Morphisms of Vector Groupoids

Vasile Popuţa and Gheorghe Ivan

Abstract

The main purpose is to investigate the morphisms of vector groupoids and several properties of them are established.

1. Introduction

The notion of groupoid was introduced by H. Brandt [Math. Ann., 96(1926), MR 1512323] and it is developed by P.J. Higgins in [3]. The algebraic structure of groupoid is similar to a group, with the exception that products of elements cannot are always be defined.

The concept of vector groupoid has been defined by V. Popuţa and Gh. Ivan [6]. This is an algebraic structure which combines the concepts of the groupoid and vector space such that these are compatible. In [7] the same authors introduce the algebraic structure of generalized vector groupoid. The groupoids and vector groupoids have applications in several areas of science, see [1], [10], [9], [5], [2], [8].

The paper is organized as follows. In Section 2, we present some basic concepts and results about vector groupoids. In Section 3, we introduce the notion of morphism of vector groupoids and its useful properties are discussed. In Section 4, the correspondence theorem for vector subgroupoids by a vector groupoid homomorphism is proved.

2. Vector Groupoids

We recall some necessary backgrounds on vector groupoids for our purposes (see [3], [4], [6] and references therein for more details).

A groupoid G over $G_{0}([1])$ is a pair $\left(G, G_{0}\right)$ of nonempty sets such that $G_{0} \subseteq G$ endowed with two surjective maps $\alpha, \beta: G \rightarrow G_{0}$ (source and target), a partially binary operation (multiplication) $m: G_{(2)} \rightarrow G,(x, y) \mapsto m(x, y):=x \cdot y$, where
$G_{(2)}:=\{(x, y) \in G \times G \mid \beta(x)=\alpha(y)\}$ is the set of composable pairs and a map $i: G \rightarrow G, x \mapsto i(x):=x^{-1}$ (inversion), which verifies the following conditions:
(G1) (associativity): $(x \cdot y) \cdot z=x \cdot(y \cdot z)$ in the sense that if either of $(x \cdot y) \cdot z$ and $x \cdot(y \cdot z)$ is defined, so is the other and they are equal;
(G2) (units): For each $x \in G$ it follows that $(\alpha(x), x),(x, \beta(x)) \in G_{(2)}$ and we have $\alpha(x) \cdot x=x \cdot \beta(x)=x$;
(G3) (inverses): For each $x \in G$ it follows that $\left(x, x^{-1}\right),\left(x^{-1}, x\right) \in G_{(2)}$ and we have $x^{-1} \cdot x=\beta(x), x \cdot x^{-1}=\alpha(x)$.
A groupoid G over G_{0} (called also G_{0}-groupoid) with the structure functions α, β, m, i is denoted by $\left(G, \alpha, \beta, m, i, G_{0}\right) . G_{0}$ is the set of units of G. For any $u \in G_{0}$, the set $G(u):=\{x \in G \mid \alpha(x)=\beta(x)=u\}$ has a structure of group under the restriction of m to $G(u)$, called the isotropy group at u of G. The map $(\alpha, \beta): G \rightarrow G_{0} \times G_{0}$ defined by $(\alpha, \beta)(x):=(\alpha(x), \beta(x))$, for all $x \in G$ is called the anchor map of G. A groupoid is said to be transitive, if its anchor map is surjective.

Definition 2.1 ([6]). By vector groupoid, we mean a V_{0}-groupoid ($V, \alpha, \beta, i, m, V_{0}$) which verifies the following conditions:
(2.1.1) V is a vector space over a field K, and V_{0} is a vector subspace of V;
(2.1.2) $\alpha, \beta: V \rightarrow V_{0}$ are linear maps;
(2.1.3) $i: V \rightarrow V$ is a linear map such that $x+i(x)=\alpha(x)+\beta(x)$, for all $x \in V$;
(2.1.4) The multiplication $m: V_{(2)}=\{(x, y) \in V \times V \mid \alpha(y)=\beta(x)\} \rightarrow V$, $(x, y) \mapsto m(x, y):=x y$, satisfies the following conditions:
(a) $x(y+z-\beta(x))=x y+x z-x$, for all $x, y, z \in V$ such that $\alpha(y)=\beta(x)=\alpha(z) ;$
(b) $x(k y+(1-k) \beta(x))=k(x y)+(1-k) x$, for all $x, y \in V$ such that $\alpha(y)=\beta(x) ;$
(c) $(y+z-\alpha(x)) x=y x+z x-x$, for all $x, y, z \in V$ such that $\alpha(x)=\beta(y)=\beta(z) ;$
(d) $(k y+(1-k) \alpha(x)) x=k(y x)+(1-k) x$, for all $x, y \in V$ such that $\alpha(y)=\beta(x)$.

In the following proposition we summarize the most important rules of algebraic calculation in a vector groupoid obtained directly from definitions.

Proposition 2.1 ([4], [6]). If ($V, \alpha, \beta, m, i, V_{0}$) is a vector groupoid, then:
(i) $\alpha(u)=\beta(u)=u, u \cdot u=u$ and $i(u)=u$, for all $u \in V_{0}$.
(ii) $\alpha(x y)=\alpha(x)$ and $\beta(x y)=\beta(y)$, for all $(x, y) \in V_{(2)}$.
(iii) $\alpha\left(x^{-1}\right)=\beta(x)$ and $\beta\left(x^{-1}\right)=\alpha(x)$, for all $x \in V$.
(iv) α, β are linear epimorphisms and i is a linear automorphism.
(v) $0 \cdot x=x$ and $y \cdot 0=y$, for all $x \in \alpha^{-1}(0), y \in \beta^{-1}(0)$ (0 is null vector).
(vi) $\alpha^{-1}(0), \beta^{-1}(0)$ and $V(0):=\alpha^{-1}(0) \cap \beta^{-1}(0)$ are vector subspaces in V.

Example 2.1 ([6]). (i) Let V be a vector space. We define $\alpha_{0}, \beta_{0}: V \rightarrow\{0\}$, $i_{0}: V \rightarrow V$ and $m_{0}: V \times V \rightarrow V$ by setting $\alpha_{0}(x)=\beta_{0}(x)=0$, $i_{0}(x)=-x$, for all $x \in V$ and $m_{0}(x, y)=x+y$, for all $x, y \in V$. Then ($V, \alpha_{0}, \beta_{0}, m_{0}, i_{0}, V_{0}=\{0\}$) is a vector groupoid called vector groupoid with a single unit.
(ii) Let $\left(V, \alpha, \beta, V_{0}\right)$ be a vector groupoid. Is $(V):=\{x \in G \mid \alpha(x)=\beta(x)\}$ is a vector groupoid, called the isotropy vector bundle associated to V.

