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Abstract. Synthesis of planar four bar mechanism is an important area in robotics and mechanical
engineering. The analysis of the lengths of the four-bar mechanism and the associated angle helps
in determining the coupler curve. In this paper, we present the problem of synthesizing a planar
four-bar linkages whose coupler curve passes through five precision points that points are chosen from
quadratic polynomial function. Also, we analyze its solution and to find out suitable solution for a
chosen coupler curve.
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1. Introduction
Maximum performance, while, minimizing the mechanism is an important objective in the
fields of mechanical engineering, medicine and robotics industry. In particular the movement of
robotics in a particular direction or position is an important task in the engineering industry.
For this problem to be solved, we should design tools with particular specifications. Currently,
most real-life problems and mathematical models are formulated in terms of polynomial
equations and solving polynomial equation is a fundamental problem. Nahon [7], Manocha [5],
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Montazeri [6] proposed new methods to solve system of polynomial equations. In kinematics,
based on the four bar linkages, many researchers have developed the concepts and tools to meet
various specifications [4,12–14,17]. The proper selection of the lengths of linkages and joints is
an important task in the synthesis of a four-bar mechanism. Also, the relationship between the
shapes of coupler curves and the position tracing points on the coupler plane is yet a unsolved
problem. Some questions are till now open in inverse kinematics problems. What shape will a
special point in the coupler plane trace? Is there any point tracing a curve of a given shape? and
if any, where are they located on the four-bar mechanism? The four-bar linkage consists of four
links namely crank, coupler, follower and a link attached with ground. The follower and crank
are attached to the ground link. One end of coupler link is joined with crank and another end
is attached with follower [1, 8,15]. A sensor is attached in coupler and it captures the image
when the coupler is moved on target position. Also, we assume that the position of the sensor is
fixed in the coupler link. Through ground link, we define global co-ordinate system, the fixed
positions are denoted by O1 and O2 and its co-ordinates are (o1x, o1y), (o2x, o2y). We defined
local co-ordinate system for each joint. Let P1(p1x, p1y), P2(p2x, p2y), P3(p3x, p3y), P4(p4x, p4y)
and P5(p5x, p5y) be the target positions which are not lie on the same line. We know that, from
kinematics theory, with given lengths of linkages, the constraint equations corresponding to
constraint length of each linkage are

(D1iO3 −O1)T(D1iO3 −O1)− (O3 −O1)T(O3 −O1)= 0 , (1.1)

(D1iO4 −O2)T(D1iO4 −O2)− (O4 −O2)T(O4 −O2)= 0 , (1.2)

where O3 =
o3x

o3y
1

, O4 =
o4x

o4y
1

 and displacement matrix

D1i =
c1i −s1i pix − p1xc1i + p1ys1i

s1i c1i pi y − p1xs1i − p1yc1i
0 0 1

 , i = 2,3,4,5

where

c1i = cosθ1i, s1i = sinθ1i and θ1i is relative angle. (1.3)

From these equations (1.1), (1.2) and (1.3), we will get twelve non-linear equations.
These twelve non-Linear equations can be computed in the following manner.

Procedure algorithm.

Step 1:
Begin

For i : 2 to 5
(c1i)2 + (s1i)2 = 1

End

Step 2:
Begin
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For i : 2 to 5

(c1io3x−s1io3y+pix−c1i p1x+s1i p1y−o1x)2+(s1io3x+c1io3y+pi y−s1i p1x−c1i p1y−o1y)2

− [(o3x − o1x)2 + (o3y − o1y)2]= 0

End

Step 3:
Begin

For i : 2 to 5

(c1io4x−s1io4y+pix−c1i p1x+s1i p1y−o2x)2+(s1io4x+c1io4y+pi y−s1i p1x−c1i p1y−o2y)2

− [(o4x − o2x)2 + (o4y − o2y)2]= 0

End

2. Numerical Example
Now, we consider the polynomial f (x)= 1+ x+ x2. The shape of coupler curve changes when we
change our target points. We assume our target points chosen from this polynomial function
is (5,31), (4,21), (3,13), (2,7) and (1,3). Also, take (o1x = 0, o1y = 0) and (o2x = 6, o2y −0). Using
the above algorithm, we will generate twelve non-linear equations and we use the following
notations: a,b, c,d, e, f , g,h, i, j,k, l instead of c12, s12, c13, s13, c14, s14, c15, s15, o1x, o1y, o2x, o2y.
Then

a2 +b2 −1= f1 (say)

e2 + f 2 −1= f3 (say)

c2 +d2 −1= f2 (say)

g2 +h2 −1= f4 (say)

8ai+42a j−1342a−10i−62 j+42bi−8b j+38b+1443= f5 (say)

6ci+26c j−836c−10i−62 j+26di−6d j+56d+1164= f6 (say)

