈Q1, F1 ⊆Q1 with Q1 = {q0, q1, q2}, A1 = {0,1}, q′

0 = {q0}, F1 = {q2}, δ1 : Q1×A1 →Q1 defined
by the state transition Table 6 and the state transition Diagram 2.

Table 6. State Transition table of
∑

1

`````````````̀States ↓
δ1 Input →

0 1

q0 q0 q1

q1 q2 q0

q2 q1 q2

Here binary acceptable strings in this DFA are {10,101,1000,1011,1110, . . .} which represents
{2,5,8,11,14, . . .} in decimal system. Therefore, we see in the above diagram that the collection
of those acceptable binary strings which gives the final state of the automata represents the
solutions of the linear congruence x ≡ 2(mod 3) in decimal systems.

Again, consider another automaton
∑

2 = (Q2, A2, q′′
0,δ2,F2), q′′

0 ∈ Q2, F2 ⊆ Q2 with Q2 =
{r0, r1, r2, r3, r4}, q′′

0 = {r0}, A2 = {0,1}, F2 = {r3}, δ2 : Q2×A2 →Q2 defined by the state transition
Table 7 and the state transition Diagram 5.
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Table 7. State Transition table of
∑

2
`````````````̀States ↓

δ2 Input →
0 1

r0 r0 r1

r1 r2 r3

r2 r4 r0

r3 r1 r2

r4 r3 r4

Diagram 5. A DFA of remainder 3 when it is divisible by 5

Here binary acceptable strings in this DFA are {11,1000,1101,10010,10111, . . .} which
represents {3,8,13,18,23, . . .} in decimal system. Therefore, we see in the above diagram that
the collection of those acceptable binary strings which gives the final state of the automata
represents the solutions of the linear congruence x ≡ 3(mod 5) in decimal systems. So

∑
2 gives

the linear congruence x ≡ 3(mod 5).