Example 2.2. Let V be a vector space.
(i) ([6]) The Cartesian product $\mathscr{V}:=V \times V$ has a structure of groupoid, by taking the structure functions as follows:

$$
\widetilde{\alpha}(x, y):=(x, x), \quad \widetilde{\beta}(x, y):=(y, y), \quad(x, y) \cdot(y, z):=(x, z)
$$

and

$$
(x, y)^{-1}:=(y, x)
$$

By a direct computation we prove that the conditions from Definition 2.1 are satisfied. Hence $\left(V \times V, \widetilde{\alpha}, \widetilde{\beta}, \widetilde{m}, \tilde{i}, \Delta_{V}\right)$, where $\Delta_{V}=\{(x, x) \in V \times V \mid x \in V\}$, is a vector groupoid called the pair vector groupoid associated to V.
(ii) Let $p, q, p_{1}, q_{1} \in G L(V)$ such that $p q=p_{1} q_{1}=1$. The Cartesian product $V^{3}:=V \times V \times V$ may be endowed with a structure of vector groupoid, denoted with $V^{3}(p, q)$. The structure functions $\alpha, \beta, i: V^{3} \rightarrow V^{3}$ and the multiplication are defined by:

$$
\begin{aligned}
& \alpha(x):=\left(x_{1}, p x_{1}, 0\right), \\
& \beta(x):=\left(q x_{2}, x_{2}, 0\right), \\
& i(x):=\left(q x_{2}, p x_{1},-x_{3}\right), \\
& \left(x_{1}, x_{2}, x_{3}\right) \cdot\left(q x_{2}, y_{2}, y_{3}\right):=\left(x_{1}, y_{2}, x_{3}+y_{3}\right), \text { for all } x
\end{aligned} \quad=\left(x_{1}, x_{2}, x_{3}\right), ~ 子 V^{3} ., ~ y=\left(y_{1}, y_{2}, y_{3}\right) \in V^{3} .
$$

This is called the vector groupoid of type (p, q) over V^{3}.

3. Vector Groupoid Morphisms

Definition 3.1. Let ($V_{1}, \alpha_{1}, \beta_{1}, m_{1}, i_{1}, V_{1,0}$) and ($V_{2}, \alpha_{2}, \beta_{2}, m_{2}, i_{2}, V_{2,0}$) be two vector groupoids. A map $f: V_{1} \rightarrow V_{2}$ is called morphism of vector groupoids, if
(i) f is a linear map and
(ii) $f: V_{1} \rightarrow V_{2}$ is a groupoid morphism between the groupoids ($V_{1}, V_{1,0}$) and ($V_{2}, V_{2,0}$), i.e. the following conditions are verified:
(a) for all $(x, y) \in V_{1,(2)} \rightarrow(f(x), f(y)) \in V_{2,(2)}$;
(b) $f\left(m_{1}(x, y)\right)=m_{2}(f(x), f(y))$, for all $(x, y) \in V_{1,(2)}$.

Proposition 3.1. Let $f: V_{1} \rightarrow V_{2}$ be a vector groupoid morphfism between the vector groupoids $\left(V_{1}, \alpha_{1}, \beta_{1}, m_{1}, i_{1}, V_{1,0}\right)$ and $\left(V_{2}, \alpha_{2}, \beta_{2}, m_{2}, i_{2}, V_{2,0}\right)$. Then:
(i) $f(u) \in V_{2,0}$, for all $u \in V_{1,0}$;
(ii) $f\left(x^{-1}\right)=(f(x))^{-1}$, for all $x \in V_{1}$;
(iii) $f_{0}: V_{1,0} \rightarrow V_{2,0}$ defined by $f_{0}(u):=f(u)$, (for all) $u \in V_{1,0}$, i.e. the restriction of f to $V_{1,0}$, is a linear map.

Proof. (i) Let $u \in V_{1,0}$. Then $\alpha_{1}(u)=\beta_{1}(u)=u$. From $\left(\alpha_{1}(u), u\right) \in V_{1(2)}$ it follows $\left(f\left(\alpha_{1}(u)\right), f(u)\right) \in V_{2(2)}$ and $f\left(\alpha_{1}(u)\right) \cdot f(u)=f\left(\alpha_{1}(u) \cdot u\right)=f(u)$, since f is vector groupoid morphism. But, $\alpha_{2}(f(u)) \cdot f(u)=f(u)$. From $\alpha_{2}(f(u)) \cdot f(u)=f(u)$ and $f\left(\alpha_{1}(u)\right) \cdot f(u)=f(u)$ it follows $\alpha_{2}(f(u))=$ $f\left(\alpha_{1}(u)\right)$. Hence $\alpha_{2}(f(u))=f(u)$. Similarly, $\beta_{2}(f(u))=f(u)$. Therefore, $f(u) \in V_{2,0}$ since $\alpha_{2}(f(u))=\beta_{2}(f(u))=f(u)$.
(ii) Applying the properties of structure functions for the groupoids V_{1} and V_{2}, we can prove that $f\left(i_{1}(x)\right)=i_{2}(f(x))$ for all $x \in V_{1}$.
(iii) Using (i), we have $f_{0}(u)=\alpha_{2}(f(u))$ for all $u \in V_{1,0}$. The map f_{0} is linear, because it is a composition of linear maps.
Using Proposition 3.1, we say that $\left(f, f_{0}\right):\left(V_{1}, V_{1,0}\right) \rightarrow\left(V_{2}, V_{2,0}\right)$ is a vector groupoid morphism. If $V_{1,0}=V_{2,0}$ and $f_{0}=I d_{V_{1,0}}$, we say that $f: V_{1} \rightarrow V_{2}$ is a $V_{1,0}$-morphism of vector groupoids.

A vector groupoid morphism $\left(f, f_{0}\right):\left(V_{1}, V_{1,0}\right) \rightarrow\left(V_{2}, V_{2,0}\right)$ is said to be isomorphism of vector groupoids, if f (and hence f_{0}) is a linear isomorphism.

Proposition 3.2. The pair $\left(f, f_{0}\right):\left(V_{1}, \alpha_{1}, \beta_{1}, m_{1}, i_{1}, V_{1,0}\right) \rightarrow\left(V_{2}, \alpha_{2}, \beta_{2}, m_{2}, i_{2}, V_{2,0}\right)$ where $f: V_{1} \rightarrow V_{2}$ and $f_{0}: V_{1,0} \rightarrow V_{2.0}$ is a vector groupoid morphism if and only if the following conditions are verified:
(i) f and f_{0} are linear maps;
(ii) $\alpha_{2} \circ f=f_{0} \circ \alpha_{1}$ and $\beta_{2} \circ f=f_{0} \circ \beta_{1}$;
(iii) $f\left(m_{1}(x, y)\right)=m_{2}(f(x), f(y))$, for all $(x, y) \in V_{1,(2)}$.

Proof. We suppose that $\left(f, f_{0}\right)$ is a vector groupoid morphism. Then, the conditions (i) and (iii) are clearly satisfied. We show that $\beta_{2} \circ f=f_{0} \circ \beta_{1}$. For all $x \in V_{1}$ we have $\left(x, \beta_{1}(x)\right) \in V_{1,(2)}$. Then $\left(f(x), f\left(\beta_{1}(x)\right)\right) \in V_{2,(2)}$ and $f(x) \cdot f\left(\beta_{1}(x)\right)=f\left(x \cdot \beta_{1}(x)\right)=f(x)$, since f is vector groupoid morphism. Since $f(x) \cdot \beta_{2}(f(x))=f(x) \Rightarrow f(x) \cdot f\left(\beta_{1}(x)\right)=f(x) \cdot \beta_{2}(f(x))$ and so $f\left(\beta_{1}(x)\right)=\beta_{2}(f(x))$. But $f\left(\beta_{1}(x)\right)=f_{0}\left(\beta_{1}(x)\right)$, since $\beta_{1}(x) \in V_{1,0}$. Hence $\beta_{2}(f(x))=f_{0}\left(\beta_{1}(x)\right)$ for all $x \in V_{1}$, i.e. $\beta_{2} \circ f=f_{0} \circ \beta_{1}$. Similarly, $\alpha_{2} \circ f=f_{0} \circ \alpha_{1}$. Therefore, the condition (ii) holds.

