

Generalized f-semiperfect Modules

Burcu Nişancı T rkmen and Ali Pancar

Abstract In this paper we introduce generalized f-semiperfect modules as a generalization of the generalized semiperfect modules. We give various properties of the generalized f-semiperfect modules. We show that: (i) every generalized f-semiperfect module over a regular ring is f-semiperfect; (ii) for small or for finitely generated submodules *L* of *M*, the factor module $\frac{M}{L}$ is generalized f-semiperfect; (iii) If *M* is a projective and generalized f-semiperfect module such that every *Rad*-supplement in *M* is a direct summand of *M*, then every direct summand of *M* is a generalized f-semiperfect module; (iv) If $M = \bigoplus_{i \in I} M_i$ is a locally Noetherian and duo module such that $\{M_i\}_{i \in I}$ is the family of generalized f-semiperfect modules, then *M* is a generalized f-semiperfect module.

1. Introduction

Throughout this paper *R* is an associative ring with identity and all modules are unital left *R*-modules. Let *M* be an *R*-module. A submodule *N* of *M* is called *small* in *M*, written as $N \ll M$, if for every submodule *N* of *M* the equality N + K = M implies that K = M. Let *M* be an *R*-module and let *N* and *K* be any submodules of *M*. *K* is called a *supplement* of *N* in *M* if *K* is minimal with respect to N + K = M. K is a supplement of *N* in *M* if and only if N + K = M and $N \cap K \ll K$ [15]. *M* is called *(f-) supplemented* if every (finitely generated) submodule of *M* has a supplement in *M* (see [15]). On the other hand, *M* is called *amply supplemented* if, for any submodules *N* and *K* of *M* with M = N + K, *K* contains a supplement of *N* in *M*. Accordingly a module *M* is called *amply f-supplemented* if every finitely generated submodule of *M* satisfies same condition. It is clear that (amply) f-supplemented modules.

A module *M* is called *semilocal* if $\frac{M}{Rad(M)}$ is semisimple and a ring *R* is called *semilocal* if the left *R*-module *R* is semilocal [9].

Let *M* be an *R*-module. If $N, K \le M$, M = N + K and $N \cap K \subseteq Rad(K)$, then *K* is called *Rad-supplement* of *N* [5] (according to [14], generalized supplement).

²⁰¹⁰ Mathematics Subject Classification. 16D10, 16N80.

Key words and phrases. Generalized projective cover; Generalized semiperfect module; Generalized f-semiperfect module.

It is clear that every supplement is *Rad*-supplement. *M* is called *Rad*-supplemented (according to [14], generalized supplemented) if every submodule of *M* has a *Rad*-supplement in *M*, and *M* is called *amply Rad*-supplemented if, for any submodules *N* and *K* of *M* with M = N + K, *K* contains a *Rad*-supplement of *N* in *M*.

In [11], we introduce (amply) f-Rad-supplemented modules as a proper generalization of (amply) Rad-supplemented modules. An *R*-module *M* is called *f*-Rad-supplemented if every finitely generated submodule of *M* has a Rad-supplement in *M*, and a module *M* is called *amply f*-Rad-supplemented if every finitely generated submodule of *M* has ample Rad-supplemented if every finitely generated submodule of *M* has a module M is called *amply f*-Rad-supplemented if every finitely generated submodule of *M* has ample Rad-supplements in *M*.

Let $f : P \to M$ be an epimorphism. If $Ker(f) \ll P$, then f is called *cover*, and if P is a projective module, then a cover f is called a *projective cover* [15]. Xue [16] calls f a *generalized cover* if $Ker(f) \le Rad(P)$, and calls a generalized cover f a *generalized projective cover* if P is a projective module. In the spirit of [16], a module M is said to be (*generalized*) *semiperfect* if every factor module of M has a (generalized) projective cover. A module M is said to be *f-semiperfect* if, for every finitely generated submodule $U \le M$, the factor module $\frac{M}{U}$ has a projective cover in M [15].

For the basic properties of (generalized) semiperfect modules we refer the reader to [15] and [16].

The main purpose of this paper is to develop various properties of generalized f-semiperfect modules as a proper generalization of generalized semiperfect modules. Firstly we qualify a notion of generalized f-semiperfect modules by (amply) f-Rad-supplemented modules. We show that every generalized f-semiperfect module over a left Bass ring is f-semiperfect. We obtain that a notion of generalized f-semiperfect modules coincides with a notion of f-semiperfect modules over a regular ring. We obtain that for small or finitely generated submodules of a generalized f-semiperfect module, the factor module is generalized f-semiperfect. Further we show that if every Rad-supplement in a projective module M is a direct summand, then the module M is generalized f-semiperfect. Further summand of M is generalized f-semiperfect. Further we prove that a direct sum of generalized f-semiperfect. Furthermore we prove that a direct sum of generalized f-semiperfect modules which is a locally Noetherian duo module is generalized f-semiperfect.

