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Abstract. In earlier research the asymptotic distribution of a test statistic, that uses the algebraic
representation of Hotelling’s T2 and is pertaining to a process generated from the Stochastic EM
(SEM) algorithm, was established in order to assess the performance of the EM algorithm in the
estimation of the number of components in finite mixtures; theory concerning the distribution of T2

was based on a regularity assumption stating that the vector random process generated from SEM
is normally distributed. In the present paper a central limit theorem and some theory concerning
second order moments are used in order to investigate corresponding results obtained in case the
process is generated from the stationary state of SEM without making any assumption of normality.
A comparison between our findings and usual asymptotic theory for independently distributed vector
random variables is also provided.
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1. Introduction
Let x be a vector random variable with probability density function the mixture density

f (x, q) =
K∑

k=1
pk f (xi,θk), where k stands for the number of the mixture components, pk is
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the weight of the k-th component (0< pk < 1), and θk denotes the parameter(s) associated with
the k-th component. The parameters q are the weights and θk. A difficult problem that arises
in such models, which has not been solved in its generality, is to estimate the true number of
components; the problem occurs because standard asymptotic theory breaks down (Titterington,
Smith and Makov [11, pp. 152 – 153]).

In order to circumvent this problem many algorithms have been proposed in existing
literature. In the present work we consider the Stochastic EM (or SEM) algorithm as a method
of estimation of the number of components(Celeux and Diebolt [4]). Results provided in the
latter paper clearly show how useful can be this algorithm for dealing with the mixture problem.
From a methodological point of view SEM is just a stochastic version of the well-known EM
algorithm. For a comprehensive description of EM see Redner and Walker [10]. Advantages
of SEM over EM are fully described in Celeux and Diebolt [6]. In view of its nice properties
the SEM algorithm was also proposed to be used as a validity tool for assessing estimates of
numbers of components provided by EM via a test statistic which has the same algebraic form
as the usual Hotelling’s T2for independent vector random variables (Celeux [2]). In previous
research the distribution of this statistic was obtained for a sufficiently large number of SEM
iterations (Polymenis [7]). This statistic is revisited in this text and the aim is to investigate
properties at the stationary state of the SEM algorithm as this will be described in detail in
Section 2. For reasons of clarity we now present the SEM algorithm which is as follows.

Define an upper bound K for the (unknown) number of components. Then the SEM iteration
qr → qr+1 comprises of the following three steps.

E-Step: for k = 1, . . . ,K and i = 1, . . . , N , compute tr
k(xi)= pr

k f (xi,θr
k)/

K∑
j=1

pr
j f (xi,θr

j ).

S-step: for every observed xi (i = 1, . . . , N), draw a single multinomial observation zr(xi) =
(zr

k(xi),k = 1, . . . ,K) with probabilities tr
k(xi), k = 1, . . . ,K . This procedure amounts to drawing

the pseudo-completed sample yi = (xi, z(xi)) by replacing each missing quantity z(xi) by a value
drawn at random according to the probabilities tk(xi).

M-step: compute the maximum likelihood estimates qr+1 using the pseudo-completed sample

provided by the S-step. The procedure amounts to computing pr+1
k = (1/N)

N∑
i=1

zr
k(xi) and

estimating θr+1
k .

The remainder of the present text is organized as follows. In Section 2 the models are
presented and the problem we are dealing with is described. Section 3 provides mathematical
evidence concerning our rationale. Concluding remarks are provided in Section 4.

2. Description of the Problem
As mentioned in the introduction the Stochastic EM algorithm has been found useful for
estimating numbers of components in finite mixture models. From a mathematical point of view
SEM generates a vector random process which is a Markov chain. In an earlier paper [7] it has
been established that, as the sample size N tends to infinity, this chain is an autoregressive
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process of order 1, denoted as AR(1), and can be written as

Xr+1 = aXr + sp
N
εr+1 (with initial condition X0 = 0), (2.1)

where r > 0 denotes the number of SEM iterations, εr are independently and identically
distributed p-dimensional normal random vectors and εr ∼ N(0, I), where 0 is a p-dimensional
random vector will all entries equal to 0, I is the p× p identity matrix, s a p× p matrix with
real entries, and a a p× p matrix with real entries that has all its eigenvalues less than 1
in absolute value (Polymenis [7]). The vector Xr appearing in eq. (2.1) is qr − qN , where qr

stands for the SEM estimate at iteration r, and qN is the asymptotically (as N →∞) convergent
solution of EM (Redner and Walker [10]). This will be the model of interest in the present paper
and the process appearing in eq. (2.1) will be mentioned as process {Xr} in this text. Note that in
the one-dimensional case (p = 1), we have that εr ∼ N(0,1), where 0 ∈R, s is a positive constant,
and a is a constant such that |a| < 1. As mentioned in Polymenis [8], at its stationary state
eq. (2.1) takes the form

