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1. Introduction
Imai and Iséki [6, 7] introduced the axiom system of propositional calculi and have been
extensively investigated by many researchers. Iséki and Tanaka [8] introduced the theory of
BCK-algebras. It is known that the class of BCK-algebras is a proper subclass of the class of
BCI-algebras. Zhang et al. [15] introduced the notion of BH-algebras. They investigated several
relations between BH-algebras and BCK-algebras. In 1957, Posner [13] introduced the notion
of derivations in prime rings theory. Also, Lee and Lee [11] developed on derivations of prime
rings.

The notion of derivations in ring theory is quite old and plays an important role in algebras.
Al-Shehrie [2] introduced the notion of derivations of B-algebras. Many research papers have
appeared on the derivations of BCI-algebras in different ways. Al-Roqi [1] introduced the notion
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of on generalized (α,β) derivations in BCI-algebras. Bawazeer et al. [4] introduced the notion of
generalized derivations of BCC-algebras. Also, Kamali and Davvaz [3] developed the properties
in generalized derivations of BCI-algebras. Jun and Xin [10] introduced the notion of derivations
of BCI-algebras. Javed and Aslam [9] introduced the concept of f -derivations in BCI-algebras.
Also, Zhan and Liu [14] developed the notion of f -derivations on BCI-algebras. Muhiuddin and
Al-Roqi [12] introduced on t-derivations of BCI-algebras.

Recently, in the year 2019 Ganesan and Kandaraj [5] defined and studied the notion of
various derivations such as derivations, compositions of derivations, f -derivations, composition
of f -derivations, t-derivations and regular t-derivations of BH-algebras. Using the idea of
regular derivations in BH-algebras and obtained some of its properties. The term algebra is
used here to denote the algebraic structure defined on a non-empty set with a binary composition
satisfying certain laws that resemble the algebras of logic but not the usual algebras.

The notion of the derivations is the same as that in ring theory and the usual algebraic
theory. Motivated by a lot of work done on derivations of BH-algebras and on derivations
of other related abstract algebraic structures such as TM-algebras and d-algebras. In this
paper, we introduce the notion of generalized derivations of BH-algebras and investigate simple,
interesting and elegant results.

2. Preliminaries
We review some basic definitions and properties that will be useful in our results,

Definition 2.1 ([15]). Let X be a set X with a binary operation ∗ and a constant 0. Then
(X ,∗,0) is called a BH-algebra, if it satisfies the following axioms:

(i) x∗ x = 0,

(ii) x∗0= x,

(iii) if x∗ y= 0 and y∗ x = 0⇒ x = y, for all x, y ∈ X .
Define a binary relation ≤ on X by taking x ≤ y if and only if x∗ y= 0. In this case, (X ,≤) is a
partially ordered set [4].
Let (X ,∗,0) be a BH-algebra and x ∈ X . Define x∗ X = {x∗ y | y ∈ X }.
Then X is said to be edge BH-algebra if for any x ∈ X , x∗ X = {x,0}.

Definition 2.2 ([15]). Let S be a nonempty subset of a BH-algebra X . Then S is called
subalgebra of X , if x∗ y ∈ S, for all x, y ∈ S.

Definition 2.3 ([15]). Let X be a BH-algebra and I (6= 0) ⊆ X . Then I is called a BH-ideal
of X if

(a) 0 ∈ I ,

(b) x∗ y ∈ I and y ∈ I ⇒ x ∈ I , for all x, y ∈ I .
In BH-algebra X , for all x, y, z ∈ X , the following property hold [15]

(i) ((x∗ y)∗ (x∗ z))∗ (z∗ y)= 0,

(ii) (x∗ y)∗ x = 0,

(iii) (x∗ (x∗ y))= y.
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Theorem 2.4 ([15]). Every BH-algebra satisfying the condition (i) is a BCI-algebra and satisfying
the conditions (i) and (ii) is a BCK-algebra.