Conversely, we suppose that (f, f_{0}) verify (i), (ii) and (iii). The conditions (i) and (ii)(b) of Definition 3.1 are verified. It remains to prove that the condition (ii) (a) of Definition 3.1 holds. For this, let $(x, y) \in V_{1,(2)}$. Then $\alpha_{1}(y)=\beta_{1}(x)$. We have $f_{0}\left(\alpha_{1}(y)\right)=f_{0}\left(\beta_{1}(x)\right)$, i.e. $\left(f_{0} \circ \alpha_{1}(y)\right)=\left(f_{0} \circ \beta_{1}\right)(x)$. Applying the hypothesis (ii), it follows that $\left(\alpha_{2} \circ f\right)(y)=\left(\beta_{2} \circ f\right)(x)$. Hence $\alpha_{2}(f(y))=$
$\beta_{2}(f(x))$ and so $(f(x), f(y)) \in V_{2,(2)}$. Therefore, the pair (f, f_{0}) is a vector groupoid morphism.

Proposition 3.3. A vector groupoid morphism $\left(f, f_{0}\right)$ is linked with the structure functions by the following commutative diagrams:

where $(f \times f)(x, y):=(f(x), f(y))$, for all $(x, y) \in V_{1} \times V_{1}$. More precisely, the following relations hold:

$$
\begin{equation*}
\alpha_{2} \circ f=f_{0} \circ \alpha_{1}, \quad \beta_{2} \circ f=f_{0} \circ \beta_{1}, \quad m_{2} \circ(f \times f)=f \circ m_{1}, \quad i_{2} \circ f=f \circ i_{1} \tag{3.1}
\end{equation*}
$$

Proof. We apply the Propositions 3.1 and 3.2.
Remark 3.1. A morphism of vector groupoids $\left(f, f_{0}\right):\left(V_{1}, V_{1,0}\right) \rightarrow\left(V_{2}, V_{2,0}\right)$ is an isomorphism of vector groupoids if and only if f (and hence f_{0}) is bijective.

Proposition 3.4. Let $\left(f, f_{0}\right):\left(V_{1}, \alpha_{1}, \beta_{1}, V_{1,0}\right) \rightarrow\left(V_{2}, \alpha_{2}, \beta_{2}, V_{2,0}\right)$ be a vector groupoid morphism. Then the following assertions hold:
(i) $f\left(\operatorname{Is}\left(V_{1}\right)\right) \subseteq \operatorname{Is}\left(V_{2}\right)$;
(ii) $f f: V_{1} \rightarrow V_{2}$ is surjective and $f_{0}: V_{1,0} \rightarrow V_{2,0}$ is injective (in particular every surjective $V_{1,0}$-morphism of vector groupoids), then (f, f_{0}) preserves the isotropy vector group bundles i.e. $f\left(\operatorname{Is}\left(V_{1}\right)\right)=\operatorname{Is}\left(V_{2}\right)$.

Proof. (i) Let $x_{2} \in f\left(\operatorname{Is}\left(V_{1}\right)\right)$. Then $x_{2}=f\left(x_{1}\right)$ with $x_{1} \in \operatorname{Is}\left(V_{1}\right)$ and we have $\alpha_{2}\left(x_{2}\right)=\alpha_{2}\left(f\left(x_{1}\right)\right)=f_{0}\left(\alpha_{1}\left(x_{1}\right)\right)=f_{0}\left(\beta_{1}\left(x_{1}\right)\right)=\beta_{2}\left(f\left(x_{1}\right)\right)=\beta_{2}\left(x_{2}\right)$, since $\alpha_{1}\left(x_{1}\right)=\beta_{1}\left(x_{1}\right)$. Hence, $x_{2} \in \operatorname{Is}\left(V_{2}\right)$ and $f\left(\operatorname{Is}\left(V_{1}\right)\right) \subseteq \operatorname{Is}\left(V_{2}\right)$.
(ii) Using (i), it suffices to prove that $\operatorname{Is}\left(V_{2}\right) \subseteq f\left(\operatorname{Is}\left(V_{1}\right)\right)$. For this reason, we take $x_{2} \in \operatorname{Is}\left(V_{2}\right)$. Then $\alpha_{2}\left(x_{2}\right)=\beta_{2}\left(x_{2}\right)$. Since f is surjective, for $x_{2} \in V_{2}$ there exists $x_{1} \in V_{1}$ such that $x_{2}=f\left(x_{1}\right)$. Then, $\alpha_{2}\left(f\left(x_{1}\right)\right)=\beta_{2}\left(f\left(x_{1}\right)\right)$ and hence $f_{0}\left(\alpha_{1}\left(x_{1}\right)\right)=f_{0}\left(\beta_{1}\left(x_{1}\right)\right)$, because f is a vector groupoid morphism. Further, it follows $\alpha_{1}\left(x_{1}\right)=\beta_{1}\left(x_{1}\right)$, since f_{0} is injective. Hence, $x_{1} \in \operatorname{Is}\left(V_{1}\right)$ and $x_{2} \in f\left(\operatorname{Is}\left(V_{1}\right)\right)$. Consequently, it follows that $\operatorname{Is}\left(V_{2}\right) \subseteq f\left(\operatorname{Is}\left(V_{1}\right)\right)$.

Definition 3.2. By homomorphism of vector groupoids, we mean a morphism of vector groupoids $\left(f, f_{0}\right):\left(V_{1}, V_{1,0}\right) \rightarrow\left(V_{2}, V_{2,0}\right)$ satisfying the following condition:

$$
\text { for all }(x, y) \in V_{1} \times V_{1} \text { such that }(f(x), f(y)) \in V_{2,(2)} \Rightarrow(x, y) \in V_{1,(2)} \text {. }
$$

Example 3.1. (i) Let $\left(V, \alpha, \beta, m, i, V_{0}\right)$ be a vector groupoid. We consider the pair vector groupoid $\left(V_{0} \times V_{0}, \widetilde{\alpha}, \widetilde{\beta}, \widetilde{m}, \widetilde{i}, \Delta_{V_{0}}\right)$. Then the anchor map (α, β) : $V \rightarrow V_{0} \times V_{0}$ is a homomorphism of vector groupoids.
(ii) Let V be a vector space. The map $f: V^{2} \rightarrow V, f(x, y)=x-y$ is a morphism of vector groupoids between pair vector groupoid V^{2} and vector groupoid V.

Theorem 3.1. Let $\left(V, V_{0}\right)$ be a vector groupoid and W be a nonempty set. For a bijection $f: V \rightarrow W$, we define the operations $\boxplus: W \times W \rightarrow W$, $\boxtimes: K \times W \rightarrow W$, the maps $\bar{\alpha}_{f}, \bar{\beta}_{f}: W \rightarrow W_{0}:=f\left(V_{0}\right), \bar{i}_{f}: W \rightarrow W$ and the multiplication $\bullet: W_{(2)}=\left\{(x, y) \in W \times W \mid \bar{\alpha}_{f}(y)=\bar{\beta}_{f}(x)\right\} \rightarrow W$, given by

$$
x \boxplus y:=f\left(f^{-1}(x)+f^{-1}(y)\right), \quad k \boxtimes x:=f\left(k \cdot f^{-1}(x)\right), \quad \text { for all } x, y \in W, k \in K,
$$

$$
\bar{\alpha}_{f}:=f \circ \alpha \circ f^{-1}, \bar{\beta}_{f}:=f \circ \beta \circ f^{-1}, \bar{i}_{f}:=f \circ i \circ f^{-1}
$$

$$
x \boxtimes y:=f\left(f^{-1}(x) \cdot f^{-1}(y)\right), \text { for all } x, y \in W_{(2)} .
$$

Then ($W, \boxplus, \boxtimes, \bar{\alpha}_{f}, \bar{\beta}_{f}, \boxtimes, \bar{i}_{f}, W_{0}$) is a vector groupoid isomorphic to ($V, \alpha, \beta, m, i, V_{0}$).
Proof. It is easy to verify that W is a vector space over the field K with respect to \boxplus, \boxtimes. Further, the other conditions of Definition 2.1 are satisfied. Also, the conditions from the definition of a vector groupoid morphism hold. Then $f: V \rightarrow$ W is an isomorphism of vector groupoids.

