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Abstract. In this paper, we study on the exponential Diophantine equations: nx +24y = z2, for n ≡ 5
or 7 (mod 8). We show that 5x +24y = z2 has a unique positive integral solution (2,1,7). Further, we
show that for k ∈N, (8k+5)x+24y = z2 has a unique solution (0,1,5) in non-negative integers. We also
show that for a perfect square 8m, the exponential Diophantine equation (8m−1)x +24y = z2, m ∈N
has exactly two non-negative integral solutions (0,1,5) and (1,0,

p
8m). Otherwise, it has a unique

solution (0,1,5). Finally, we illustrate our results with some examples and non-examples.
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1. Introduction
Number theory is one of the oldest field of mathematics. The theory is mainly concerned with
the properties of integers. As famously said by G.H. Hardy, it is regarded as the purest branch of
pure mathematics. The Diophantine equation is one of the antique branch of Number theory, and
its origin can be found in the texts of the ancient Babylonians, Chinese, Indians, Egyptians, and
Greeks. The term “Diophantus” comes from Alexander’s Hellenistic Mathematician “Diophantus”
the father of Algebra, sometimes around 250 AD. Diophantus’s work greatly influenced later
mathematics. The Diophantine equation can be used in various fields, and there is no universal
method to determine whether a given Diophantine equation has a solution. One of the most
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surprising features of the Diophantine equation is that one can create simpler or more difficult
equations by slightly modifying the original equation [7,19].

Diophantine equations can be linear, or nonlinear. It is widely believed that the Indian
mathematician Brahmagupta was the first person to describe linear equations. Individual
Diophantine problems have been studied by great mathematicians such as Fermat, Euler, and
Gauss. So the general solution is very complicated. The Euclidean algorithm is one of the
methods to solve the Diophantine linear equation [7].

Researchers are keen to find solutions to various Diophantine equations because these
equations have countless applications in Algebraic topology, Random number generations,
Security, Coordinate geometry, Trigonometry, Physics, Chemistry, Memory management,
Authentication, Computer science, Applied algebra, and Cryptography etc.[7,19].

In Number theory, there are various types of Diophantine equations like the polynomial
Diophantine equation, Pell’s equation, Exponential Diophantine equation, Infinite Diophantine
equation, etc. If the Diophantine equation has one or more additional variables as exponents, it
is a Diophantine exponent equation similar to the equations of the Fermat-Catalan conjecture
and Beal’s conjecture, am +bn = ck with inequality restrictions on the exponents. The general
theory of this type of equation is not available; special cases such as Catalan’s conjecture have
been resolved [20].

The exponential Diophantine equation is an equation in which unknowns can appear in the
exponents. The Diophantine problem has fewer equations than unknowns and involves finding
integers that solve all equations simultaneously. Many authors have studied the exponential
Diophantine equation. In 1844, the great Mathematician, Eugene Charles Catalan created a
conjecture that the diophantine equation ax −by = 1 where a,b, x, y ∈Z with min{a,b, x, y}> 1
has a unique solution (a,b, x, y) = (3,2,2,3) [10]. Le [21], Cohn [13], Terai [31], Cassels [9],
Arif and Muriefah [3] etc. have done their research works on the Diophantine equations like
x2 + by = cz, x2 + c = yn, x4 − D y2 = 1, ax + by = cz, x2 + 2k = yn etc. in the period of 1993-
1997. Famous researchers, Sury [28], Luca [22], Cao [8], Beukers [4] and many others have
done considerable works (approx 1995-2001) on various aspects of the Diophantine equations
x2+2= yn, x2+3m = yn, ax+by = cz , Axp+Byq = Czr etc. The Catalan conjecture was eventually
proved by the mathematician P. Mihǎilescu in 2002 [23]. In 2002, Arif and Muriefah [3] have
done works on the Diophantine equation x2 + q2k+1 = yn. Yuan and Hu [33], and Terai [31], etc.
have done extensive research works on Diophantine equations.

