
Communications in Mathematics and Applications
Volume 4 (2013), Number 1, pp. 49–59
© RGN Publications

http://www.rgnpublications.com

A Class of Univalent Functions with Negative
Coefficients defined by Hadamard Product

with Komatu Integral Operator

T.N. Shanmugam, C. Ramachandran, and R. Ambrose Prabhu

Abstract In our paper, we study a class SRA(λ,β ,α,µ,θ) which consists of
analytic and univalent functions with negative coefficients in the open unit disk
U = {z : |z| < 1} defined by Hadamard product (or convolution) with Komatu
integral operator, we obtain coefficient bounds and exterior points for this class.
Also Distortion Theorem using Fractional Calculus techniques and some results
for this class are obtained.

1. Introduction

Let R denote the class of functions of the form:

f (z) = z−
∞∑

n=2

anzn, an ≥ 0, n ∈ N= {1, 2, 3, . . .} (1.1)

which are analytic and univalent in the unit disk U = {z : |z| < 1}. If f ∈ R is
given by (1.1) and g ∈ R is given by,

g(z) = z−
∞∑

n=2

bnzn, bn ≥ 0

then the Hadamard product f ∗ g of f and g is defined by

( f ∗ g)(z) = z−
∞∑

n=2

an bnzn = (g ∗ f )(z) . (1.2)

Recently, T.N. Shanmugam and C. Ramachandran [3] have studied the certain sub
class of the class A for which the Komatu Integral Transform has some properties.
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Lemma 1.1. The Komatu integral operator of f ∈ R for 0 ≤ θ ≤ 1, 0 ≤ µ ≤ 1 is
denoted by Iθµ and defined as following:

Iθµ ( f (z)) =
(µ+ 1)θ

zµΓ(θ)

∫ z

0

�
log

z

t

�θ−1

f (t)tµ−1d t

= z−
∞∑

n=2

K(θ ,µ, n)anzn (1.3)

where K(θ ,µ, n) =
�
µ+1
n+µ

�θ
.

Proof.

Iθµ ( f (z)) =
(µ+ 1)θ

zµΓ(θ)

∫ z

0

�
log

z

t

�θ−1

f (t)tµ−1d t

= z−
∞∑

n=2

K(θ ,µ, n)anzn . ¤

Definition 1.1. A function f ∈R , z ∈ U is said to be in the class SRA(λ,β ,α,µ,θ)
if and only if the following inequality is satisfied:

Re
� z(Iθµ (( f ∗ g)(z)))′ +λz2(Iθµ (( f ∗ g)(z)))′′

(1−λ)Iθµ (( f ∗ g)(z)) +λz(Iθµ (( f ∗ g)(z))))′

�

≥ β
����

z(Iθµ (( f ∗ g)(z)))′ +λz2(Iθµ (( f ∗ g)(z)))′′

(1−λ)Iθµ (( f ∗ g)(z)) +λz(Iθµ (( f ∗ g)(z))))′
− 1

����+α (1.4)

where 0≤ α < 1, 0≤ λ ≤ 1, β ≥ 0, z ∈ U, 0≤ µ < 1, 0< θ ≤ 1 and g ∈ R given
by

g(z) = z−
∞∑

n=2

bnzn, bn ≥ 0 .

Lemma 1.2. Let w = u + iv . Then Re(w) ≥ σ if and only if |w − (1+σ)| ≤
|w+ (1−σ)|.

Proof. If Re(w)≥ σ, then

|w − 1−σ|2 = [w− (1+σ)][w− (1+σ)]
= |w|2 − 2(1+σ)Re(w) + (1+σ)2

= |w|2 − 2Re(w) + (1−σ)2 + 4σ

≤ |w|2 − 2σ+ (1−σ)2 + 4σ

≤ |w|2 − (2σ)Re(w) + (1−σ)2 + 2Re(w)

= |w|2 + 2Re(w)(1−σ) + (1−σ)2

= |w+ 1−σ|2 .
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Hence,

|w − (1+σ)| ≤ |w+ (1−σ)| .
Conversely, if

|w − (1+σ)| ≤ |w+ (1−σ)|
then

|(u+ iv − 1−σ)| ≤ |(u+ iv + 1−σ)|
(u− 1−σ)2 + v2 ≤ (u+ 1−σ)2 + v2

−4u+ 4σ ≤ 0

u−σ ≥ 0

u≥ σ .