In fact, the structure of vector groupoid on W is obtained by transportation of the structure of vector groupoid from V by the bijection f.

Remark 3.2. It is well-known that two vector spaces which have the same finite dimension, are isomorphic; but, in the case of vector groupoids, this is not true.

By a direct computation we prove the following proposition.
Proposition 3.5. Let $\left(V_{j}, \alpha_{j}, \beta_{j}, m_{j}, i_{j}, V_{j, 0}\right), j=1,2,3$ be three vector groupoids. If $\left(f, f_{0}\right):\left(V_{1}, V_{1,0}\right) \rightarrow\left(V_{2}, V_{2,0}\right)$ and $\left(g, g_{0}\right):\left(V_{2}, V_{2,0}\right) \rightarrow\left(V_{3}, V_{3,0}\right)$ are vector groupoid morphisms (resp., vector groupoid homomorphisms), then, their composition ($g \circ f$, $\left.g_{0} \circ f_{0}\right):\left(V_{1}, V_{1,0}\right) \rightarrow\left(V_{3}, V_{3,0}\right)$ is also a vector groupoid morphism (resp., vector groupoid homomorphism).

Remark 3.3. The set of vector groupoids form a category denoted by VectGroid; its morphisms are the morphisms of vector groupoids and its composition law is the composition of vector groupoid morphisms.

4. The Correspondence Theorem for Vector Subgroupoids

Definition 4.1. Let $\left(f, f_{0}\right):\left(V_{1}, V_{1,0}\right) \rightarrow\left(V_{2}, V_{2,0}\right)$ be a morphism of vector groupoids. The sets

$$
\operatorname{Ker}(f):=\left\{x \in V_{1} \mid f(x)=0\right\} \text { and } \operatorname{Ker}_{v g r}(f):=\left\{x \in V_{1} \mid f(x) \in V_{2,0}\right\}
$$

are called the kernel and groupoid kernel of f, respectively.
Proposition 4.1. If $\left(f, f_{0}\right):\left(V_{1}, V_{1,0}\right) \rightarrow\left(V_{2}, V_{2,0}\right)$ is a morphism of vector groupoids, then
(i) $\operatorname{Ker}(f) \subseteq V_{1,0} \subseteq \operatorname{Ker}_{v g r}(f)$;
(ii) if f is injective, then $\operatorname{Ker}_{v g r}(f)=V_{1,0}$.

Proof. (i) This sequence of inclusions follows immediately from definitions.
(ii) If $x \in \operatorname{Ker}_{v g r}(f)$, then $f(x) \in V_{2,0}$ and $\alpha_{2}(f(x))=f(x)=f\left(\alpha_{1}(x)\right)$. But f being injective, it follows $\alpha_{1}(x)=x$, and, therefore, $x \in V_{1,0}$. From (i) one obtains the equality desired.

Remark 4.1. If $\operatorname{Ker}_{v g r}(f)=V_{1,0}$, it does not result that f is injective.
Proposition 4.2. Let $\left(f, f_{0}\right):\left(V_{1}, V_{1,0}\right) \rightarrow\left(V_{2}, V_{2,0}\right)$ be a vector groupoid homomorphism. For all $x \in V_{1}$, we have:

$$
f^{-1}(f(x))=x \cdot \operatorname{Ker}_{v g r}(f)\left(\beta_{1}(x)\right)
$$

where $\operatorname{Ker}_{v g r}(f)\left(\beta_{1}(x)\right)$ is the isotropy group of $\operatorname{Ker}_{v g r}(f)$ at $\beta_{1}(x)$.
Proof. If $y \in f^{-1}(f(x))$, then $f(y)=f(x)$. One obtains $[f(x)]^{-1} f(y)=$ $[f(x)]^{-1} f(x)$ or, equivalently, $f\left(x^{-1} y\right)=\beta_{2}(f(x))=f\left(\beta_{1}(x)\right) \in V_{2,0}$. It follows $x^{-1} y \in \operatorname{Ker}_{v g r}(f)$, i.e. $\exists h \in \operatorname{Ker}_{v g r}(f)$ such that $y=x h$. From $y=x h$ it follows $\alpha_{1}(y)=\alpha_{1}(x), \beta_{1}(h)=\beta_{1}(y)$ and $\alpha_{1}(h)=\beta_{1}(x)$. Similarly, from $f(y)=f(x)$ one obtains $y=t x$, with $t \in \operatorname{Ker}_{v g r}(f)$ and $\beta_{1}(y)=\beta_{1}(x)$. Therefore $\alpha_{1}(h)=\beta_{1}(h)=\beta_{1}(x)$. So $y \in x \cdot \operatorname{Ker}_{v g r}(f)\left(\beta_{1}(x)\right)$. We conclude that $f^{-1}(f(x)) \subset x \cdot \operatorname{Ker}_{v g r}(f)\left(\beta_{1}(x)\right)$. In a similar way one proves the inversion inclusion.

Corollary 4.1. Let $\left(f, f_{0}\right):\left(V_{1}, V_{1,0}\right) \rightarrow\left(V_{2}, V_{2,0}\right)$ be a vector groupoid homomorphism. For any subset $H \subseteq V_{1}$, we have

$$
f^{-1}(f(H))=H \cdot \operatorname{Ker}_{v g r}(f)\left(\beta_{1}(H)\right),
$$

where $\operatorname{Ker}_{v g r}(f)\left(\beta_{1}(H)\right)=\bigcup_{h \in H} \operatorname{Ker}_{v g r}(f)\left(\beta_{1}(h)\right)$.
Definition 4.2. Let $\left(V, \alpha, \beta, m, i, V_{0}\right)$ be a vector groupoid. A nonempty set $S \subset V$ is called vector subgroupoid of V, if:
(i) S is a vector subspace of V;
(ii) S is a subgroupoid of V ([4]), i.e. the following conditions hold:
(a) for all $x \in S \Rightarrow \alpha(x), \beta(x) \in S$ and $x^{-1} \in S$;
(b) for all $x, y \in S$ such that $\alpha(y)=\beta(x) \Rightarrow x y \in S$.

The units set of S is $\alpha(S)=\beta(S)=: S_{0}$. It is easy to see that S itself is a vector groupoid under the restrictions of α, β, i and m to S. A vector subgroupoid S of V is called wide, if $S_{0}=V_{0}$.

Proposition 4.3. Let $\left(V, \alpha, \beta, m, i, V_{0}\right)$ be a vector groupoid. Then isotropy group $V(0)=\{x \in V \mid \alpha(x)=\beta(x)=0\}$ is a vector subgroupoid of V with a single unit.