Table 8. State Transition table of
∑

`````````````̀States ↓
δ Input →

0 1

(q0, r0) (q0, r0) (q1, r1)

(q0, r1) (q0, r2) (q1, r3)

(q0, r2) (q0, r4) (q1, r0)

(q0, r3) (q0, r1) (q1, r2)

(q0, r4) (q0, r3) (q1, r4)

(q1, r0) (q2, r0) (q0, r1)

(q1, r1) (q2, r2) (q0, r3)

(q1, r2) (q2, r4) (q1, r0)

(q1, r3) (q2, r1) (q1, r2)

(q1, r4) (q2, r3) (q1, r4)

(q2, r0) (q1, r0) (q2, r1)

(q2, r1) (q1, r2) (q2, r3)

(q2, r2) (q1, r4) (q2, r0)

(q2, r3) (q1, r1) (q2, r2)

(q2, r4) (q1, r3) (q2, r4)
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Diagram 6. A DFA of remainder 8 when it is divisible by 15

Now, used the definition of Cartesian product of finite automata on
∑

1 and
∑

2. Therefore,∑ = ∑
1×

∑
2 is given by

∑ = (Q, A,δ, q∗
0 ,F) where Q = Q1 ×Q2 = {(q0, r0), (q0, r1), (q0, r2),

(q0, r3), (q0, r4), (q1, r0), (q1, r1), (q1, r2), (q1, r3), (q1, r4), (q2, r0), (q2, r1), (q2, r2), (q2, r3),
(q2, r4)}, A = A1 = A2 = {0,1}, q∗

0 = {(q0, r0)}, F = {(q2, r3)}, δ = δ1 ×δ2 with transition function
δ : (Q1×Q2)×A →Q1×Q2 is defined by the transition Table 8 and the state transition Diagram 6.
Here binary acceptable strings in this DFA are {1000,10111,100110,110101 . . .} which represents
{8,23,38,53, . . .} in decimal system. Therefore, we see in the above diagram that the collection
of those acceptable binary strings which gives the final state of the automata represents the
solutions of the linear congruence x ≡ 8(mod 15) in decimal systems.

Example 3.4. Solve the linear congruences x ≡ 1(mod 2), x ≡ 2(mod 3), x ≡ 3(mod 5).
First, solve the problem by using CRT, here a1 = 1, a2 = 2, a3 = 3m1 = 2, m2 = 3, m3 = 5,
M = m1.m2.m3 = 2.3.5 = 30, M1 = M

m1
= 15, M2 = M

m2
= 10, M3 = M

m3
= 6. We have to

find solutions for 15y1 ≡ 1(mod 2) ⇒ y1 ≡ 1(mod 2), 10y2 ≡ 1(mod 3) ⇒ y2 ≡ 1(mod 3),
6y3 ≡ 1(mod 5) ⇒ y3 ≡ 1(mod 5), by inspection, y1 = 1, y2 = 1, y3 = 1. Therefore, x ≡
(a1M1 y1 +a2M2 y2 +a3M3 y3)(mod M)≡ (1.15.1+2.10.1+3.6.1)(mod 30)≡ 23(mod 30).
Now, solve the problem by using automata theory. Consider

∑
1 = (Q1, A1, q′

0,δ1,F1), q′
0 ∈ Q1,

F1 ⊆ Q1 with Q1 = {p0, p1}, A1 = {0,1}, q′
0 = {p0}, F1 = {p1}, δ1 : Q1 × A1 → Q1 defined by the

state transition Table 3 and state transition Diagram 3.
Therefore, we see in the above diagram that the collection of those acceptable binary strings
which gives the final state of the automata represents the solutions of the linear congruence
x ≡ 1(mod 2) in decimal systems.
Consider another automaton

∑
2 = (Q2, A2, q′′

0,δ2,F2), q′′
0 ∈ Q2, F2 ⊆ Q2 with Q2 = {q0, q1, q2},

A1 = {0,1}, q′′
0 = {q0}, F2 = {q2}, δ2 : Q2 × A2 → Q2 defined by the state transition Table 4 and

state transition Diagram 2.
Therefore, we see in the above diagram that the collection of those acceptable binary strings
which gives the final state of the automata represents the solutions of the linear congruence
x ≡ 2(mod 3) in decimal systems.
Again, consider another automaton

∑
3 = (Q3, A3, q′′′

0 ,δ3,F3), q′′′
0 ∈ Q3, F3 ⊆ Q3 with Q3 =

{r0, r1, r2, r3, r4}, A1 = {0,1}, q′′′
0 = {r0}, F3 = {r3}, δ3 : Q3×A3 →Q3 defined by the state transition

Table 9 and the state transition Diagram 5.
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Table 9. State Transition table of
∑

3
hhhhhhhhhhhhhhStates ↓

δ3 Input →
0 1

r0 r0 r1

r1 r2 r3

r2 r4 r0

r3 r1 r2

r4 r3 r4

Therefore, we see in the above diagram that the collection of those acceptable binary strings
which gives the final state of the automata represents the solutions of the linear congruence
x ≡ 3(mod 5) in decimal systems.

Table 10. State Transition table of
∑

hhhhhhhhhhhhhhStates ↓
δ Input →

0 1

(p0, q0, r0) (p0, q0, r0) (p1, q1, r1)

(p0, q0, r1) (p0, q0, r2) (p1, q1, r3)