Hence,

Re(w)≥ σ . ¤

Lemma 1.3 ([1]). Let w = u + iv and σ ≥ 0, γ is a real number. Then
Re(w)> σ|w− 1+ γ| if and only if Re[w(1+σeiφ)−σeiφ]> γ.

We aim to study the Coefficient bounds, Extreme points, Application of
Fractional calculus and Hadamard product of the class SRA(λ,β ,α,µ,θ).

2. Coefficient Bounds and Extreme Points

We obtain the necessary and sufficient condition and extreme points for the
functions f (z) in the class SRA(λ,β ,α,µ,θ ).

Theorem 2.1. The function f (z) defined by equation (1.1) is in the class
SRA(λ,β ,α,µ,θ) if and only if

∞∑

n=2

(1−λ+ nλ)[n(1+ β)− (β +α)]K(θ ,µ, n)an bn ≤ 1−α . (2.1)

Proof. From the definition, we have

Re
� z(Iθµ (( f ∗ g)(z)))′ +λz2(Iθµ (( f ∗ g)(z)))′′

(1−λ)Iθµ (( f ∗ g)(z)) +λz(Iθµ (( f ∗ g)(z))))′

�

≥ β
����

z(Iθµ (( f ∗ g)(z)))′ +λz2(Iθµ (( f ∗ g)(z)))′′

(1−λ)Iθµ (( f ∗ g)(z)) +λz(Iθµ (( f ∗ g)(z))))′
− 1

����+α .

From Lemma 1.3, we have

Re
� z(Iθµ (( f ∗ g)(z)))′ +λz2(Iθµ (( f ∗ g)(z)))′′

(1−λ)Iθµ (( f ∗ g)(z)) +λz(Iθµ (( f ∗ g)(z))))′
(1+ βeiφ)− βeiφ

�
≥ α,
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−π≤ φ ≤ π, or equivalently,

Re
�zIθµ (( f ∗ g)(z))′ +λz2(Iθµ (( f ∗ g)(z)))′′(1+ βeiφ)

(1−λ)Iθµ (( f ∗ g)(z)) +λz(Iθµ (( f ∗ g)(z)))′

−
βeiφ(1−λ)Iθµ (( f ∗ g)(z)) +λz(Iθµ (( f ∗ g)(z)))′

(1−λ)Iθµ (( f ∗ g)(z)) +λz(Iθµ (( f ∗ g)(z)))′

�
≥ α . (2.2)

Let

F(z) = [z(Iθµ (( f ∗ g)(z)))′ +λz2(Iθµ (( f ∗ g)(z)))′′](1+ βeiφ)

− βeiφ[(1−λ)Iθµ (( f ∗ g)(z)) +λz(Iθµ (( f ∗ g)(z)))′]

and

E(z) = (1−λ)Iθµ (( f ∗ g)(z)) +λz(Iθµ ( f ∗ g)(z))′.

By Lemma 1.2, and equation (2.2) is equivalent to |F(z) + (1 − α)E(z)| ≥
|F(z)− (1+α)E(z)|, for 0≤ α < 1. But

|F(Z) + (1−α)E(Z)|

=

����(2−α)z−
∞∑

n=2

[n+ nλ(n− 1) + (1−α)(1−λ+ nλ)]K(n,µ,θ)an bnzn

− βeiφ
∞∑

n=2

[n+ nλ(n− 1)− (1−λ+ nλ)]K(n,µ,θ)an bnzn

����

≥ (2−α)|z| −
∞∑

n=2

[n+λ(n− 1) + (1−α)(1−λ+ nλ)]K(n,µ,θ)an bn|z|n

− β
∞∑

n=2

[n+λn(n− 2)− 1+λ]K(n,µ,θ)an bn|z|n .

