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Pontryagin’s Maximum Principle of Optimal Control

Governed by A Convection Diffusion Equation

Youjun Xu∗, Huilan Wang, and Yanqi Liu∗

Abstract In this paper we analyze an optimal control problem governed by a

convection diffusion equation. This problem with state constraints is discussed

by adding penalty arguments involving the application of Ekeland’s variational

principle and finite codimensionality of certain sets. Necessary conditions for

optimal control is established by the method of spike variation.

1. Introduction and Main Results

Consider the following controlled convection diffusion equations:
¨
−µ△y + β∇y +σy = f (x ,u) in Ω ,

y = 0 on ∂Ω
(1.1)

where the diffusity constant µ > 0 and the advective field β ∈ (L∞(Ω))2 with

∇β ∈ L∞(Ω), the reaction σ ∈ L∞(Ω) with σ ≥ σ0 > 0. To simplify the notation

throughout σ = 1. Here Ω ⊆ R
2 is a convex bounded polygonal domain with a

smooth boundary ∂Ω, f : Ω × U → R, with U being a separable metric space.

Function u(·), called a control, is taken from the set

U = {w : Ω→ U | w(·) is measurable}.

Under some mild conditions, for any u(·) ∈U , (1.1) admits a unique weak solution

y(·)≡ y(· ;u(·)), which is called the state (corresponding to the control u(·)). The

performance of the control is measured by the cost functional

J(u(·)) =
∫

Ω

f 0(x , y(x),u(x))d x , (1.2)

for some given map f 0 : Ω×R× U → R.
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Our optimal control problem can be stated as follows.

Problem C. Find a ū(·) ∈U such that

J(ū(·)) = inf
u(·)∈U

J(u(·)). (1.3)

Any ū(·) ∈ U satisfying the above is called an optimal control, and the corres-

ponding ȳ(·) ≡ ȳ(· ;u(·)) is called an optimal state. The pair ( ȳ(·), ū(·)) is called

an optimal pair.

In this paper, we make the following assumptions.

(H1) Set Ω ⊆ R
2 is a convex bounded polygonal domain with a smooth boundary

∂Ω.

(H2) Set U is a separable metric space.

(H3) The function f : Ω × U → R has the following properties: f (·;u) is

measurable on Ω, and f (x , ·) continuous on R × U and for any R > 0, a

constant MR > 0, such that | f (x ,u)| ≤ MR, for all (x ,u) ∈ Ω× U .

(H4) Function f 0(x , y, v) is measurable in x and continuous in (y, v) ∈ R×U for

almost all x ∈ Ω. Moreover, for any R > 0, there exists a KR > 0 such that

| f 0(x , y, v)|+ | f 0
y
(x , y, v)| ≤ KR, a.e. (x , v) ∈ Ω× U , |y | ≤ R. (1.4)

(H5) X is a Banach space with strict convex dual X ∗, F : W
1,p

0 (Ω)→X is conti-

nuously Fréchet differentiable, and W ⊂X is closed and convex.

(H6) F ′( ȳ)Dr − W has finite condimensionality in X for some r > 0, where

Dr = {z ∈ X ;‖z‖X ≤ r}.

Definition 1.1 ([2, 6]). Let X is a Banach space and X0 is a subspace of X . We say

that X0 is finite codimensional in X if there exists x1, x2, · · · , xn ∈ X such that

span{X0, x1, · · · , xn} = the space spanned by {X0, x1, · · · , xn} = X .

A subset S of X is said to be finite codimensional in X if for some x0 ∈ S,

span(S − {x0}) the closed subspace spanned by {x − x0 | x ∈ S} is a finite

codimensional subspace of X and c̄oS the closed convex hull of S − {x0} has a

nonempty interior in this subspace.

Lemma 1.2. Let (H1)-(H4) hold. Then, for any u(·) ∈ U , (1.1) admits a unique

weak solution y(·) ∈W
1,p

0 (Ω)∩ L∞(Ω). Furthermore, there exists a constant K > 0,

independent of u(·) ∈ U ,

‖y(·;u)‖
W

1,p

0 (Ω)∩L∞(Ω) ≤ K . (1.5)

The weak solution y ∈ V = H1
0
(Ω) of the state equation (1.1) is determined by

a(y, v) = ( f , v), for all v ∈ V,
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using the bilinear form a : V × V → R given by

a(y, v) =

∫

Ω

µ∇y∇vd x +

∫

Ω

β∇y vd x +

∫

Ω

σy vd x , for all v ∈ V.

Existence and uniqueness of the solution to (1.1) follow from the above

hypotheses on the problem data (see [1, 3]). Thus, a state constraint of the

following type makes sense:

F(y) ∈W . (1.6)

Let Aad be the set of all pairs (y(·),u(·)) satisfying (1.1) and (1.6) is called an

admissible set. Any (y,u) ∈ Aad is called an admissible pair. We refer to such a

pair ( ȳ, ū), if it exists, as an optimal pair and refer to ȳ and ū as an optimal state

and control, respectively.