4ei+14e j−454e−10i−62 j+14 f i−4 f j+54 f +1039= f7 (say)

2gi+64g j−196g−10i−62 j+6hi−2h j+32h+996= f8 (say)

2k+42 al−4ak−1282a−62l+4bl+42bk−334b+1395= f9 (say)

2k+26cl−6ck−776c−62l+6dl+26dk−316d+1128= f10 (say)

2k+14el−8ek−394e−62l+8 f l+14 f k−318 f +1015= f11 (say)

2k+6gl−10gk−136g−62l+10hl+6hk−340h+984= f12 (say)

Solving the system of equations involving many variables is one of the challenging tasks in
this area. Many methods are available [2,3,10,11], in particular numerical methods give the
solution approximately but practically many solutions are not suitable for designing problem.
So here we are proposing an algebraic method, using homotopy continuation method [16] and
obtain the following results:
Fifty six non-singular solutions exist, and ten solutions are real solution
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Table 1. Possible real solutions

Solution a b c d e f g h i j k l

1 −0.9995 −0.0298 −0.9869 −0.1614 −0.8998 −0.4363 0.5384 0.8426 −85.734 42.737 −1083.26 −23.5659

2 −0.5772 0.8165 0.9998 0.0183 0.9362 0.3514 −0.9934 0.1143 −48.8324 13.8798 −22.7101 11.8772

3 0.9982 0.0595 0.9949 0.1004 0.9909 0.1338 0.8278 −0.5609 65.1589 6.6818 67.6576 6.5394

4 0.8902 0.4555 0.7065 0.7077 0.4499 0.8931 0.0240 0.9997 10.9347 15.6905 12.7131 14.2591

5 0.5162 0.8565 0.9053 −0.4247 0.9946 −0.1035 −0.3415 0.9398 −5.5191 13.0732 1.1508 13.2407

6 0.9993 0.0376 0.9965 0.0835 0.9829 0.1838 0.8894 0.4572 150.9830 1.5344 151.0535 1.5477

7 0.9871 −0.1598 0.9675 −0.2528 0.9720 −0.2347 −0.3680 −0.9298 −25.0615 17.2925 −23.7272 18.3357

8 0.3554 −0.9347 0.2168 −0.9762 0.3312 −0.9435 −0.4465 0.89948 10.3007 11.4248 11.6515 15.7608

9 0.9938 0.1110 0.9772 0.2125 0.9393 0.3432 0.6435 −0.7654 47.2827 11.2118 48.9265 10.8682

10 0.9997 0.0246 0.9993 0.0372 0.9989 0.0468 0.9890 0.1475 113.0129 −0.3425 117.0880 −0.3829

Since the system does not produce unique solution, so we will compare two solutions for same
prescription points. Assume these two solutions are two different samples from same population.
Using principle of least square method we can analysis how much deviate from trend lines.
Clearly, from the above solution table, solutions 4 and 6 are suitable practically.

Table 2. Suitable solutions

Solution a b c d e f g h i j k l

4 0.8902 0.4555 0.7065 0.7077 0.4499 0.8931 0.0240 0.9997 10.9347 15.6905 12.7131 14.2591

6 0.9993 0.0376 0.9965 0.0835 0.9829 0.1838 0.8894 0.4572 150.9830 1.5344 151.0535 1.5477

Suppose we take the precision points on the circular path say (1,0), (0,1), (−1,0), (0,−1) and
again take original position (1,0). Also, take (o1x = 0, o1y = 0) and (o2x = 6, o2y = 0). Then using
the above procedure, we will get the following equations:

a2 +b2 −1= f1 (say)

e2 + f 2 −1= f3 (say)

c2 +d2 −1= f2 (say)

g2 +h2 −1= f4 (say)

2a j+2ib−2i−2b+2= f5 (say)

2 jd−2ci−2i+2c+2= f6 (say)

2i f −2e j−2i+2 f +2= f7 (say)

2gi−2 jh−2g−2i+2= f8 (say)

10k−12ak+12a+2al+12bl+2kb−2b+2= f9 (say)

10k−14ck+14c+14dl+14= f10 (say)

10k−12ek+12e−2el+12 f l−2kf +2 f +2= f11 (say)

10k−10kg+10g+10hl−10= f12 (say)
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Solving the above equations, no feasible solution exists for the construction of four bar
mechanism, using the method of Homotopy continuation technique, for this sample points.
Further investigation is required to solve this system to arrive at a mechanically feasible system
which passes through the given points. The same concept is extended to five bar mechanisms [9]
but the suitable solution for practical problem is difficult task.

3. Conclusion
Homotopy continuation method is very superior method, which helps in the solution of a large
system of equations in many variables, which can be used to solve the inverse kinematics
problem. It has limitations as regards the generation of mechanically feasible solutions to all
system of equations.
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