Now,

|F(Z)− (1+α)E(Z)|

=

����−αz−
∞∑

n=2

[n+ nλ(n− 1)− (1+α)(1−λ+ nλ)]K(n,µ,θ)an bnzn

− βeiφ
∞∑

n=2

[n+ nλ(n− 1)− (1−λ+ nλ)]K(n,µ,θ)an bnzn

����

≤ α|z|+
∞∑

n=2

[n+ nλ(n− 1)− (1+α)(1−λ+ nλ)]K(n,µ,θ)an bn|z|n

+ β
∞∑

n=2

[n+ nλ(n− 1)− (1−λ+ nλ)]K(n,µ,θ)an bn|z|n .
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Hence,

|F(z) + (1−α)E(z)| − |F(z)− (1+α)E(z)|

≥ 2(1−α)|z| −
∞∑

n=2

[(2n+ 2n(n− 1)λ− 2α(1−λ+ nλ)

− β(2n+ 2nλ)(n− 1)− 2(1−λ+ nλ)]K(n,µ,θ )an bn|z|n

≥ 0

or
∞∑

n=2

[n(1+ β) + nλ(n− 1)(1+ β)− (1−λ+ nλ)(α+ β)]K(n,µ,θ )an bn ≤ 1−α

which is equivalent to
∞∑

n=2

(1−λ+ nλ)[n(1+ β)− (β +α)]K(n,µ,θ)an bn ≤ 1−α .

Conversely suppose that the equation(2.1) holds good, then we have to prove that

Re
�zIθµ (( f ∗ g)(z))′ +λz2(Iθµ (( f ∗ g)(z)))′′(1+ βeiφ)

(1−λ)Iθµ (( f ∗ g)(z)) +λz(Iθµ (( f ∗ g)(z))))′

−
βeiφ(1−λ)Iθµ (( f ∗ g)(z)) +λz(Iθµ (( f ∗ g)(z))))′

(1−λ)Iθµ (( f ∗ g)(z)) +λz(Iθµ (( f ∗ g)(z))))′

�
≥ α .

Now choosing the value of z on the positive real axis where 0 ≤ z = r < 1, the
above inequality reduces to

Re
�




(1−α)−
∞∑

n=2
[n(1+ βeiφ)(1−λ+ nλ)

−(α+ βeiφ)(1−λ+ nλ)]K(n,µ,θ)an bnrn−1




1−
∞∑

n=2
(1−λ+ nλ)K(n,µ,θ)an bnrn−1

�
≥ 0 .

Since Re(e−iφ)≥−|eiφ |=−1, the above inequality reduces to

Re
�




(1−α)−
∞∑

n=2
[n(1+ β)(1−λ+ nλ)

−(α+ β)(1−λ+ nλ)]K(n,µ,θ)an bnrn−1




1−
∞∑

n=2
(1−λ+ nλ)K(n,µ,θ)an bnrn−1

�
≥ 0 .

Letting r → 1− , we get the desired result. Hence the proof. ¤

Corollary 2.1. If f ∈ SRA(λ,β ,α,µ,θ), then

an ≤
1−α

(1−λ+ nλ)(n(1+ β)− (β +α))K(n,µ,θ )bn
,

where 0≤ α < 1, β ≥ 0, 0≤ λ≤ 1, 0≤ µ < 1, 0< θ ≤ 1 .
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Theorem 2.2. If f1(z) = z and

fn(z) = z− 1−α
(1−λ+ nλ)(n(1+ β)− (β +α))K(n,µ,θ )

zn,

where n ≥ 2, n ∈ N, 0 ≤ α < 1, β ≥ 0, 0 ≤ λ ≤ 1, 0 ≤ µ < 1, 0 < θ ≤ 1. Then
f ∈ SRA(λ,β ,α,µ,θ ) if and only if it can be expressed in the form

f (z) =
∞∑

n=2

σn fn(z),

where σn ≥ 0 and
∞∑

n=2
σn = 1 or 1= σ1 +

∞∑
n=2
σn .

Proof. let f (z) =
∞∑

n=2
σn fn(z), where σn ≥ 0 and

∞∑
n=2
σn = 1 or 1 = σ1 +

∞∑
n=2
σn .

Then

f (z) = z− 1−α
(1−λ+ nλ)(n(1+ β)− (β +α))K(n,µ,θ)

σnzn .

But

f (z) =
∞∑

n=2

�
(1−λ+ nλ)(n(1+ β)− (β +α))K(n,µ,θ)

1−α bn

�

×
�

1−α
(1−λ+ nλ)(n(1+ β)− (β +α))K(n,µ,θ)

σn

�

=
∞∑

n=2

σn

= 1−σ1 ≤ 1 (from Theorem 2.1).

Using Theorem 2.1, we have f ∈ SRA(λ,β ,α,µ,θ). Conversely, let us assume that
f (z) of the form (1.1) belongs to SRA(λ,β ,α,µ,θ). Then

an ≤
1−α

(1−λ+ nλ)(n(1+ β)− (β +α))K(n,µ,θ )bn
, n ∈ N, n≥ 2 .