Now, let ( ȳ, ū) be an optimal pair of Problem C. Let z = z(· ;u(·)) ∈W
1,p

0 (Ω) be

the unique solution of the following problem:
¨
−µ△z+β∇z +σz = f (x ,u)− f (x , ū) in Ω ,

z = 0 on ∂Ω .
(1.7)

And define the reachable set of variational system (1.7)

R = {z(·;u(·) | u(·) ∈U }. (1.8)

Now, let us state the necessary conditions of an optimal control to Problem C as

follows.

Theorem 1.3 (Pontryagin’s Maximum Principle). Let (H1)-(H6) hold. Let

( ȳ(·), ū(·)) be an optimal pair of Problem C. Then there exists a triplet (ψ0,ψ,ϕ0) ∈
R×W

1,p′

0 ×X ∗ with (ψ0,ϕ0) 6= 0 such that

〈ψ0,η− F( ȳ)〉X ∗,X ≤ 0, for all η ∈W, (1.9)
(
−µ△ψ̄− β∇ψ̄+ (σ−∇β)ψ̄=ψ0 f 0

y
(x , ȳ , ū)− F ′( ȳ)∗ϕ in Ω,

ψ̄ = 0 on ∂Ω ,
(1.10)

H(x , ȳ(x), ū(x),ψ0,ψ(x)) = max
u(·)∈U

H(x , ȳ(x),u(x),ψ0,ψ(x)) a.e. x ∈ Ω. (1.11)

In the above, (1.9), (1.10), and (1.11) are called the transversality condition,

the adjoint system (along the given optimal pair), and the maximum condition,

respectively.

Problem of the types studied here arise in originally from the optimal control of

linear convection diffusion equation (cf. [3, 4, 5]). In the work mentioned above,

the control set is convex. However, in many practical cases, the control set can not

convex. This stimulates us to study Problem C. Necessary conditions for optimal

control is established by the method of spike variation.

In the next section, we will prove Pontryagin’s maximum principle of optimal

control of Problem C.
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2. Proof of the Maximum Principle

This section is devoted to the proof of the maximum principle.

Proof of Theorem 1.3. First, let d̄(u(·), ū(·)) = |{x ∈ Ω | u(·) 6= ū(·)}|, where |D|
is the Lebesgue measure of D ⊆ Ω. We can easily prove that (u,ρ) is a complete

metric space. Let ( ȳ, ū) be an optimal pair of Problem C. For any y(·;u) be the

corresponding state, emphasizing the dependence on the control. Without loss of

generality, we may assume that J(ū) = 0. For any ε > 0, define

Jε(u) = {[(J(u)+ ε)+]2 + d2
Q
(F(y(·;u)))}1/2. (2.1)

Where dQ = inf
x̄∈Q
|x − x̄ |, and ū is an optimal control. Clearly, this function is conti-

nuous on the (complete) metric space (U , d̄). Also, we have
(

Jε(u)> 0, for all u ∈U ,

Jε(ū) = ε≤ inf
u∈U

Jε(u) + ε.
(2.2)

Hence, by Ekeland’s variational principle, we can find a uε ∈U , such that

¨
d̄(u,uε)≤ pε,
Jε(bu)− Jε(u

ε)≥−pεd̄(bu,uε), for all bu ∈U .
(2.3)

We let v ∈ U and ε > 0 be fixed and let yε = y(· ;uε), we know that for any

ρ ∈ (0,1), there exists a measurable set Eερ ⊂ Ω with the property |Eερ | = ρ|Ω|,
such that if we define

uερ(x) =

(
uε(x), if x ∈ Ω\Eερ ,

v(x), if x ∈ Eερ

and let yερ = y(·;uερ) be the corresponding state, then

(
yερ = yε +ρzε + rερ,

Jε(u
ε
ρ
) = J(uε) +ρz0,ε + r0,ε

ρ
, for all bu ∈U ,

(2.4)

where zε and z0,ε satisfying the following

¨
−µ△zε+ β∇zε +σzε = f (x , v)− f (x ,uε) in Ω ,

zε = 0 on ∂Ω ,
(2.5)

z0,ε
ρ =

∫

Ω

�
f 0

y
(x , yε,uε)zε + h0,ε(x)

�
d x , (2.6)

with




h0,ε(x) = f 0(x , yε, v)− f 0(x , yε,uε),

lim
ρ→0

1

ρ
‖rερ‖W 1,p

0
= lim
ρ→0

1

ρ
|r0,ε
ρ |= 0.