Proof. We have $V(0)=\operatorname{Ker}(\alpha) \cap \operatorname{Ker}(\beta)$ and $V(0)$ is a vector subspace of V, since α and β are linear. Also $\alpha(V(0))=\beta(V(0))=\{0\} \subset V(0)$. For any $x \in V(0)$ we have $\alpha\left(x^{-1}\right)=\beta(x)=0, \beta\left(x^{-1}\right)=\alpha(x)=0$ and so $x^{-1} \in V(0)$. Let $x, y \in V(0)$ such that $\alpha(y)=\beta(x)$. Then, $\alpha(x \cdot y)=\alpha(x)=0, \beta(x \cdot y)=\beta(y)=0$ and so $x \cdot y \in V(0)$. Therefore, the conditions of Definition 4.2 are verified. Hence, $V(0)$ is a vector subgroupoid, called the isotropy vector subgroupoid at null vector.

Definition 4.3. Let ($V, \alpha, \beta, m, i, V_{0}$) be a vector groupoid. A wide vector subgroupoid S of V is called normal vector subgroupoid (denoted by $S \unlhd V$), if for any $x \in V$ and any $h \in S$ such that $\alpha(h)=\beta(h)=\beta(x)$, we have $x \cdot h \cdot x^{-1} \in S$.

Example 4.1. Let $\left(V, \alpha, \beta, m, i, V_{0}\right)$ be a vector groupoid and $u \in V_{0}$. Then $V(0), V_{0}$ and V are normal vector subgroupoids in V.

Proposition 4.4. Let $\left(f, f_{0}\right):\left(V_{1}, \alpha_{1}, \beta_{1}, V_{1,0}\right) \rightarrow\left(V_{2}, \alpha_{2}, \beta_{2}, V_{2,0}\right)$ be a vector groupoid morphism. Then
(i) $\operatorname{Ker}(f)$ is a vector subgroupoid of V_{1}.
(ii) $\operatorname{Ker}_{v g r}(f)$ is a normal vector subgroupoid of V_{1}.

Proof. (i) $\operatorname{Ker}(f)$ is a vector subspace, since f is linear. For $x \in \operatorname{Ker}(f)$ we have $f_{0}\left(\alpha_{1}(x)\right)=\alpha_{2}(f(x))=\alpha_{2}(0)=0$, i.e. $f\left(\alpha_{1}(x)\right)=0$ and so $\alpha_{1}(x) \in \operatorname{Ker}(f)$. Similarly, $\beta_{1}(x) \in \operatorname{Ker}(f)$. We have $x+i_{1}(x)=\alpha_{1}(x)+\beta_{1}(x)$, since V_{1} is a vector groupoid. Then $i_{1}(x)=\alpha_{1}(x)+\beta_{1}(x)-x \in \operatorname{Ker}(f)$, because $\operatorname{Ker}(f)$ is a vector subspace. Hence, the requirements (ii)(a) of Definition 4.2 are verified.

Let now $x, y \in \operatorname{Ker}(f)$ such that $\alpha_{1}(y)=\beta_{1}(x)$. One obtains that $f(x \cdot y)=$ $f(x) \cdot f(y)=0 \cdot 0=0$, and so $x \cdot y \in \operatorname{Ker}(f)$. Consequently, the condition (ii)(b) of Definition 4.2 is verified. Hence, $\operatorname{Ker}(f)$ is a vector subgroupoid of V.
(ii)(a) We denote $W:=\operatorname{Ker}_{v g r}(f)$. Firstly we prove that W is a vector subgroupoid. Indeed, for $x, y \in W$ and $a, b \in K$, we have $f(x), f(y) \in V_{2,0}$ and it follows $a f(x)+b f(y) \in V_{2,0}$, since $V_{2,0}$ is a vector subspace. Because f is linear, we have $f(a x+b y)=a f(x)+b f(y) \in V_{2,0}$ and so $a x+b y \in W$. Consequently, W is a vector subspace. For any $x \in W$ we have $f\left(\alpha_{1}(x)\right)=f_{0}\left(\alpha_{1}(x)\right)=\alpha_{2}(f(x))=$ $f(x) \in V_{2,0}$, and so $\alpha_{1}(x) \in W$. Similarly, $\beta_{1}(x) \in W$. Because f is a vector groupoid morphism and using the equality $x+i_{1}(x)=\alpha_{1}(x)+\beta_{1}(x)$ with $x \in W$, we have

$$
\begin{array}{ll}
& f\left(x+i_{1}(x)\right)=f\left(\alpha_{1}(x)+\beta_{1}(x)\right) \\
\Rightarrow & f(x)+f\left(i_{1}(x)\right)=f\left(\alpha_{1}(x)\right)+f\left(\beta_{1}(x)\right) \\
\Rightarrow & f(x)+f\left(i_{1}(x)\right)=f_{0}\left(\alpha_{1}(x)\right)+f_{0}\left(\beta_{1}(x)\right) \\
\Rightarrow & f\left(i_{1}(x)\right)=\alpha_{2}(f(x))+\beta_{2}(f(x))-f(x) \\
\Rightarrow & f\left(i_{1}(x)\right)=f(x) \\
\Rightarrow & i_{1}(x) \in V_{2,0} .
\end{array}
$$

Let now $x, y \in W$ such that $\alpha_{1}(y)=\beta_{1}(x)$. We have $f\left(\alpha_{1}(y)\right)=f\left(\beta_{1}(x)\right)$ and it follows that $\alpha_{2}(f(y))=\beta_{2}(f(x))$, i.e. $f(x)=f(y)$ since $f(x), f(y) \in V_{2,0}$. One obtains that $f(x \cdot y)=f(x) \cdot f(x)=f(x) \in V_{2,0}$ and hence $x \cdot y \in W$. Therefore, the requirements from Definition 4.2 are verified. Hence, W is a vector subgroupoid.
(b) We prove that W is a normal vector subgroupoid of V_{1}. Applying Proposition 4.1(i), we have $V_{1,0} \subseteq \operatorname{Ker}_{v g r}(f)$ and so $V_{1,0} \subseteq W \subseteq V_{1}$. Then, $\alpha_{1}\left(V_{1,0}\right) \subseteq \alpha_{1}(W) \subseteq$ $\alpha_{1}\left(V_{1}\right)$, i.e. $V_{1,0} \subseteq \alpha_{1}(W) \subseteq V_{1,0}$. Therefore, $\alpha_{1}(W)=V_{1,0}$. Similarly, $\beta_{1}(W)=$ $V_{1,0}$. Hence, W is a wide vector subgroupoid. Let $x \in V_{1}, h \in W$ with $\alpha_{1}(h)=$ $\beta_{1}(x)=\beta_{1}(h)$. Then $f\left(\beta_{1}(x)\right)=f\left(\beta_{1}(h)\right)$ and it follows $\beta_{2}(f(x))=\beta_{2}(f(h))$. Consequently, $f(h)=\beta_{2}(f(x))$, since $f(h) \in V_{2,0}$. One obtains $f\left(x \cdot h \cdot x^{-1}\right)=$ $f(x) \cdot f(h) \cdot f\left(x^{-1}\right)=f(x) \cdot \beta_{2}(f(x)) \cdot f\left(x^{-1}\right)=f(x) \cdot[f(x)]^{-1}=\alpha_{2}(f(x)) \in V_{2,0}$ and so $x \cdot h \cdot x^{-1} \in W$. Therefore, the conditions of Definition 4.3 are verified. Hence, $W \unlhd V_{1}$.