Setting

σn =
(1−λ+ nλ)(n(1+ β)− (β +α))K(n,µ,θ)an bn

1−α
and

σ1 = 1−
∞∑

n=2

σn

we have

f (z) =
∞∑

n=2

σn fn(z) = σ1 f1(z) +
∞∑

n=2

σn fn(z) .

Hence the proof. ¤
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3. Hadamard Product

Theorem 3.1. Let

f (z) = z−
∞∑

n=2

anzn and g(z) = z −
∞∑

n=2

bnzn

belongs to SRA(λ,β ,α,µ,θ). Then the Hadamard Product of f (z) and g(z) given by

( f ∗ g)(z) = z−
∞∑

n=2

an bnzn belongs to SRA(λ,β ,α,µ,θ).

Proof. Since f (z) and g(z) belongs to SRA(λ,β ,α,µ,θ), we have
∞∑

n=2

�
(1−λ+ nλ)(n(1+ β)− (β +α))K(n,µ,θ)bn

1−α

�
an ≤ 1

and
∞∑

n=2

�
(1−λ+ nλ)(n(1+ β)− (β +α))K(n,µ,θ)an

1−α

�
bn ≤ 1

and by applying the Cauchy-Schwartz inequality, we have

∞∑

n=2

� (1−λ+ nλ)(n(1+ β)− (β +α))K(n,µ,θ)
p

an bn

1−α

�p
an bn

≤
� ∞∑

n=2

�
(1−λ+ nλ)(n(1+ β)− (β +α))K(n,µ,θ)bn

1−α

�
an

� 1
2

×
� ∞∑

n=2

�
(1−λ+ nλ)(n(1+ β)− (β +α))K(n,µ,θ)an

1−α

�
bn

� 1
2

.

However, we obtain

∞∑

n=2

� (1−λ+ nλ)(n(1+ β)− (β +α))K(n,µ,θ)
p

an bn

1−α

�p
an bn ≤ 1 .

Now, we have to prove that
∞∑

n=2

�
(1−λ+ nλ)(n(1+ β)− (β +α))K(n,µ,θ)

1−α

�
an bn ≤ 1 .

Since
∞∑

n=2

�
(1−λ+ nλ)(n(1+ β)− (β +α))K(n,µ,θ)

1−α

�
an bn

=
∞∑

n=2

� (1−λ+ nλ)(n(1+ β)− (β +α))K(n,µ,θ)
p

an bn

1−α

�p
an bn .

Hence the proof. ¤
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4. Application of the Fractional Calculus

Various operators of fractional calculus (i.e. fractional derivative and fractional
integral) have been rather extensively studied by many researchers ([4, 5, 6]).
Each of these theorems would involve certain operator of fractional calculus which
are defined as follows ([2]).

Definition 4.1. The fractional integral operator of order δ is defined, for a function
f (z), by

Dδz ( f (z)) =
1

Γ(δ)

∫ z

0

f (t)

(z− t)1−δ
d t, δ > 0 (4.1)

where f (z) is analytic function in a simply connected region of z-plane containing
the origin and the multiplicity of (z − t)δ−1 is removed by requiring log(z − t) to be
read when (z− t)> 0.

Definition 4.2. The fractional derivative of order δ is defined for a function f (z) by

Dδz ( f (z)) =
1

Γ(1−δ)
d

dz

∫ z

0

f (t)

(z− t)δ
d t, 0≤ δ < 1 (4.2)

where f (z) is analytic function in a simply connected region of z-plane containing
the origin and the multiplicity of (z − t)δ−1 is removed by requiring log(z − t) to be
read when (z− t)> 0.