Theorem 2.5 ([15]). Every BH-algebra satisfying the condition

(x∗ y)∗ z = (x∗ z)∗ y, for all x, y, z ∈ X

is a BCH-algebra.
For a BH-algebra X , we denote x∧ y for y∗ (y∗ x), for all x, y ∈ X .

3. Generalized Derivations of BH-Algebras
Definition 3.1. Let U be a BH-algebra. A mapping G : U →U is called a generalized left-right
(briefly (l, r)-derivation) if there exists an left-right derivation g : U →U such that

G(u∗v)= (G(u)∗v)∧ (u∗ g(v)), for all u,v ∈U .

If there exists an right-left derivation (briefly (r, l)-derivation) g : U →U such that G(u∗v)=
(u∗G(v))∧(g(u)∗v), for all u,v ∈U . A mapping G : U →U is called a generalized (r, l)-derivation.
Moreover, if G is both a generalized (l, r) and (r, l)-derivation, then G is called generalized
derivation.

Example 3.2. Let U = {0,a,b, c} be a BH-algebra with the following Cayley Table 1.

Table 1

∗ 0 a b c
0 0 0 0 0
a a 0 a 0
b b b 0 0
c c c a 0

Define a map g : U →U such that g(u)=
{

0 if u = 0,a, c,
b if u = b.

Then g is a derivation of U .

Define a map G : U →U such that G(u)=
{

0 if u = 0,b,
b if u = a, c.

It is easily checked that G is a generalized right-left derivation of U .

Example 3.3. Let U = {0,a,b, c} be a BH-algebra with Table 1 in Example 3.2.

Define a self-map g(u)=
{

u if u = a,b,
0 if u = 0, c.

Then g is a left-right derivation of U .

Define a map G : U →U such that G(u)=
{

0 if u = 0,a,b,
c if u = c.

It is easily verify that the condition (u∗v)= (G(u)∗v)∧ (u∗ g(v)), for all u,v ∈U .
Therefore, G is generalized (l, r)-derivation of U .
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Proposition 3.4. Let G be a self-map on BH-algebra U , then
(i) if G is a generalized left-right derivation on U , then G(u)=G(u)∧u, for all u ∈U ,

(ii) if G is a generalized right-left derivation on U , then G(u)= u∧ g(u), for all u ∈U .

Proof. (i) Since G is a generalized left-right derivation of U , then there exists an (l, r)-derivation
g such that

G(u∗v)= (G(u)∗v)∧ (u∗ g(v)), for all u,v ∈U .

Now

G(u)=G(u∗0)

= (G(u)∗0)∧ (u∗ g(0))

=G(u)∧ (u∗ g(0))

= (u∗ g(0))∗ ((u∗ g(0))∗G(u))

= (u∗ g(0))∗ ((u∗G(u))∗ g(0))

= u∗ (u∗G(u))

=G(u)∧u.

Hence G(u)=G(u)∧u.

(ii) Since G is generalized right-left derivation on U , then there exists an (r, l)-derivation g
such that

(u∗v)= (u∗G(v))∧ (g(u)∗v), for all u,v ∈U .

We have

G(u)=G(u∗0)

= (u∗G(0))∧ (g(u)∗0)

= (u∗G(0))∧ g(u)

= g(u)∗ (g(u)∗ (u∗G(0)))

= g(u)∗ (g(u)∗u)

= u∧ g(u).

Proposition 3.5. Let U be a BH-algebra with partial order ≤, and let G be a generalized
derivation of U , then the following results are hold for all u,v ∈U .

(i) G(u)≤ g(u)≤ u,

(ii) G(u∗v)≤ u∗ g(v),

(iii) G(u∗v)≤ g(u)∗v,

(iv) G(u∗G(u)= 0,

(v) G(G(u)∗u)= 0,

(vi) G(g(u)∗u)= 0,

(vii) G(u∗ g(u))= 0,

(viii) G(G(u))≤ u.
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Proof. (i) Now G(u)=G(u∗0)= (u∗G(0))∧ (g(u)∗0)= u∧ g(u)≤ g(u).
From proposition of BH-algebra g(u)≤ u (since d(x)≤ x).