Proposition 4.5. Let $\left(V, \alpha, \beta, m, i, V_{0}\right)$ be a vector groupoid. Then:
(i) $\operatorname{Is}(V)$ is a normal vector subgroupoid of V.
(ii) $\operatorname{Is}(V)=V_{0} \oplus V(0)$, i.e. $\mathrm{Is}(V)$ is the direct sum of V_{0} and $V(0)$.

Proof. (i) We have $\operatorname{Is}(V)=\operatorname{Ker}_{v g r}(\alpha, \beta)$, where $(\alpha, \beta): V \rightarrow V_{0} \times V_{0}$ is the anchor map of V. Applying Proposition 4.4(ii), it follows that $\operatorname{Is}(V)$ is a normal vector subgroupoid, since (α, β) is a homomorphism of vector groupoids, see Example 3.1.
(ii) For $x \in \operatorname{Is}(V)$, let $t=x-\alpha(x)$. We have $\alpha(t)=\beta(t)=0$, since $\alpha(x) \in V_{0}$ and α, β are linear maps. One obtains $x=\alpha(x)+t$, with $\alpha(x) \in V_{0}$ and $t \in V(0)$. So $\operatorname{Is}(V) \subset V_{0}+V(0)$. Similarly, the inverse inclusion holds. Hence $\operatorname{Is}(V)=V_{0}+V(0)$. For $x \in V_{0} \cap V(0)$, it follows $\alpha(x)=x=0$, and so the desired relation is proved.

Proposition 4.6. Let $\left(f, f_{0}\right):\left(V_{1}, \alpha_{1}, \beta_{1}, V_{1,0}\right) \rightarrow\left(V_{2}, \alpha_{2}, \beta_{2}, V_{2,0}\right)$ be a vector groupoid homomorphism and $u \in V_{1,0}$. Then:
(i) $f\left(V_{1}(u)\right)$ is a subgroup of the group $V_{2}\left(f_{0}(u)\right)$.
(ii) if f is surjective and f_{0} is injective, then $f\left(V_{1}(u)\right)=V_{2}\left(f_{0}(u)\right)$.

Proof. (i) Let $y \in f\left(V_{1}(u)\right)$. Then there is $x \in V_{1}(u)$ such that $f(x)=y$ and we have $\alpha_{1}(x)=\beta_{1}(x)=u$. We obtain that $\alpha_{2}(y)=\alpha_{2}(f(x))=f_{0}\left(\alpha_{1}(x)\right)=$ $f_{0}(u)$. Similarly, we prove that $\beta_{2}(y)=f_{0}(u)$. Consequently, $y \in V_{2}\left(f_{0}(u)\right)$ and $f\left(V_{1}(u)\right) \subseteq V_{2}\left(f_{0}(u)\right)$.

Let $y_{1}, y_{2} \in f\left(V_{1}(u)\right)$ such that the product $y_{1} \cdot y_{2}$ is defined. Then, there are $x_{1}, x_{2} \in V_{1}(u)$ such that $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$. But the product $x_{1} \cdot x_{2}$ is defined, because f is a homomorphism of vector groupoids. Also, $x_{1} \cdot x_{2} \in V_{1}(u)$, since $\alpha_{1}\left(x_{1} \cdot x_{2}\right)=\alpha_{1}\left(x_{1}\right)=u$ and $\beta_{1}\left(x_{1} \cdot x_{2}\right)=\beta_{1}\left(x_{2}\right)=u$.

Therefore, we have $y_{1} \cdot y_{2}=f\left(x_{1}\right) \cdot f\left(x_{2}\right)=f\left(x_{1} \cdot x_{2}\right) \in f\left(V_{1}(u)\right)$. Let $y \in f\left(V_{1}(u)\right)$ and $y=f(x)$ with $x \in V_{1}(u)$. We have $x^{-1}=i_{1}(x) \in V_{1}(u)$, since $V_{1}(u)$ is a group. Then, $i_{2}(y)=i_{2}(f(x))=f\left(i_{1}(x)\right) \in f\left(V_{1}(u)\right)$. Hence, $f\left(V_{1}(u)\right)$ is a subgroup of $V_{2}\left(f_{0}(u)\right)$.
(ii) Using (i), it remains to prove that $V_{2}\left(f_{0}(u)\right) \subseteq f\left(V_{1}(u)\right)$. Indeed, let $y \in V_{2}\left(f_{0}(u)\right)$. Then, $\alpha_{2}(y)=\beta_{2}(y)=f_{0}(u)$. Since f is surjective, it follows $y=f(x)$ for some $x \in V_{1}$. We have $f_{0}\left(\alpha_{1}(x)\right)=\alpha_{2}(f(x))=\alpha_{2}(y)=f_{0}(u)$. From $f_{0}\left(\alpha_{1}(x)\right)=f_{0}(u)$ we obtain $\alpha_{1}(x)=u$, since f_{0} is injective. Similarly, $\beta_{1}(x)=u$. Therefore, $x \in V_{1}(u)$ and so $y \in f\left(V_{1}(u)\right)$.

We denote by $\mathscr{V} \mathscr{S}\left(V, V_{0}\right)$ denotes the set of all vector subgroupoids of $\left(V, V_{0}\right)$.
For a vector groupoid morphism $\left(f, f_{0}\right):\left(V_{1}, V_{1,0}\right) \rightarrow\left(V_{2}, V_{2,0}\right)$ we denote by $\mathscr{V} \mathscr{S}_{f}\left(V_{1}, V_{1,0}\right)$, the set of all vector subgroupoids of V_{1} which contains $\operatorname{Ker}_{v g r}(f)$, i.e.

$$
\mathscr{V} \mathscr{S}_{f}\left(V_{1}, V_{1,0}\right):=\left\{S \in \mathscr{V} \mathscr{S}\left(V_{1}, V_{1,0}\right) \mid \operatorname{Ker}_{v g r}(f) \subseteq S\right\}
$$

Theorem 4.1 (Correspondence theorem for vector subgroupoids). Let there be a vector groupoid morphism $\left(f, f_{0}\right):\left(V_{1}, V_{1,0}\right) \rightarrow\left(V_{2}, V_{2,0}\right)$ with $N=\operatorname{Ker}_{v g r}(f)$.
(i) Then, the following assertions hold:
(a) if S_{2} is a vector subgroupoid of V_{2}, then $f^{-1}\left(S_{2}\right)$ is a vector subgroupoid of V_{1}. If f is surjective, then $f\left(f^{-1}\left(S_{2}\right)\right)=S_{2}$.
(b) if $W_{2} \unlhd S_{2}$, then $f^{-1}\left(W_{2}\right) \unlhd V_{1}$.
(ii) If $\left(f, f_{0}\right)$ is a vector groupoid homomorphism, then:
(a) if $S_{1} \subseteq V_{1}$ is a vector subgroupoid, then $f\left(S_{1}\right) \subseteq f\left(V_{1}\right)$ is a vector subgroupoid.
(b) if $W_{1} \unlhd V_{1}$, then $f\left(W_{1}\right) \unlhd f\left(V_{1}\right)$.
(iii) If (f, f_{0}) is a surjective vector groupoid homomorphism, then:
(a) $\varphi: \mathscr{V} \mathscr{S}_{f}\left(V_{1}, V_{1,0}\right) \rightarrow \mathscr{V} \mathscr{S}\left(V_{2}, V_{2,0}\right)$ given by $\varphi\left(S_{1}\right):=f\left(S_{1}\right)$ for all $S_{1} \in \mathscr{V} \mathscr{S}_{f}\left(V_{1}, V_{1,0}\right)$, is a bijective map satisfying the property:

$$
\begin{equation*}
S_{1} \subseteq S_{1}^{\prime} \Leftrightarrow \varphi\left(S_{1}\right) \subseteq \varphi\left(S_{1}^{\prime}\right) \tag{4.1}
\end{equation*}
$$