(p0, q0, r2) (p0, q0, r4) (p1, q1, r0)

(p0, q0, r3) (p0, q0, r1) (p1, q1, r2)

(p0, q0, r4) (p0, q0, r3) (p1, q1, r4)

(p0, q1, r0) (p0, q2, r0) (p1, q0, r1)

(p0, q1, r1) (p0, q2, r2) (p1, q0, r3)

(p0, q1, r2) (p0, q2, r4) (p1, q0, r0)

(p0, q1, r3) (p0, q2, r1) (p1, q0, r2)

(p0, q1, r4) (p0, q2, r3) (p1, q0, r4)

(p0, q2, r0) (p0, q1, r0) (p1, q2, r1)

(p0, q2, r1) (p0, q1, r2) (p1, q2, r3)

(p0, q2, r2) (p0, q1, r4) (p1, q2, r0)

(p0, q2, r3) (p0, q1, r1) (p1, q2, r2)

(p0, q2, r4) (p0, q1, r3) (p1, q2, r4)

(p1, q0, r0) (p0, q0, r0) (p1, q1, r1)

(p1, q0, r1) (p0, q0, r2) (p1, q1, r3)

(p1, q0, r2) (p0, q0, r4) (p1, q1, r0)

(p1, q0, r3) (p0, q0, r1) (p1, q1, r2)

(p1, q0, r4) (p0, q0, r3) (p1, q1, r4)

(p1, q1, r0) (p0, q2, r0) (p1, q0, r1)

(p1, q1, r1) (p0, q2, r2) (p1, q0, r3)

(p1, q1, r2) (p0, q2, r4) (p1, q0, r0)

(p1, q1, r3) (p0, q2, r1) (p1, q0, r2)

(p1, q1, r4) (p0, q2, r3) (p1, q0, r4)

(p1, q2, r0) (p0, q1, r0) (p1, q2, r1)

(p1, q2, r1) (p0, q1, r2) (p1, q2, r3)

(p1, q2, r2) (p0, q1, r4) (p1, q2, r0)

(p1, q2, r3) (p0, q1, r1) (p1, q2, r2)

(p1, q2, r4) (p0, q1, r3) (p1, q2, r4)
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Now, used the definition of Cartesian product of finite automata on
∑

1,
∑

2 and
∑

3. Therefore,∑=∑
1×

∑
2×

∑
3 is given by

∑= (Q, A,δ, q∗
0 ,F) where Q =Q1×Q2×Q3 = {(p0, q0, r0), (p0, q0, r1),

(p0, q0, r2), (p0, q0, r3), (p0, q0, r4), (p0, q1, r0), (p0, q1, r1), (p0, q1, r2), (p0, q1, r3), (p0, q1, r4),
(p0, q2, r0), (p0, q2, r1), (p0, q2, r2), (p0, q2, r3), (p0, q2, r4), (p1, q0, r0), (p1, q0, r1), (p1, q0, r2),
(p1, q0, r3), (p1, q0, r4), (p1, q1, r0), (p1, q1, r1), (p1, q1, r2), (p1, q1, r3), (p1, q1, r4), (p1, q2, r0),
(p1, q2, r1), (p1, q2, r2), (p1, q2, r3), (p1, q2, r4)}, A = A1 = A2 = {0,1}, q∗

0 = {(p0, q0, r0)}, F =
{(p1, q2, r3)}, δ = δ1 × δ2 × δ3 with transition function δ : (Q1 ×Q2 ×Q3)× A → Q1 ×Q2 ×Q3
is defined by the transition Table 10.
Here we assign state (p0, q0, r0) as 1, state (p0, q0, r1) as 2, state (p0, q0, r2) as 3 and so on. The
state transition diagram

∑
is shown in Diagram 7.

Diagram 7. A DFA of remainder 23 when it is divisible by 30

Here binary acceptable strings in this DFA are {10111,110101,1010011 . . .} which represents
{23,53,83, . . .} in decimal system. Therefore, we see in the above diagram that the collection
of those acceptable binary strings which gives the final state of the automata represents the
solutions of the linear congruence x ≡ 23(mod 30) in decimal systems.

4. Observations
(a) The congruences x ≡ a(mod m), x ≡ b(mod n) has no solution if (m,n) ̸= 1, m,n,a,b ∈ Z.
For this, we consider two congruences x ≡ 1(mod 2), x ≡ 0(mod 2) which has no solution. Now,
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solve the problem by using automata theory. Let us consider
∑

1 = (Q1, A1, q′
0,δ1,F1), q′

0 ∈Q1,
F1 ⊆Q1 with Q1 = {p0, p1}, A1 = {0,1}, q′

0 = {po}, F1 = {p1}, δ1 : Q1×A1 →Q1 defined by the state
transition Table 3 and state transition Diagram 3. Here binary acceptable strings in this DFA are
{1,11,101,111,1001,1011, . . .} which represents {1,3,5,7,9,11, . . .} in decimal system. Therefore,
we see in the diagram that the collection of those acceptable binary strings which gives the final
state of the automata represents the solutions of the linear congruence x ≡ 1(mod 2) in decimal
systems. Again, Consider another automaton

∑
2 = (Q2, A2, q′′

0,δ2,F2), q′′
0 ∈ Q2, F2 ⊆ Q2 with

Q2 = {q0, q1}, q′′
0 = {q0}, A2 = {0,1}, F2 = {q0}, δ2 : Q2 × A2 →Q2 defined by the state transition

Table 11 and the state transition diagram is in Figure 8.

Table 11. State Transition table of
∑

2
`````````````̀States ↓