In 2007, Acu [1] proved that the Diophantine equation 2x +5y = z2, x, y, z ∈ Z+ has only
two solutions, viz. (3,0,3) and (2,1,3). A number of researchers have studied the exponential
Diophantine equations in the period 2010-2016 AD. Suvarnamani [29], Suvarnamani et al. [30],
Sroysang [27], Kishan et al. [18], Bravo and Luca [5] etc. have done their extensive works on the
different types of Diophantine equations 4x +7y = z2, 4x +11y = z2, 4x +13y = z2, 4x +17y = z2,
Ax +By = Cz, 3x +5y = z2, 8x +19y = z2, 31x +32y = z2, 7x +8y = z2, Fn +Fm = 2a etc. There
are many other non-linear Diophantine equations. In [24], Rabago discussed the Diophantine
equations 3x+19y = z2, 3x+91y = z2. Moreover, recently, Burshtein [6], Aggarwal [2], and Kumar
et al.[20] etc. have done works relating to Diophantine equation. The exponential Diophantine
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equation (an −1)(bn −1)= x2, x,n ∈N has been studied by a lot of researchers since 2000. After
that many authors such as Hajdu and Szalay [15], Ishii [16], Cohn [13], Luca [22], Walsh
[32], and Keskin [17], etc. have studied the Diophantine equations. Somanath et al. [25, 26]
have done their works on the Diophantine equations x2 = 29y2 −7t, t ∈ N, x2 = 9y2 +11z2,
α2 − 90β2 − 10α− 1260β = 4401 in 2020. In [14], Gayo and Bacan, studied and solved the
exponential Diophantine equation of the form Mx

p + (Mq +1)y = z2 for Mersenne primes Mp and
Mq and non-negative integers x, y, and z. Chakraborty et al. [11] investigated the Diophantine
equation cx2 + p2m = 4yn.

2. Preliminaries
2.1 The Catalan’s Conjecture ([23]). The unique solution for the Diophantine equation
ax −by = 1 where a,b, x, y ∈Z with min{a,b, x, y}> 1 is (3,2,2,3).

2.1 Lemma. The exponential Diophantine equation 5x +1= z2 has no solutions in non-negative
integers.

Proof. z2 = 1+5x ≥ 2⇒ z ≥ 2⇒ z2 ≥ 4⇒ 5x = 22 −1≥ 3⇒ x ≥ 1.
Therefore, by Catalan Conjecture, we must have x = 1. But z2 = 1+5 = 6 has no solution in
non-negative integers.
Therefore, the given equation has no solution in non-negative integers either.

2.2 Lemma. The exponential Diophantine equation 7x +1= z2 has no solutions in Z≥ 0.

Proof. z2 = 1+7x ≥ 2⇒ z ≥ 2⇒ z2 ≥ 4⇒ 7x = 22 −1≥ 3⇒ x ≥ 1.
Therefore, by Catalan Conjecture, we must have x = 1. But z2 = 1+7= 8 is not a perfect square.
Hence, 7x +1= z2 has no solution in non-negative integers.

We now come to our main result. In the following, we will study all the possible solutions and
we will use the Catalan’s conjecture and above Lemma’s in solving the exponential Diophantine
equations of the type (8m−3)x +24y = z2 and (8m−1)x +24y = z2, m ∈N.

3. Main Results
3.1 Theorem. The exponential Diophantine equation 5x +24y = z2 has exactly two solutions
(0,1,5) and (2,1,7) in non-negative integers.

Proof. The equation is

5x +24y = z2 . (3.1)

If y= 0, from Lemma 2.1, we get that equation (3.1) has no solution in non-negative integers.
Therefore, y ̸= 0 for equation (3.1), to have any solution.
Thus z is odd from equation (3.1). Taking mod 8 of equation (3.1), we get

(−3)x ≡ 1 (mod 8)

⇒ x is even.

Communications in Mathematics and Applications, Vol. 13, No. 1, pp. 137–145, 2022



140 On Two Classes of Exponential Diophantine Equations: P.B. Borah and M. Dutta

Let x = 2k,k ≥ 0 is an integer.
Therefore, equation (3.1)
⇒ 52k +24y = z2 ⇒ 24y = (z−5k)(z+5k)

Two cases arise:

Case 1. z−5k = 2y, z+5k = 12y

⇒ 2.5k = 2y(6y −1)⇒ y= 1,5k = 5⇒ k = 1⇒ x = 2⇒ z2 = 52 +24= 72 ⇒ z = 7
Therefore (x, y, z)= (2,1,7).