(b) φ preserves the normal vector subgroupoids, i.e.

$$
\begin{equation*}
W_{1} \unlhd V_{1} \Leftrightarrow \varphi\left(W_{1}\right) \unlhd V_{2} \tag{4.2}
\end{equation*}
$$

Proof. (i)(a) The set $f^{-1}\left(S_{2}\right)$ is a vector subspace in V_{1}, because S_{2} is a vector subspace and f is linear. Let any $x \in f^{-1}\left(S_{2}\right)$. Then $f(x) \in S_{2}$. It follows $\alpha_{2}(f(x)), \beta_{2}(f(x)) \in S_{2}$ and $i_{2}(f(x)) \in S_{2}$, since S_{2} is a subgroupoid. Since f is a groupoid morphism, we have $f\left(\alpha_{1}(x)\right)=f_{0}\left(\alpha_{1}(x)\right)=\alpha_{2}(f(x)) \in$ $S_{2}, f\left(\beta_{1}(x)\right)=f_{0}\left(\beta_{1}(x)\right)=\beta_{2}(f(x)) \in S_{2}$ and $f\left(i_{1}(x)\right)=i_{2}(f(x)) \in S_{2}$. Then $\alpha_{1}(x), \beta_{1}(x), i_{1}(x) \in f^{-1}\left(S_{2}\right)$. Hence, the conditions (ii)(a) of Definition 4.2 are verified.

Let $x, y \in f^{-1}\left(S_{2}\right)$ such that $x \cdot y$ is defined in V_{1}. Then, $f(x), f(y) \in S_{2}$ and we have $f(x) \cdot f(y) \in S_{2}$, since S_{2} is a subgroupoid. It follows that $f(x \cdot y)=$ $f(x) \cdot f(y) \in S_{2}$, since f is groupoid morphism. Therefore, $x \cdot y \in f^{-1}\left(S_{2}\right)$, and the condition (ii)(b) of Definition 4.2 holds. Hence $f^{-1}\left(S_{2}\right)$ is a vector subgroupoid. Because f is surjective, one can prove that $f\left(f^{-1}\left(S_{2}\right)\right)=S_{2}$.
(i)(b) Let $W_{2} \unlhd V_{2}$. Applying (i)(b), we have that $f^{-1}\left(W_{2}\right)$ is a vector subgroupoid in V_{1}, since W_{2} is a vector subgroupoid in V_{2}. We have that $\alpha_{2}\left(W_{2}\right)=\beta_{2}\left(W_{2}\right)=$ $V_{2,0}$, since W_{2} is a wide subgroupoid. Using the hypothesis, we can verify $\alpha_{1}\left(f^{-1}\left(W_{2}\right)\right)=\beta_{1}\left(f^{-1}\left(W_{2}\right)\right)=V_{1,0}$, and so $f^{-1}\left(W_{2}\right)$ is a wide subgroupoid.

Let now $a \in V_{1}$ and $x \in f^{-1}\left(W_{2}\right)$ such that the product $a \cdot x \cdot a^{-1}$ is defined in V_{1}. Then, $\alpha_{1}(x)=\beta_{1}(x)=\beta_{1}(a)$. It follows that $f_{0}\left(\alpha_{1}(x)\right)=$ $f_{0}\left(\beta_{1}(x)\right)=f_{0}\left(\beta_{1}(a)\right)$ and hence $\alpha_{2}(f(x))=\beta_{2}(f(x))=\beta_{2}(f(a))$. Therefore, the product $f(a) \cdot f(x) \cdot(f(a))^{-1}$ is defined in V_{2}. Hence, for $f(a) \in V_{2}$ and $f(x) \in W_{2}$ we have $f(a) \cdot f(x) \cdot(f(a))^{-1} \in W_{2}$, since $W_{2} \unlhd V_{2}$. Also, we have $f\left(a \cdot x \cdot a^{-1}\right)=f(a) \cdot f(x) \cdot(f(a))^{-1} \in W_{2}$, since f is groupoid morphism. It follows that $a \cdot x \cdot a^{-1} \in f^{-1}\left(W_{2}\right)$. Hence, the conditions from Definition 4.3 are satisfied. Therefore $f^{-1}\left(W_{2}\right) \unlhd V_{1}$.
(ii) $\operatorname{Im}(f)=f\left(V_{1}\right)$ is a subgroupoid in V_{2} because $\left(f, f_{0}\right)$ is a vector groupoid homomorphism and it is a vector subspace. Then, $f\left(V_{1}\right) \subseteq V_{2}$ is a vector subgroupoid.
(a) Let S_{1} be a vector subgroupoid of V_{1}. Clearly, $f\left(S_{1}\right)$ is a vector subspace in $f\left(V_{1}\right)$, since S_{1} is a vector subspace. For $y \in f\left(S_{1}\right), \exists x \in S_{1}$ such that $y=f(x)$. Then, $\alpha_{2}(y)=\alpha_{2}(f(x))=f_{0}\left(\alpha_{1}(x)\right)=f\left(\alpha_{1}(x)\right) \in f\left(S_{1}\right)$, since $\alpha_{1}(x) \in S_{1}$. Similarly, we can verify that $\beta_{2}(y), i_{2}(y) \in f\left(S_{1}\right)$.