2. Generalized f-Semiperfect Modules

Definition 2.1. Let *M* be an *R*-module. *M* is called *generalized f-semiperfect module* if, for every finitely generated submodule $U \leq M$, the factor module $\frac{M}{U}$ has a generalized projective cover in *M*.

Theorem 2.2. Let *M* be an *R*-module and *U* be a finitely generated submodule of *M*. The following statements are equivalent.

(i) *M* is a generalized *f*-semiperfect module.

- (ii) For every submodule V of M such that M = U + V, there exists a Radsupplement of U, the Rad-supplement submodule contained in V and it has a generalized projective cover.
- (iii) *U* has a Rad-supplement which has a generalized projective cover.

Proof. It follows from [16, Proposition 2.1].

Corollary 2.3. Let M be an R-module. The following statements are equivalent.

- (i) *M* is a generalized *f*-semiperfect module.
- (ii) *M* is amply *f*-Rad-supplemented by Rad-supplements which have generalized projective covers.
- (iii) *M* is f-Rad-supplemented by Rad-supplements which have generalized projective covers.

We call a module *M* finitely $Rad \oplus supplemented$ (or briefly $f \cdot Rad \oplus supplemented$) if every finitely generated submodule of *M* has a *Rad*-supplement that is a direct summand of *M*.

Example 2.4. Let *M* be a radical module. Then *M* is a f-*Rad*- \oplus -supplemented module.

Proposition 2.5. Let *M* be a *f*-Rad- \oplus -supplemented module. If Rad(*M*) \ll *M*, then *M* is a finitely \oplus -supplemented module.

Proof. Let *N* be a finitely generated submodule of *M*. Since *M* is a f-*Rad*- \oplus -supplemented module, there exist submodules *L* and *L'* of *M* such that M = N + L, $N \cap L \subseteq Rad(L)$ and $M = L \oplus L'$. It follows that $N \cap L \ll M$. Since *L* is a direct summand of *M*, we have $N \cap L \ll L$. Thus *M* is a finitely \oplus -supplemented module.

It is clear that f-*Rad*- \oplus -supplemented modules are a proper generalization of generalized \oplus -supplemented (or *Rad*- \oplus -supplemented) modules. Any f-*Rad*- \oplus -supplemented module need not be *Rad*- \oplus -supplemented as the following example shows.

Example 2.6. Let *R* be a regular ring not semisimple. Then the *R*-module *R* is f-*Rad*- \oplus -supplemented but not *Rad*- \oplus -supplemented.

Proposition 2.7. Let *M* be a *f*-Rad-supplemented module such that $\frac{M}{Soc(M)}$ does not contain a maximal submodule. Then *M* is a *f*-Rad- \oplus -supplemented module.

Proof. Let *N* be a finitely generated submodule of *M*. Since *M* is a f-*Rad*-supplemented module, there exists a submodule *K* of *M* such that M = N + K, $N \cap K \subseteq Rad(K)$. It is clear that $\frac{M}{K}$ is finitely generated. Therefore, *K* is a cofinite submodule of *M*. By ([1, Lemma 2.7]), *K* is a direct summand of *M*. Thus *M* is a f-*Rad*- \oplus -supplemented module.

Recall from [5] that a ring *R* is called *left Bass* if every non-zero *R*-module has a maximal submodule. It is known that *R* is left Bass if and only if $Rad(M) \ll M$ for every non-zero *R*-module *M*.

Proposition 2.8. Every generalized f-semiperfect module over a left Bass ring is f-semiperfect.

Proof. Let *N* be a finitely generated submodule of *M*. By the hypothesis, $\frac{M}{N}$ has a generalized projective cover, say $\Phi : P \to \frac{M}{N}$. Since $Ker\Phi \subseteq Rad(P) \ll P$, Φ is a projective cover of $\frac{M}{N}$. Therefore *M* is f-semiperfect.

A ring *R* is called *regular* if every finitely generated left ideal of *R* is a direct summand of *R* ([15, 3.10]). It is well known that a regular ring has zero radical.

Proposition 2.9. Let *R* be a regular ring. If *M* is a generalized *f*-semiperfect *R*-module, then *M* is *f*-semiperfect module.