(ii) G(u∗v)= (G(u)∗v)∧ (u∗ g(v))≤ u∗ g(v)).

(iii) G(u∗v)= (u∗G(v))∧ (g(u)∗v)≤ g(u)∗v.

(iv) G(u∗G(u))= (G(u)∗G(u))∧ (u∗ g(G(u)))= 0∧ (u∗ g(G(u)))= 0 (since y∗ (y∗ x)= x).

(v) (G(u)∗u)= (G(u)∗G(u))∧ (g(G(u))∗u)= 0∧ (g(G(u))∗u)= 0.

(vi) G(g(u)∗u)= (G(g(u))∗u)∧ (g(u)∗ g(u))= (G(g(u))∗u)∧0= 0∗ (0∗ (G(g(u))∗u))= 0.

(vii) G(u∗ g(u))= (u∗G(g(u)))∧ (g(u)∗ g(u))= (u∗G(g(u)))∧0= 0∗ (0∗ (u∗G(g(u))))= 0.

(viii) We have

G(G(u))=G(u∧ g(u))

=G(g(u)∗ (g(u)∗u))

= (g(u)∗G(g(u)∗u))∧ (g(g(u))∗ (g(u)∗u))

= (g(u)∗G(0))∧ (g(g(u))∗0)

= (g(u)∗0)∧ g(g(u))

= g(u)∧ g(g(u))

≤ g(g(u))≤ u.

Similarly, we can prove the following theorem.

Theorem 3.6. Let U be a BH-algebra. Then Gn(Gn−1(. . . (G2(G1(u))) . . . )) ≤ u for n ∈ N , where
G1,G2, . . . ,Gn are generalized derivations of U .

Definition 3.7. Let G be a generalized derivation of BH-algebra U . An ideal I of U is said to
be G-invariant if G(I)⊆ I , where G(I)= {G(u) | u ∈ I}.

Theorem 3.8. LetG be a generalized derivation of a BH-algebra U , then every ideal I of U is
G-invariant.

Proof. Let I be an ideal of a BH-algebra U .
Let v ∈G(I).
Then v =G(u) for some u ∈ I .
This implies that

v∗u =G(u)∗u

= 0 ∈ I

⇒ v ∈ I.

Hence G(I)⊆ I .
Therefore, I is G-invariant.

Definition 3.9. Let U be a BH-algebra and let G be a generalized derivation. Define a kerG
by kerG = {u ∈U |G(u)= 0}.
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Theorem 3.10. Let U be a BH-algebra and let G be a generalized derivation. If v ∈ ker(G) and
u ∈U , then u∧v ∈ ker(G).

Proof. Let v ∈ ker(G). Therefore, G(v)= 0.
Now

G(u∗v)=G(v∗ (v∗u))

= (G(v)∗ (v∗u))∧ (v∗ g(v∗u))

= (0∗ (v∗u))∧ (v∗ g(v∗u))

= 0∧ (v∗ g(v∗u))

= 0

that is, G(u∧v)= 0.
Therefore, u∧v belongs to ker(G).

Theorem 3.11. Let U be a commutative BH-algebra and let G be a generalized derivation.
If u ≤ v and v ∈ ker(G), then u ∈ ker(G).

Proof. Let u ≤ v and v ∈ ker(G). We have u∗v = 0 and G(v)= 0 and so

G(u)=G(u∗0)

=G(u∗ (u∗v))

=G(v∗ (v∗u))

= (G(v)∗ (v∗u))∧ (v∗ g(v∗u))

= (0∗ (v∗u))∧ (v∗ g(v∗u))

= 0∧ (v∗ g(v∗u))= 0.

Hence u ∈ ker(G).

Theorem 3.12. Let U be a commutative BH-algebra and let G be a generalized derivation.
If u ∈ ker(G), one has then u∗v ∈ ker(G), for all v ∈U .

Proof. Let u ∈ ker(G). Then G(u)= 0. By definition

G(u∗v)= (G(u)∗v)∧ (u∗ g(v))

= (0∗v)∧ (u∗ g(v))

= 0∧ (u∗ g(v))= 0.