X (m) = (s/
p

N)
∞∑

i=0
aiεm−i (m = . . . ,−1,0,1,2, . . . ), (2.2)

denoted by process {X (m)} in this text; remark that X (m) corresponds to the stationary solution
of eq. (2.1) and process {X (m)} is strongly stationary. Note that for the one-dimensional case
corresponding to p = 1, eq. (2.2) is the same as equation (3.5.20) of Priestley [9, pp. 121 – 122].
An important remark that plays a key role in the development of our theory is that there is an
assumption of normality concerning the random errors involved in eq. (2.1) which is part of
some regularity assumptions pertaining to theory underlying SEM (Celeux and Diebolt [5,6]).
This assumption stems from the fact that for the one-dimensional case p = 1 the random errors
in eq. (2.1) have been shown to be normally distributed (Celeux [3, pp. 114 – 115]).

Let us now consider the validity test statistic T2
r = rX

′
M−1

r X (with X =
r∑

i=1
X i/r, and Mr=

r∑
i=1

(X i − X )(X i − X )′/(r−1))which was proposed in the literature (Celeux [2]) in order to assess

the validity of the number of estimated components obtained from the well-known EM algorithm.
This statistic has the same algebraic representation as Hotelling’s T2, used for independent
vector normal random variables, and process {X i} (i = 1, . . . , r) satisfies eq. (2.1). The distribution
of T2

r , when r is sufficiently large, under a null hypothesis H0 corresponding to eq. (2.1), with
normally distributed vector random errors, was established in previous research (Polymenis [7]).
On the other hand we now mention a central limit theorem which will be helpful for supporting
theory presented in the next section. This theorem results from Theorems 1 and 3 of Polymenis
[8], and states that in case we do not make any assumption of normality concerning eq. (2.1), the

distribution function of
p

nX
(·)

, with X
(·) =

n∑
i=1

X (i)/n (where X (i) satisfies eq. (2.2)) will converge,

as n →∞, to a normal distribution function with zero mean vector and covariance matrix equal
to (I−a)−1ss′(I−a′)−1

N . Using these results our main goal is to examine asymptotic distribution
properties for the aforementioned algebraic representation considered at the stationary state of
the SEM algorithm and compare these properties to corresponding ones from T2

r (Polymenis [7]).
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3. The Main Result
Part A. In view of the central limit theorem reported in Section 2, the crucial assumption
we make is that the random errors appearing in eq. (2.1) are no more normally distributed
which in turn implies that process {Xr} is not normally distributed as well. Using the idea of
asymptotic stationarity introduced by Priestley [9] it has been shown in previous literature that,

for r sufficiently large, E[X (0)(X (0))′] can be approximated by matrix C, where C =
∑∞

k=0 (akss′(a′)k)
N

(Polymenis [8, Proof of Theorem 3]), and symbol prime denotes the transpose matrix. Let us
consider the algebraic representation T2

n = n(X (·))′{E[X (0)(X (0))′]}
−1

X (·) which has the same
form as T2

r but includes only variates from the stationary state of the SEM algorithm. Since the

distribution of T2
n = n(X (·))′{E[X (0)(X (0))′]}

−1
X (·)is approximately equal to that of n(X (·))′C−1X (·)

when r is sufficiently large, and using the aforementioned central limit from Polymenis [8], it
results that T2

n has the same distribution as X ′C−1X , as n →∞, and X is a normally distributed
vector random variable with zero mean vector and constant covariance matrix (I−a)−1ss′(I−a′)−1

N .
For reasons of clarity we also report that in the one-dimensional case, p = 1, it was shown that
E[(X (0))

2
] (the one-dimensional version of E[X (0)(X (0))′]) can be approximated by s2

N(1−a2) , for

r sufficiently large (Polymenis [8, Proof of Theorem 2(B)]), and s2

N(1−a2) is the one-dimensional
version of C. It results that in one-dimensional case, the distribution of T2

n = t2
n will be equal, as

n →∞, to that of X ′X(
s2

N(1−a2)

) , and X is a normally distributed random variable with zero mean

and constant variance s2

N(1−a)2
(i.e. the one-dimensional version of matrix (I−a)−1ss′(I−a′)−1

N ).