Case 2. z−5k = 4y, z+5k = 6y

⇒ 2.5k = 2y(3y −2y)⇒ y= 1,5k = 3−2= 1⇒ k = 0⇒ x = 0⇒ z = 41 +50 = 5
Therefore (x, y, z)= (0,1,5).
This completes the proof.

We now present our second theorem, which extends the above theorem.

3.2 Theorem. The exponential Diophantine equation (8k+5)x +24y = z2, k ∈ N which has a
unique solution (0,1,5) in non-negative integers.

Proof. Given equation is

(8k+5)x +24y = z2, k ∈N (3.2)

If y= 0, eq. (3.2) ⇒ z2 − (8k+5)x = 1.
Therefore, by Catalan conjecture, min{z, x,8k+5}≤ 1.
Because eq. (3.2) ⇒ z ≥ 2 and k ∈N⇒ 8k+5≥ 13.
Therefore, we must have x = 0 or 1.
x = 0⇒ z2 = 2⇒ no integral solution and x = 1⇒ z2 = 8k+6≡ 6(mod 8).
But, any square is either congruent to 0,1 or 4(mod 8)⇒ no integral solution.
Therefore, y ̸= 0, and z is odd, eq. (3.2) ⇒ 5x ≡ z2 ≡ 1(mod 8)⇒ x is even.
Let x = 2l, l ≥ 0.
Therefore, eq. (3.2) ⇒ 24y = z2 − (8k+5)2l = (z− (8k+5)l)(z+ (8k+5)l).

Two cases arise:

Case 1. z− (8k+5)l = 2y, z+ (8k+5)l = 12y.
⇒ 2.(8k+5)l = 2y(6y −1)
⇒ y= 1, (8k+5)l = 5
But, k ∈N⇒ 8k+5> 5⇒ (8k+5)l ̸= 5.
Therefore, no solution exists in this case.

Case 2. z− (8k+5)l = 4y, z+ (8k+5)l = 6y

⇒ 2.(8k+5)l = 2y(3y −2y)
⇒ y= 1, (8k+5)l = 31 −21 = 1
⇒ l = 0 for any k ∈N⇒ x = 0 and z = 4+1= 5
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i.e. (0,1,5) is a solution of eq. (3.2), ∀ k ∈N.
This completes the theorem.

3.1 Example. The exponential Diophantine equation 13x+24y = z2, 21x+24y = z2, 101x+24y =
z2 has a unique solution (0,1,5) in non-negative integers.

3.1 Corollary. The equation (8k−3)x +24y = w4, k ∈N has no solution in non-negative integers.

Proof. If (x, y,w) is a solution then by Theorem 3.1 and Theorem 3.2, we must have

z = w2 = 5 or 7 which is a contradiction.

3.2 Example. The exponential Diophantine equation 5x+24y = w4, 13x+24y = w4, 101x+24y =
w4 have a no solution in non-negative integers.

3.2 Corollary. The equation (8k−3)x +24y = w2m, k ∈ N, 1 < m ∈ N has no solution in non-
negative integers.

Proof. If (x, y,w) were a solution then by Theorem 3.1 and Theorem 3.2, we must have
z = wm = 5 or 7. Since m > 1.
This is not possible. Hence no solution exists.

3.3 Example. The exponential Diophantine equation 5x +24y = w6, 21x +24y = w8, 37x +24y =
w10 have a no solution in non-negative integers.

Now, we come to another class of equations.

3.3 Theorem. The exponential Diophantine equation 7x +24y = z2 has a unique solution (0,1,5)
in non-negative integers.

Proof. y= 0⇒ 7x +1= z2, and by Lemma 2.2 this has no solution in non-negative integers.
Therefore, y ̸= 0.
Thus, z is odd. Now, given equation is

7x +24y = z2 . (3.3)

Taking ‘ (mod 8)’ from eq. (3.3), we get (−1)x ≡ 1(mod 8)⇒ x is even.
Let x = 2u, u ≥ 0, u ∈Z.
Equation (3.3) ⇒ 72u +24y = z2 ⇒ 24y = (z−7u)(z+7u).