(2.7)
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We take bu = uερ . It follows that

−
p
ε|Ω| ≤

Jε(u
ε
ρ)− Jε(u

ε)

ρ

=
1

Jε(u
ε
ρ) + Jε(u

ε)

�
[(J(uερ) + ε)

+]2 − [(J(uε) + ε)+]2

ρ

+
d2

Q
(F(yερ))− d2

Q
(F(yε))

ρ

�

→
(J(uε) + ε)+

Jε(u
ε)

z0,ε+

�
dQ(F(y

ε))ξε

Jε(u
ε)

, F ′(yε)zε
�

, (ρ→ 0), (2.8)

where

ξε =

¨
∇dQ(F(y

ε)), if F(yε) /∈Q ,

0, if F(yε) ∈Q .

∇dQ(·) denotes the subdifferential of dQ(·). Next, we define (ϕ0,ε,ϕε) ∈ [0,1]×X
as follows:

ϕ0,ε =
(J(uε) + ε)+

Jε(u
ε)

, ϕε =
dQ(F(y

ε))ξε

Jε(u
ε)

. (2.9)

Then

−
p
ε|Ω| ≤ ϕ0,εz0,ε+ 〈ϕε, F ′(yε)zε〉 , (2.10)

|ϕ0,ε|2 + ‖ϕε‖2X∗ = 1 . (2.11)

On the other hand, we have

〈ϕε,η− F(yε)〉X ∗,X ≤ 0, for all η ∈W. (2.12)

Then

‖yε − ȳ‖
W

1,p

0 (Ω)
→ 0, (ε→ 0). (2.13)

Consequently,

lim
ε→0
‖F ′(yε)− F ′( ȳ)‖L (W 1,p

0 (Ω),X ) = 0 (2.14)

then

〈ϕε,η− F(yε)〉X ∗,X ≤ 〈ϕε, F(yε)− F( ȳ)〉X ∗,X , for all η ∈W. (2.15)

By taking the limit for ε → 0 in (2.15), we get (1.9). From (2.5) and (2.6), we

have
¨

zε→ z, in W
1,p

0 (Ω),

z0,ε→ z0, (ε→ 0)
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where z is the solution of system (1.6) and

z0 =

∫

Ω

f 0
y
(x , ȳ , ū)z(x)d x +

∫

Ω

�
f 0(x , ȳ , v)− f 0(x , ȳ , ū)

�
d x . (2.16)

From (2.10) and (2.12), we have

ϕ0,εz0,ε(v) + 〈ϕε, F ′(yε)zε(·; v)−η+ F(yε)〉 ≥ −δε, for all v ∈ U ,η ∈W, (2.17)

with δε → 0 as ε → 0. Because F ′( ȳ)Dr −W has finite condimensionality in X ,

we can extract some subsequence, still denoted by itself, such that

(ϕ0,ε,ϕε)→ (ϕ0,ϕ) 6= 0.

From (2.17), we have

ϕ0z0(v) + 〈ϕ, F ′( ȳ)z(·; v)−η+ F( ȳ)〉 ≥ 0, for all v ∈U , η ∈Q . (2.18)

Now, let ψ0 =−ϕ0 ∈ [−1,0]. Then (ψ0,ϕ) 6= 0. Then we have

ψ0z0(v) + 〈ϕ,η− F( ȳ)〉 − 〈F ′( ȳ)∗ϕ, z(·; v)〉 ≤ 0, for all u ∈U , η ∈W . (2.19)

Take v = ū, we obtain (1.9). Next, we let η= F( ȳ) to get

ψ0z0(v)− 〈F ′( ȳ)∗ϕ, z(· ; v)〉 ≤ 0, for all v ∈U . (2.20)

Because F ′( ȳ)∗ϕ ∈ W−1,p′(Ω), for the given ψ0, there exists a unique solution

ψ ∈ W 1,p′(Ω) of the adjoint equation (1.10). Then, from (1.6), (2.16) and (2.2),

we have

0≥ψ0z0(v)− 〈F ′( ȳ)∗ϕ, z(· ; v)〉

=ψ0

∫

Ω

f 0
y
(x , ȳ , ū)z(x)d x +ψ0

∫

Ω

�
f 0(x , ȳ, v)− f 0(x , ȳ , ū)

�
d x

+ 〈−µ△ψ̄−β∇ψ̄+ (σ−∇β)ψ̄−ψ0 f 0
y
(x , ȳ , ū), z〉

=

∫

Ω

�
ψ0
�

f 0(x , ȳ , v)− f 0(x , ȳ , ū)
�
+ 〈ψ, f (x , v)− f (x , ū)〉

	
d x

=

∫

Ω

�
H(x , ȳ(x), v(x),ψ0,ψ(x))− H(x , ȳ(x), ū(x),ψ0,ψ(x))

	
d x . (2.21)

There, (1.11) follows. Finally, by (1.10), if (ψ0,ψ) = 0, then F ′( ȳ)∗ϕ = 0.

Thus, in the case where N (F ′( ȳ)∗) = {0}, we must have (ψ0,ψ) 6= 0, because

(ψ0,ϕ) 6= 0. �
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