Let $y_{1}, y_{2} \in f\left(S_{1}\right)$ such that $y_{1} \cdot y_{2}$ is defined in V_{2}, i.e. $\beta_{2}\left(y_{1}\right)=\alpha_{2}\left(y_{2}\right)$. Then, $\exists x_{1}, x_{2} \in S_{1}$ such that $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$. From $\beta_{2}\left(y_{1}\right)=\alpha_{2}\left(y_{2}\right)$, it follows that $\beta_{2}\left(f\left(x_{1}\right)=\alpha_{2}\left(f\left(x_{2}\right)\right.\right.$ and so $\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \in V_{2(2)}$. We have $\left(x_{1}, x_{2}\right) \in V_{1(2)}$, since f is groupoid homomorphism. Also $x_{1} \cdot x_{2} \in S_{1}$, because S_{1} is a subgroupoid. Then, $y_{1} \cdot y_{2}=f\left(x_{1}\right) \cdot f\left(x_{2}\right)=f\left(x_{1} \cdot x_{2}\right) \in f\left(S_{1}\right)$. Hence $f\left(S_{1}\right)$ is a vector subgroupoid.
(b) Let $W_{1} \unlhd V_{1}$. Applying (ii)(a), we have that $f\left(W_{1}\right)$ is a vector subgroupoid in $f\left(V_{1}\right)$, since W_{1} is a vector subgroupoid in V_{1}. Also, $\alpha_{1}\left(W_{1}\right)=\beta_{1}\left(W_{1}\right)=$ $V_{1,0}$, since W_{1} is a wide subgroupoid. Using the hypothesis, we can verify that $\alpha_{2}\left(f\left(W_{1}\right)\right)=\beta_{1}\left(f\left(W_{1}\right)\right)=\widetilde{W}_{2,0}$, where $\widetilde{W}_{2,0}$ is the unit set of the groupoid $f\left(V_{1}\right)$. Consequently, $f\left(W_{1}\right)$ is a wide subgroupoid. Let $b \in f\left(V_{1}\right)$ and $y \in f\left(W_{1}\right)$ with $\alpha_{2}(y)=\beta_{2}(y)=\beta_{2}(b)$. There are $a \in V_{1}$ and $x \in W_{1}$ such that $f(a)=b$ and $f(x)=y$. Then, $\alpha_{2}(f(x))=\beta_{2}(y f(x))=\beta_{2}(f(a))$ and it follows that $f(a) \cdot f(x) \cdot(f(a))^{-1}$ is defined. One obtains that $a \cdot x \cdot a^{-1}$ is defined in $V_{1,0}$, since
f is a groupoid homomorphism. It follows that $a \cdot x \cdot a^{-1} \in W_{1}$, since $W_{1} \unlhd V_{1}$. Then $b \cdot y \cdot b^{-1}=f(a) \cdot f(x) \cdot(f(a))^{-1}=f\left(a \cdot x \cdot a^{-1}\right) \in f\left(W_{1}\right)$. Hence $f\left(W_{1}\right) \unlhd f\left(V_{1}\right)$. (iii) Suppose that $\left(f, f_{0}\right)$ is a surjective vector groupoid homomorphism.
(iii) (a) By (ii)(a), for any $S_{1} \in \mathscr{V} \mathscr{S}_{f}\left(V_{1}, V_{1,0}\right)$ we have $f\left(S_{1}\right) \in \mathscr{V} \mathscr{S}\left(V_{2}, V_{2,0}\right)$. Consider now a vector subgroupoid $S_{2} \in \mathscr{V} \mathscr{S}\left(V_{2}, V_{2,0}\right)$. By (i)(a) we have that $f^{-1}\left(S_{2}\right)$ is a vector subgroupoid in V_{1}. It is easy to verify that $N \subseteq f^{-1}\left(S_{2}\right)$. Hence, $f^{-1}\left(S_{2}\right) \in \mathscr{V} \mathscr{S}_{f}\left(V_{1}, V_{1,0}\right)$. Therefore, we can define the map $\psi: \mathscr{V} \mathscr{S}\left(V_{2}, V_{2,0}\right) \rightarrow$ $\mathscr{V} \mathscr{S}_{f}\left(V_{1}, V_{1,0}\right)$ given by $\psi\left(S_{2}\right):=f^{-1}\left(S_{2}\right)$ for all $S_{2} \in \mathscr{V} \mathscr{S}\left(V_{2}, V_{2,0}\right)$.

Then, $(\psi \circ \varphi)\left(S_{1}\right)=\psi\left(\varphi\left(S_{1}\right)\right)=f^{-1}\left(f\left(S_{1}\right)\right)$, for all $S_{1} \in \mathscr{V} \mathscr{S}_{f}\left(V_{1}, V_{1,0}\right)$. We have

$$
\begin{aligned}
x \in f^{-1}\left(f\left(S_{1}\right)\right) & \Leftrightarrow f(x) \in f\left(S_{1}\right) \\
& \Leftrightarrow \exists a \in S_{1}, f(x)=f(a) \\
& \Leftrightarrow \exists a \in S_{1}, f\left(a^{-1} x\right) \in V_{2,0} \\
& \Leftrightarrow \exists a \in S_{1}, a^{-1} x \in N \\
& \Leftrightarrow x \in S_{1} N .
\end{aligned}
$$

Therefore, $f^{-1}\left(f\left(S_{1}\right)\right)=S_{1} N=N S_{1}$, since $N \unlhd V_{1}$. From the hypothesis $N \subseteq S_{1}$ one obtains that $f^{-1}\left(f\left(S_{1}\right)\right)=S_{1}$. Hence
(a) $\quad(\psi \circ \varphi)\left(S_{1}\right)=S_{1}$, for all $S_{1} \in \mathscr{V} \mathscr{S}_{f}\left(V_{1}, V_{1,0}\right)$.

Also, we have $(\varphi \circ \psi)\left(S_{2}\right)=\varphi\left(\psi\left(S_{2}\right)\right)=f\left(f^{-1}\left(S_{2}\right)\right)$. Applying now (i) (a), it follows that $f\left(f^{-1}\left(S_{2}\right)\right)=S_{2}$, since f is surjective. Hence
(b) $\quad(\varphi \circ \psi)\left(S_{2}\right)=S_{2}$, for all $S_{2} \in \mathscr{V} \mathscr{S}\left(V_{2}, V_{2,0}\right)$.

From (a) and (b) it follows that φ is bijective and $\psi=\varphi^{-1}$. The equivalence (4.1) holds, since φ and ψ are increasing maps.
(iii)(b) Applying (ii)(b) and (i)(b), one obtains the equivalence (4.2).

Corollary 4.2. Let $\left(f, f_{0}\right):\left(V_{1}, V_{1,0}\right) \rightarrow\left(V_{2}, V_{2,0}\right)$ be a vector groupoid homomorphism. Then, $f\left(\operatorname{Is}\left(V_{1}\right)\right)$ is a normal vector subgroupoid of $f\left(V_{1}\right)$.

Proof. We apply Proposition 4.5(i) and Theorem 4.1(ii)(a).

References

[1] A. Coste, P. Dazord and A. Weinstein, Groupoides symplectiques, Publ. Dept. Math. Lyon 2/A (1987), 1-62.
[2] M. Golubitsky and I. Stewart, Nonlinear dynamics of networks: the groupoid formalism, Bull. Amer. Math. Soc. 43(3) (2006), 305-364.
[3] P.J. Higgins, Notes on Categories and Groupoids, Von Nostrand Reinhold Mathematical Studies 32, London, 1971.
[4] Gh. Ivan, Algebraic constructions of Brandt groupoids, in Proceedings of the Algebra Symposium, "Babeş-Bolyai" University, Cluj-Napoca, 2002, 69-90.
[5] K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, London Math. Soc., Lecture Note Series 124 Cambridge University Press (1987). Revised edition, 213 (2005).
[6] V. Popuţa and Gh. Ivan, Vector groupoids, Theoretical Mathematics \& Applications 2(2) (2012), 1-12.
[7] V. Popuţa and Gh. Ivan, A groupoid structure on a vector space, Bul. Ştiinţ. Univ. Politeh. Timişoara, Ser. Mat. Fiz. 56(70)(1) (2011), 55-64.
[8] V. Popuța and Gh. Ivan, Vector subgroupoids. The computation of all vector subgroupoids of a modular vector groupoid, Carpathian J. Math. 28(2) (2012), 257262.
[9] A. Ramsey and J. Renault, Groupoids in Analysis, Geometry and Physics, Contemporary Mathematics, 282, AMS Providence, RI, 2001.
[10] A. Weinstein, Groupoids: Unifying internal and external symmetries, Notices Amer. Math. Soc. 43 (1996), 744-752.

Vasile Popuţa, Department of Mathematics, West University of Timişoara, Bd. V. P rvan, no. 4, 300223, Timişoara, Romania.
E-mail: vpoputa@yahoo.com
Gheorghe Ivan, Department of Mathematics, West University of Timişoara, Bd. V. P rvan, no. 4, 300223, Timişoara, Romania.
E-mail: ivan@math.uvt.ro

Received June 11, 2012
Accepted September 17, 2012