Proof. Let *U* be a finitely generated submodule of *M*. By the hypothesis, $\frac{M}{U}$ has a generalized projective cover. Then there exists a generalized cover $f : P \rightarrow \frac{M}{U}$ such that *P* is projective. Note that Rad(P) = Rad(R)P by ([8, Theorem 9.2.1]). Since *R* is regular, Rad(R) = 0. We have $Kerf \ll P$. Hence *f* is a projective cover. Thus the assertion holds.

A ring *R* is called a *left V-ring* if every simple left *R*-module is injective. It is well known that *R* is a left *V*-ring if and only if, for every left *R*-module *M*, Rad(M) = 0.

Corollary 2.10. Let *R* be a left *V*-ring and let *M* be an *R*-module. Then the following statements are equivalent.

- (i) *M* is a generalized *f*-semiperfect module.
- (ii) *M* is a *f*-semiperfect module.

Proof. (i) \Rightarrow (ii) Let *M* be a generalized f-semiperfect module. By Corollary 2.3, *M* is f-*Rad*-supplemented by *Rad*-supplements which have generalized projective covers. It follows that *M* is f-supplemented by ([11, Corollary 3.10]). Let *U* be a finitely generated submodule of *M*. Suppose that *V* be any supplement submodule of *U* in *M*. Then *V* has a generalized projective cover $\varphi : P \rightarrow V$ with a projective module *P*. By the hypothesis, Rad(P) = 0. Thus $Ker \varphi \ll P$. It follows that $\varphi : P \rightarrow V$ is a projective cover. It can be seen analogously like for ([16, Proposition 2.1]) that *M* is f-semiperfect.

The following lemma states as a generalization of the well known simple fact for projective covers.

Lemma 2.11. Let $\varphi : P \to M$ be a cover. Then M has a generalized projective cover if and only if P has a generalized projective cover.

Proof. (\Rightarrow) Let $f : K \to M$ be a generalized projective cover of M. Since K is a projective module, there exists a homomorphism $g : K \to P$ such that $\varphi \circ g = f$. Since f is an epimorphism, $\varphi \circ g = f$ and φ is a cover, then g is an epimorphism. In addition $Kerg \subseteq Ker\varphi \circ g = Kerf \subseteq Rad(K)$. Thus P has a generalized projective cover $g : K \to P$.

(⇐) Let $h : V \to P$ be a generalized projective cover of P. Since $\varphi : P \to M$ is a cover, φ is a generalized cover. By ([16, Lemma 1.1]), $\varphi \circ h : V \to M$ is a generalized cover of M. In addition V is a projective module. So $\varphi \circ h$ is a generalized projective cover of M, i.e. M has a generalized projective cover.

Theorem 2.12. Let *M* be a generalized *f*-semiperfect module. Then the factor module $\frac{M}{r}$ is generalized *f*-semiperfect for small or for finitely generated submodules *L* of *M*.

Proof. Let *L*, *K* be submodules of *M*, *K* finitely generated. We have $\frac{\frac{M}{L}}{\frac{(L+K)}{L}} \cong \frac{M}{(L+K)}$. If *L* is finitely generated, L + K is finitely generated. Since *M* is a generalized f-semiperfect module, $\frac{M}{(L+K)}$ has a generalized projective cover. So $\frac{\frac{M}{L}}{\frac{(L+K)}{L}}$ has a generalized f-semiperfect module.

If $L \ll M$, then $\frac{(L+K)}{K} \ll \frac{M}{K}$. Since $\frac{M}{K} \to \frac{M}{(L+K)}$ is an epimorphism and $Ker\varphi = \frac{(L+K)}{K} \ll \frac{M}{K}$, φ is a small cover. By Lemma 2.11, the generalized projective cover of $\frac{M}{(L+K)}$. Since *K* is finitely generated, $\frac{M}{K}$ has a generalized projective cover by the hypothesis. So $\frac{M}{(L+K)} \cong \frac{M}{L}$ has a generalized projective cover. Thus $\frac{M}{L}$ is a generalized f-semiperfect module. **Corollary 2.13.** Let *M* be a generalized *f*-semiperfect module and let *U* be a finitely generated submodule of *M* such that $M = U \oplus V$. Then *V* is a generalized *f*-semiperfect

module.

Let *M* be an *R*-module. We consider the following condition.

(D3) If M_1 and M_2 are direct summands of M with $M = M_1 + M_2$, then $M_1 \cap M_2$ is also a direct summand of M. By ([10, Lemma 4.6, Proposition 4.38]), every projective module has (D3).