Two cases arise:

Case 1. z−7u = 2y, z+7u = 12y

⇒ 2.7u = 2y(6y −1)
⇒ y= 1,7u = 5
No solutions in this case.

Case 2. z−7u = 4y, z+7u = 6y

⇒ 2.7u = 2y(3y −2y)
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⇒ y= 1,7u = 31 −21 = 1
⇒ u = 0
⇒ x = 0
⇒ z = 41 +70 = 5
Therefore, (x, y, z)= (0,1,5) is a solution of eq. (3.3).
This completes the proof.

Below, we give a generalised version of the above theorem.

3.4 Theorem. The exponential Diophantine equation (8m−1)x +24y = z2, m ∈N has

(1) Exactly two solutions if ‘8m’ is a perfect square, the solutions are given by (0,1,5) and
(1,0,

p
8m).

(2) A unique solution (0,1,5) otherwise.

Proof. The equation is

(8m−1)x +24y = z2, m ∈N (3.4)

y= 0⇒ z2 − (8m−1)x = 1, z > 1, m ∈N⇒ x = 0,1, by Catalan conjecture.
x = 0⇒ z2 = 2⇒ no solution exists and x = 1⇒ z2 = 8m.
Thus, if and only if ‘8m’ is a perfect square, (x, y, z)= (1,0,

p
8m) is a solution.

Otherwise, y ̸= 0, this implies z is odd. Equation (3.4) ⇒ (−1)x ≡ 1(mod 8) ⇒ x is even. Let
x = 2v, v ≥ 0.
Therefore, eq. (3.4) ⇒ (8m−1)2v +24y = z2, m ∈N⇒ 24y = (z− (8m−1)v)(z+ (8m−1)v).

Two cases arise:

Case 1. z− (8m−1)v = 2y, z+ (8m−1)v = 12y ⇒ 2.(8m−1)v = 2y(6y −1)⇒ y= 1, (8m−1)v = 5
⇒ no solution exists.

Case 2. z− (8m−1)v = 4y, z+ (8m−1)v = 6y ⇒ 2.(8m−1)v = 2y(3y −2y)⇒ y= 1, (8m−1)v = 1⇒
v = 0⇒ x = 0⇒ z = 41 +1= 5
i.e., (0,1,5) is a solution of eq. (3.4).
This completes the proof.

We conclude with some examples and corollaries as follows.

3.4 Example. (1) The exponential Diophantine equation 23x + 24y = z2, 31x + 24y = z2,
55x +24y = z2 has a unique solution (0,1,5) in non-negative integers.

(2) The exponential Diophantine equation 15x +24y = z2, has exactly two solutions in non-
negative integers: (0,1,5) and (1,0,4).

(3) The exponential Diophantine equation 63x +24y = z2, has exactly two solutions in Z≥ 0 :
(0,1,5) and (1,0,8).

3.3 Corollary. The equation (8m−1)x +24y = w4 has no solution in positive integers.
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Proof. If (x, y,w) were a solution then by theorem above x = 0 or y = 0, which is a
contradiction.

3.5 Example. The exponential Diophantine equation 47x +24y = w4, 71x +24y = w4, has no
solution in positive integers.

3.4 Corollary. The equation (8m−1)x +24y = w2n, n ∈N has no solution in positive integers.

Proof. If (x, y,w) were a solution, then (x, y, z = wn) is a solution of eq. (3.4).
This means x = 0 or y= 0, by Theorem 3.4, which is a contradiction.

3.6 Example. The exponential Diophantine equation 79x+24y = w6, 87x+24y = w8, 95x+24y =
w10 has no solution in positive integers.

4. Conclusion
Many linear and non-linear Diophantine equations with a finite or an infinite number of
variables can be solved. In this article, we have shown that the exponential Diophantine
equation (8k+5)x +24y = z2 has a unique solution (0,1,5) in non-negative integers. We also
showed that for k = 0, this has exactly two solutions: (0,1,5) and (2,1,7). Finally, we showed
that the exponential Diophantine equation (8m−1)x +24y = z2, m ∈N has exactly two solutions
if “8m” is a perfect square, the solutions being given by (0,1,5) and (1,0,

p
8m); and if 8m is not

a square,it has a unique solution (0,1,5).
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