Part B. Let us now consider process {Xr} as in eq. (2.1), and {Xr} is normally distributed.
Since, on one hand, C is the limit (as r →∞) in probability of Mr and thus C−1 is the limit in
probability of M−1

r (Polymenis [7, Proof of Theorem 4]), and on the other hand, by Theorem 3
of Polymenis [7], lim

r→∞var(
p

rX )= (I−a)−1ss′(I−a′)−1

N , it results that, under H0, T2
r = rX

′
M−1

r X has

the same distribution as X ′C−1X when r →∞, and X is a normally distributed vector random
variable with zero mean vector and constant covariance matrix (I−a)−1ss′(I−a′)−1

N . As before we
now provide some explanations concerning case p = 1. In this case, as r →∞, the denominator

of T2
n = rX

2

1
r−1

∑r
i=1 (X i−X )

2 has the same limit in probability as 1
r−1

r∑
i=1

X2
i (Polymenis [7, Proof of

Theorem 4]). Furthermore it has been shown on one hand that E
(

r∑
i=1

X2
i

)
=

(
s2

N(1−a2)

)
r− a2(1−a2r)s2

N(1−a2)2

(Polymenis [7, Appendix 4]), and thus E
[

1
r−1

r∑
i=1

X2
i

]
converges to s2

N(1−a2) as r → ∞, and

on the other hand that var
(

r∑
i=1

X2
i

)
is of order r (Polymenis [7, Appendix 5]) implying that

var
(

1
r−1

r∑
i=1

X2
i

)
converges to 0 as r → ∞. It results that, as r → ∞, 1

r−1

r∑
i=1

X2
i converges in

probability to s2

N(1−a2) , which is equal to E[(X (0))2] obtained in Part A. It results that in one-

dimensional case, the distribution of T2
r = t2

r will be equal, as r →∞, to that of X ′X(
s2

N(1−a2)

) , and X

is a normally distributed random variable with zero mean and constant variance s2

N(1−a)2
.
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Results reported in Parts A and B show that the asymptotic (as n → ∞) distribution of
T2

n is equal to that of T2
r under H0 when r is sufficiently large; note that the latter was

shown to be approximately equal to the distribution of δ1Z2
1 +·· ·+δpZ2

p, where δi (i = 1, . . . , p)

are eigenvalues of the matrix C−1/2 (I−a)−1ss′(I−a′)−1

N C−1/2, and Z2
i are χ2(1) independently and

identically distributed variates (Polymenis [7, Theorem 4]). These results lead then to the
following theorem.

Theorem 3.1. Let us assume that the p-dimensional process {Xr} satisfying eq. (2.1) is no more
normally distributed and so neither is the corresponding strongly stationary process {X (m)}
(m = . . . ,−1,0,1, . . . ) which satisfies eq. (2.2). The distribution of T2

n = n(X (·))′C−1X (·) is equal,
as n →∞, to the distribution of δ1Z2

1 +·· ·+δpZ2
p which is the approximate distribution of the

statistic T2
r = rX

′
M−1

r X , obtained for r sufficiently large under the null hypothesis that process
{Xr} satisfies eq. (2.1) and is assumed to be normally distributed.

Theorem 3.1 can be viewed as the analogue, for random processes arising from the stationary
state of the SEM algorithm, to Theorem 5.2.3 of Anderson [1, p. 163] for independent processes.
In the special case where matrix a appearing in eq. (2.1) is equal to matrix [0], i.e. the
matrix with all its entries equal to 0, process {Xr} is independent, and thus Theorem 3.1
is equivalent to Theorem 5.2.3. Note that in this case the eigenvalues δi are all equal to 1 (as
expected by the asymptotic χ2(p) result of Theorem 5.2.3) because equality (I−a)−1ss′(I−a′)−1

N =
C(I −a′)−1 + (I − a)C − C (Polymenis [7, Appendix 2]) becomes ss′

N = C + C − C = C, and so

C−1/2 (I−a)−1ss′(I−a′)−1

N C
−1/2

= C−1/2CC−1/2 = I ; thus the regularity assumption of normality
pertaining to SEM is no more needed for obtaining the distribution of T2

r when r is sufficiently
large.Finally remark that for the one-dimensional case (p = 1), C is equal to s2

N(1−a2) on one

hand and (I−a)−1ss′(I−a′)−1

N is equal to s2

N(1−a)2
on the other hand (as aforementioned), and thus

s2

N(1−a2) = s2

N and s2

N(1−a)2
= s2

N when a = 0; it results that δ1 =
( s2

N
)
/
( s2

N
)= 1, which corresponds to

the one-dimensional version of matrix I .

4. Conclusions
In the present paper asymptotic distribution properties of a Hotelling’s T2 type of statistic
concerning variates generated from the stochastic EM algorithm at its stationary state, and
appearing in eq. (2.2), were investigated and were found similar to corresponding properties
concerning variates from the AR(1) process represented by eq. (2.1). These results rely on a
central limit theorem and on the fact that second order moments obtained at the stationary
state of SEM are equal to those obtained when process {X r} satisfies eq. (2.1) and the number
of iterations r of the SEM algorithmis sufficiently large.
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