Theorem 2.14. Let M be a f-Rad- \oplus -supplemented module with (D3). Then every direct summand of M is a f-Rad- \oplus -supplemented module.

Proof. Let *N* be a direct summand of *M* and let *K* be a finitely generated submodule of *U*. Since *M* is a f-*Rad*-⊕-supplemented module, there exist submodules *L* and *L'* of *M* such that M = K + L, $K \cap L \subseteq Rad(L)$ and $M = L \oplus L'$. It follows that $N = K + (N \cap L)$ and M = N + L. Note that $K \cap (N \cap L) \subseteq Rad(N \cap L)$. Since *M* satisfies (D3), $N \cap L$ is a direct summand of *M*. Then there exists a submodule *X* of *M* such that $M = (N \cap L) \oplus X$. It follows that $N = (N \cap L) \oplus (N \cap X)$. Therefore *N* is a f-*Rad*-⊕-supplemented module.

Corollary 2.15. Let M be an UC-extending module. If M is a f-Rad- \oplus -supplemented module, every direct summand of M is a f-Rad- \oplus -supplemented module.

Theorem 2.16. Let M be a projective module. If every Rad-supplement in M is a direct summand, then the module M is generalized f-semiperfect if and only if every direct summand of M is generalized f-semiperfect.

Proof. Let *U* be a direct summand of *M* and *K* be a finitely generated submodule of *U*. Since *M* is a generalized f-semiperfect module, for every submodule *L* of *M* such that M = K + L, there exists a submodule *L'* of *L* with M = K + L', $K \cap L' \subseteq Rad(L')$ by Theorem 2.2. By hypothesis, *L'* is a direct summand of *M*. It is clear that $U \cap L'$ is a direct summand of *M*. Then $U = K + (U \cap L')$ and $K \cap (U \cap L') \subseteq Rad(U \cap L')$. Thus $U \cap L'$ is a *Rad*-supplement of *K* in *U*. It is clear that $U \cap L'$ is projective by ([15, 18.1]). We define an identity isomorphism $I : U \cap L' \to U \cap L'$. It follows that $U \cap L'$ has a generalized projective cover. By Theorem 2.2, *U* is a generalized f-semiperfect module. The converse is clear.

Theorem 2.17. Let M be an R-module and $M = M_1 \oplus M_2$ such that M_1 , M_2 are finitely generated and f-Rad- \oplus -supplemented modules. If M is a quasi projective module, M is a f-Rad- \oplus -supplemented module.

Corollary 2.18. A finite direct sum of f-Rad- \oplus -supplemented modules which are finitely generated and projective is a f-Rad- \oplus -supplemented module.

Recall from [14] that a module M is called *locally Noetherian* if every finitely generated submodule is Noetherian. And recall from [15] that a submodule N of an R-module M is called *fully invariant* if f(N) is contained in N for every R-endomorphism of M. An R-module M is called *duo module* if every submodule of M is fully invariant.

Theorem 2.19. Let $\{M_i\}_{i \in I}$ be the family of generalized f-semiperfect modules. If $M = \bigoplus_{i \in I} M_i$ is a locally Noetherian and duo module, then M is a generalized f-semiperfect module.

Proof. Let *U* be a finitely generated submodule of *M*. Since *M* is locally noetherian, *U* is noetherian. Then $U \cap M_i$ is finitely generated. It follows that $\frac{M_i}{(U \cap M_i)}$ has a generalized projective cover for every $i \in I$. Since $f_i : V_i \to \frac{M_i}{(U \cap M_i)}$ is a generalized cover, $\oplus f_i : \oplus_{i \in I} V_i \to \bigoplus_{i \in I} \frac{M_i}{(U \cap M_i)}$ is a generalized cover by ([16, Lemma 1.2(2)]). It is clear that $\bigoplus_{i \in I} V_i$ is projective by ([15, 18.1]). Thus $\oplus f_i$ is a generalized projective cover. Since *M* is a duo module, then $U = \bigoplus_{i \in I} (U \cap M_i)$. Note that $\bigoplus_{i \in I} \frac{M_i}{(U \cap M_i)} \cong \frac{M}{U}$. Therefore *M* is a generalized f-semiperfect module. \Box

It is clear that every generalized semiperfect module is generalized fsemiperfect. But the converse is not always true as the following example shows this situation. **Example 2.20** (See [2]). Let *F* be any field. Consider the commutative ring *R* which is the direct product $\prod_{i=0}^{\infty} F_i$, where $F_i = F$. So *R* is a regular ring which is not semisimple. The left *R*-module *R* is f-*Rad*-supplemented but not *Rad*-supplemented. Let *U* be a finitely generated submodule of *R* and *V* be a *Rad*-supplement of *U* in *R*. Since *R* is regular, $R = U \oplus V$. It follows that left *R*-module *R* is generalized f-semiperfect by Corollary 2.3. Since *R* is not *Rad*-supplemented, *R* is not generalized semiperfect by ([16, Proposition 2.1]).