Definition 4.3. The fractional derivative of order k+δ is defined by

Dk+δ
z ( f (z)) =

dk

dzk
Dδz f (z), 0≤ δ < 1. (4.3)

From Definition 4.1 and 4.2, after a simple computation we obtain

D−δz f (z) =
1

Γ(2+δ)
zδ+1 −

∞∑

n=2

Γ(n+ 1)
Γ(n+ 1+δ)

anzn+δ , (4.4)

Dδz f (z) =
1

Γ(2−δ)z
1−δ −

∞∑

n=2

Γ(n+ 1)
Γ(n+ 1−δ)anzn−δ . (4.5)

Now using equations (4.4) and (4.5). Let us prove the following theorems:

Theorem 4.1. Let f ∈ SRA(λ,β ,α,µ,θ ). Then

|D−δz f (z)| ≤ 1

Γ(2+δ)
|z|δ+1

�
1+

2(1−α)
(2+δ)(1+λ)(2+ β −α)(θ + 1)b2

|z|
�

, (4.6)

|D−δz f (z)| ≥ 1

Γ(2+δ)
|z|δ+1

�
1− 2(1−α)
(2+δ)(1+λ)(2+ β −α)(θ + 1)b2

|z|
�

. (4.7)

The inequalities (4.6) and (4.7) are attained for the function f given by

f (z) = z− 1−α
(1+α)(2+ β −α)(θ + 1)b2

z2 . (4.8)
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Proof. From Theorem 2.1, we obtain

∞∑

n=2

an ≤
1−α

(1+λ)(2+ β −α)(θ + 1)b2
. (4.9)

Using equation (4.4), we obtain

Γ(2+δ)z−δD−δz f (z) = z −
∞∑

n=2

l(n,δ)anzn (4.10)

such that

l(n,δ) =
Γ(n+ 1)Γ(2+δ)
Γ(n+ 1+δ)

, n≥ 2

where l(n,δ) is a decreasing function of n and 0< l(n,δ)≤ (2,δ) =
2

2+δ
.

Using equations (4.9) and (4.10), we obtain

|Γ(2+δ)z−δD−δz f (z)| ≤ |z|+ l(2,δ)|z|2
∞∑

n=2

an

≤ |z|+ 2(1−α)
(2+δ)(1+λ)(2+ β −α)(θ + 1)b2

|z|2,

which is an equation (4.6).
Similarly we can get equation (4.7). ¤

Theorem 4.2. Let f ∈ SRA(λ,β ,α,µ,θ ). Then

|Dδz f (z)| ≤ 1

Γ(2−δ) |z|
1−δ
�

1+
2(1−α)

(2−δ)(1+λ)(2+ β −α)(θ + 1)b2
|z|
�

(4.11)

and

|Dδz f (z)| ≥ 1

Γ(2−δ) |z|
1−δ
�

1− 2(1−α)
(2−δ)(1+λ)(2+ β −α)(θ + 1)b2

|z|
�

. (4.12)

The inequalities (4.11) and (4.12) are attained for the function f (z) given by

f (z) = z− 1−α
(1+α)(2+ β −α)(θ + 1)b2

z2 . (4.13)

Proof. From equation (4.5), we obtain

Γ(2−δ)zδDδz f (z) = z−
∞∑

n=2

ζ(n,δ)anzn

such that

ζ(n,δ) =
Γ(n+ 1)Γ(2−δ)
Γ(n+ 1−δ) , n≥ 2 (4.14)
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where ζ(n,δ) is a decreasing function and 0 < ζ(n,δ) ≤ ζ(2,δ) =
2

2−δ . Using

equations (4.9) and (4.14), we obtain

|Γ(2−δ)zδDδz f (z)| ≤ |z|+ ζ(2,δ)|z|2
∞∑

n=2

an

≤ |z|+ 2(1−α)
(2−δ)(1+λ)(2− β +α)(θ + 1)b2

|z|2

which is nothing but equation (4.11).
Similarly we can get equation (4.12). ¤

Corollary 4.1. For every f ∈ SRA(λ,β ,α,µ,θ), we have

|z|2
2

�
1− 2(1−α)

3(1+λ)(2− β +α)(1+ θ)b2
|z|
�

≤
����
∫ z

0

f (t)d t

����

≤ |z|
2

2

�
1+

2(1−α)
3(1+λ)(2− β +α)(1+ θ)b2

|z|
�

and

|z|
�

1− 1−α
(1+λ)(2− β +α)(θ + 1)b2

|z|
�

≤ | f (z)|

≤ |z|
�

1+
1−α

(1+λ)(2− β +α)(θ + 1)b2
|z|
�

.

Proof. By Definition 4.1 and Theorem 4.1 for δ = 1, we have D−z 1 f (z) =∫ z

0

f (t)d t , the result is true. Also by Definition 4.2 and Theorem 4.2 for δ = 0,

we have

D0
z f (z) =

d

dz

∫ z

0

f (t)d t = f (z).

Hence the result is true. ¤
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