δ2 Input →
0 1

q0 q0 q1

q1 q0 q1

Diagram 8. A DFA of remainder 0 when it is divisible by 2

Here binary acceptable strings in this DFA are {0,10,100,110,1000, . . .} which represents
{0,2,4,6,8, . . .} in decimal system. Therefore, we see in the above diagram that the collection
of those acceptable binary strings which gives the final state of the automata represents the
solutions of the linear congruence x ≡ 0(mod 2) in decimal systems.

Now, used the definition of Cartesian product of finite automata on
∑

1 and
∑

2. Therefore,
∑=∑

1×
∑

2 is given by
∑ = (Q, A,δ, q∗

0 ,F) where Q = Q1 ×Q2 = {(p0, q0), (p0, q1), (p1, q0), (p1, q1)},
A = A1 = A2 = {0,1}, q∗

0 = {(p0, q0)}, F = {(p1, q0)}, δ = δ1 × δ2 with transition function
δ : (Q1 ×Q2)× A → Q1 ×Q2 is defined by the transition Table 12 and the state transition
Diagram 9.

Table 12. State Transition table of
∑

`````````````̀States ↓
δ Input →

0 1

(p0, q0) (p0, q0) (p1, q1)

(p0, q1) (p0, q0) (p1, q1)

(p1, q0) (p0, q0) (p1, q1)

(p1, q1) (p0, q0) (p1, q1)
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Diagram 9. A DFA of No Solutions

Therefore, we see in the above diagram of the DFA that there is no acceptable binary strings
which provide the final state of the automata represent that there is no solution of the listed
linear congruences.

(b) If this technique can be extended for k congruences of Chinese Remainder Theorem,
k-automata like

∑
1,

∑
2,

∑
3, . . . ,

∑
k can be found. Then, use the definition of Cartesian product of

finite automata on k-automata, we get another automaton
∑=∑

1×
∑

2×
∑

3× . . .×∑
k is given by∑= (Q, A,δ, q∗

0 ,F) where Q =Q1×Q2×Q3×. . .×Qk which contains m1 ·m2 ·m3 ·. . .·mk elements,
A = A1 = A2 = A3 = . . . = Ak = {0,1}, q∗

0 = {(p1, p2, p3, . . . pk)}, {p1} ∈ Q1, {p2} ∈ Q2, . . . {pk} ∈ Qk,
(q1, q2, . . . qk) ∈ F iff q1 ∈ F1, q2 ∈ F2, . . . qk ∈ Fk, δ = δ1 × δ2 × . . .× δk with state transition
function is δ : (Q1 ×Q2 × . . . ×Qk) × A → Q1 ×Q2 × . . . ×Qk defined by δ((q1, q2, . . . qk),a) =
(δ1(q1,a),δ2(q2,a), . . .δk(qk,a)), q1 ∈Q1, q2 ∈Q2, . . . qk ∈Qk, a ∈ A. This

∑
also gives us a state

transition diagram with an acceptable infinite set of binary strings which gives the final state of
the automaton represents the solutions of the linear congruence against

∑
in decimal systems.

5. Conclusion
Finite automata are a branch of process design concerned with string manipulation and sequence
processing. We concentrate on how specific problems in which the Chinese Remainder Theorem
can be attacked in a novel approach using a technique from the theory of finite automata.
The main result of the paper is that residue classes can be recognized by finite automaton.
The result can be expanded to exploration into other results of the Chinese Remainder Theorem
as well as number theory by utilizing automata theory.
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