Proposition 2.21. Let *M* be a Noetherian *R*-module. Then *M* is a generalized *f*-semiperfect *R*-module if and only if *M* is generalized semiperfect module.

Proof. Since every submodule of M is finitely generated, the proof is clear. \Box

Theorem 2.22. Let *M* be a finitely generated and projective module. If $\frac{M}{Soc(M)}$ does not contain a maximal submodule. Then the following statements are equivalent.

- (i) *M* is a generalized *f*-semiperfect module.
- (ii) *M* is a *f*-Rad-supplemented module.
- (iii) *M* is a *f*-Rad- \oplus -supplemented module.

Proof. (i) \Rightarrow (ii) It is clear by Corollary 2.3.

(ii) \Rightarrow (i) Let *U* be a finitely generated submodule of *M*. By the hypothesis, there exist submodules *V* and *V'* of *M* such that M = U + V, $U \cap V \subseteq Rad(V)$ and $M = V \oplus V'$. We have $\frac{M}{U} \cong \frac{V}{(U \cap V)}$. Since *M* is projective, then *V* is projective ([15, 18.1]). Then $\frac{M}{U}$ has a generalized projective cover $\varphi : V \to \frac{M}{U}$ with a projective module *V*. Since $\frac{M}{U}$ has a generalized projective cover, *M* is a generalized f-semiperfect module.

(ii) \Leftrightarrow (iii) It follows from Proposition 2.7.

References

- [1] R. Alizade, G. Bilhan and P.F. Smith, Modules whose maximal submodules have supplements, *Comm. Algebra* **29**(2001), 253–261.
- [2] F.W. Anderson and K.R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, Berlin — Heidelberg — New York, 1988.
- [3] E. B y kaşık and C. Lomp, On a recent generalization of semiperfect rings, Bull. Aust. Math. Soc. 78(2) (2008), 317–325.
- [4] E. B y kaşık, E. Mermut and S. zdemir, Rad-supplemented modules, Rend. Sem. Mat. Univ. Padova 124(2010), 157–177.
- [5] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules: supplements and projectivity in module theory, *Frontiers in Mathematics*, 406, Birkh user-Basel, (2006).
- [6] H. Çalışıcı and A. Pancar, Finitely ⊕-supplemented modules, International Journal of Pure and Applied Mathematics 21(1) (2005), 55–61.
- [7] H. Çalışıcı and E. T rkmen, Generalized ⊕-supplemented modules, Algebra Discrete Math. 10(2) (2010), 10–18.
- [8] F. Kasch, Modules and Rings, Academic Press Inc., 1982.

- [9] C. Lomp, Semilocal modules and rings, Comm. Algebra 27(4) (1999), 1921–1935.
- [10] S.H. Mohamed and B.J. M ller, Continuous and discrete modules, London Math. Soc. LNS 147 Cambridge University, Cambridge, 1990.
- [11] B. Nişancı T rkmen and A. Pancar, A generalization of *Rad*-supplemented modules, *International Journal of Pure and Applied Mathematics* **68** (2011), 477–485.
- [12] A. Ç. zcan, A. Harmacı and P.S. Smith, Duo modules, *Glasgow Math. J.* **48** (2006), 533–545.
- [13] D.W. Sharpe and P. Vamos, *Injective Modules*, Cambridge University Press, Cambridge, 1972.
- [14] Y. Wang and N. Ding, Generalized supplemented modules, *Taiwanese J. Math.* 6(2006), 1589–1601.
- [15] R. Wisbauer, Foundations of Modules and Rings, Gordon and Breach, 1991.
- [16] W. Xue, Characterizations of semiperfect and perfect modules, *Publicacions Matematiqes* 40(1) (1996), 115–125.

Burcu Nişancı T rkmen, Ondokuz Mayıs University, Faculty of Art and Science, Department of Mathematics, 55139, Kurupelit, Samsun, Turkey. E-mail: burcun@omu.edu.tr

Ali Pancar, Ondokuz Mayıs University, Faculty of Art and Science, Department of Mathematics, 55139, Kurupelit, Samsun, Turkey. E-mail: apancar@omu.edu.tr

Received September 9, 2012 Accepted October 5, 2012