Hence G(u∗v)= 0⇒ u∗v ∈ ker(G).

Therefore, we have following theorem.

Theorem 3.13. Let U be a BH-algebra and let G be a generalized derivation.
Then ker(G) is subalgebra of U .

Definition 3.14. Let U be a BH-algebra and let G be a generalized derivation on U . Define
FixG(U)= {u ∈U |G(u)= u}.
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Proposition 3.15. Let U be a BH-algebra and let G be a generalized derivation on U .
If u ∈FixG(U), then g(u)= u.

Proof. Since u ∈FixG(U), then by definition G(u)= u.
From Proposition 3.5, we have G(u)≤ g(u)≤ u, this implies that u ≤ g(u)≤ u.
Hence g(u)= u.

Proposition 3.16. Let U be a BH-algebra and let G be a generalized derivation on U . Then
FixG(U) is subalgebra of U .

Proof. If u,v ∈FixG(U) we get G(u)= u and g(v)= v. Now

G(u∗v)= (G(u)∗v)∧ (u∗ g(v))

= (u∗v)∧ (u∗v)

= (u∗v) .

Therefore, (u∗v) ∈FixG(U).

Proposition 3.17. Let U be a BH-algebra and let G be a generalized derivation on U .
If u,v ∈FixG(U) we have u∧ y ∈FixG(U).

Proof. Let u,v ∈FixG(U). Then G(u)= u and G(v)= v.
From Proposition 3.17, we have v∗u ∈FixG(U) and so g(v∗u)= v∗u.
Now, we have

G(u∧v)=G(v∗ (v∗u))

= (G(v)∗ (v∗u))∧ (v∗ g(v∗u))

= (v∗ (v∗u))∧ (v∗ (v∗u))

= v∗ (v∗u)

= u∗v .

Therefore, u∧v ∈FixG(U).

Theorem 3.18. Let G be a generalized derivation of a BH-algebra U . Then

G(0)=G(u)∗u, for all u ∈U .

Proof. Let G be a generalized derivation of a BH-algebra. Now

G(0)=G(u∗u)

= (G(u)∗u)∧ (u∗ g(u))

= (u∗ g(u))∗ ((u∗ g(u))∗ (G(u)∗u))

= (G(u)∗u).

Therefore G(0)=G(u)∗u.

Theorem 3.19. Let U be a BH-algebra and let G be a generalized derivation on U . If u ≤ v and
G(u∗v)=G(u)∗G(v) for all u,v ∈U . Then G(u)=G(v).
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Proof. Since u ≤ v and G(u∗v)=G(u)∗G(v)

u ≤ v⇒u∗v = 0 .

Now

G(u)=G(u∗0)
=G(u∗ (u∗v))
=G(u)∗G(u∗v)
=G(u)∗ (G(u)∗G(v))
=G(v) .

Therefore G(u)=G(v).

4. Conclusion
An algebraic structure that arises from the study of algebraic formulations of propositional logic.
Taking different theorems or statements of propositional logic, different algebraic structures
could be obtained. The BH-algebras is one such algebras. The derivations concepts are an
important and very interesting area of research in the theory of algebraic structures in
mathematics. The deep theory has been developed for derivations through various algebras.
It plays an important role in algebras, algebraic geometry and linear differential equations.

We have considered the concepts of generalized derivations in BH-algebras. Finally, we
investigated the notion of the some results on generalized derivations in BH-algebras. In our
opinion these definitions and main results may be similarly extended to some other algebra
such as BCI-algebras, d-algebras and B-algebras so forth. In future any Researcher can study
the notion of generalized derivations in different algebraic structures which may have a lot of
applications in various fields. This work is a foundation for the further study of the researcher
on derivations of algebras

The future study of derivations on BH-algebras may be the following topics should be
covered.

(a) To find the generalized derivations on d-algebras.

(b) To find the generalized derivations of Q-algebras, B-algebras and so on so.

(c) To find more results and its applications in generalized derivations on BH-algebras.

(d) To find to investigate how these concepts could be applied to the field of computers for
processing information.
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