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1. Introduction
Hitzler and Seda [10] introduced the concept of metric-like (or dislocated metric) spaces, which
is a generalized version of metric spaces. Later, Amini-harandi [2] established some fixed point
results in the class of metric-like space. Several authors proved the existence of fixed and
common fixed point in metric-like space (for instance see [1], [4–7], [18]).

In 2012, Samet et al. [17] introduced the concept of α-contraction and α-admissible mappings
and proved various fixed point theorems for such class of mappings defined on complete metric
spaces. There after several authors have proved fixed point theorems for α-admissible mappings
in complete metric space (see [11], [12], [13], [15] and [16]).
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Recently, Chandok [8] introduced the notion of (α,β)-admissible mappings and obtained some
fixed point theorems. Then various authors studied in this direction (see [1] and [18]). In [14],
Khojasteh et al. proposed the notion of simulation function to unify the several existing fixed
point results in the literature. There are many fixed point results in the setting of simulation
function. For instance, (see [1], [3], [9], [18]).

In this paper, we use the concept of (α,β)-admissible Z-contraction with respect to ζ and
establish the existence of fixed points for this class of mappings in metric-like spaces. Our result
generalizes and extends some existing theorems in the literature. One illustrated example is
given to support the obtained results.

2. Preliminaries
Definition 2.1 ([2]). Let X be a nonempty set. A function σ : X × X → R+ is said to be a
metric-like (or a dislocated metric) on X , if for any x, y, z ∈ X , the following conditions hold:

(σ1) σ(x, y)= 0⇒ x = y;

(σ2) σ(x, y)=σ(y, x);

(σ3) σ(x, z)≤σ(x, y)+σ(y, z).

The pair (X ,σ) is called a metric-like space. Then a metric-like on X satisfies all of the conditions
of a metric except that σ(x, x) may be positive for x ∈ X . Each metric-like σ on X generates a
topology τσ on X , whose base is the family of open σ-balls, then for all x ∈ X and ε> 0

Bσ(X ,ε)= y ∈ X :σ(x, y)−σ(x, x)< ε.
Now, let (X ,σ) be a metric-like space. A sequence {xn} in X converges to x ∈ X , if and only if

lim
n→∞σ(xn, x)=σ(x, x).

Let (X ,σ) be metric-like space and let T : X → X be a continuous mapping. Then

lim
n→∞xn = x ⇒ lim

n→∞T(xn)= T(x).

A sequence {xn} is Cauchy in (X ,σ), if and only if lim
n,m→∞σ(xn, xm) exists and is finite. Moreover,

(X ,σ) is complete, if and only is for every Cauchy sequence {xn} in X , there exists x ∈ X such
that

lim
n→+∞σ(x, xn)=σ(x, x)= lim

n,m→∞σ(xn, xm).

Every partial metric space and metric space is a metric-like space, but the converse is not true.

Example 2.2 ([1]). Let X = {0,1} and

σ(x, y)=
{

2, if x = y= 0,
1, otherwise.

Then (X ,σ) is a metric-like space. It is neither a partial metric space (σ(0,0)�σ(0,1)), nor a
metric space (σ(0,0)= 2 6= 0).

Remark 2.3 ([1]). A subset A of a metric-like space (X ,σ) is bounded if there is a point b ∈ X
and a positive constant k such that σ(a,b)≤ k, for all a ∈ A.
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Remark 2.4 ([1, 2]). Let X = {0,1} such that σ(x, y) = 1 for each x, y ∈ X and let xn = 1 for
n ∈ N . Then it is easy to see that xn → 0 and xn → 1 and so in metric-like space, the limit of a
convergence sequence is not necessarily unique.

Lemma 2.5 ([2, 5, 9]). Let (X ,σ) be a metric-like space. Let {xn} be a sequence in X such that
xn → x, where x ∈ X and σ(x, y)= 0. Then for all y ∈ X we have lim

n→∞σ(xn, y)=σ(x, y).

Definition 2.6 ([17]). For a nonempty set X , let T : X → X and α : X × X → [0,∞) be given
mappings. We say that T is α-admissible, if for all x, y ∈ X , we have

α(x, y)≥ 1 =⇒ α(Tx,T y)≥ 1.

Chandok [8] introduced the concept of (α,β)-admissible Geraghty type contractive mapping,
which sufficient condition for the existence of a fixed point for such class of generalized non-
linear contractive mapping in metric space.

Definition 2.7 ([8]). Let X be a nonempty set T : X → X and α,β : X × X → R+, we say
that T is an (α,β)-admissible mapping if α(x, y) ≥ 1 and β(x, y) ≥ 1 implies α(Tx,T y) ≥ 1
and β(Tx,T y)≥ 1, for all x, y ∈ X .

Khojasteh et al. [14] introduced a new class of mappings called simulation functions. They
proved many fixed point theorems and showed that several results in the literature are simple
consequences of their obtained results.

Definition 2.8 ([14]). A function ζ : [0,∞)× [0,∞) → R is called a simulation function if ζ
satisfies the following conditions:

(ζ1) ζ(0,0)= 0;

(ζ2) ζ(t, s)< s− t, for all t, s > 0;

(ζ3) if {tn} and {sn} are sequences in (0,∞) such that

lim
n→∞ tn = lim

n→∞ sn = l ∈ (0,∞),

then

lim
n→∞supζ(tn, sn)< 0.

In [14], the following unique fixed point theorem is established.

Theorem 2.9 ([14]). Let (X ,d) be a metric space and T : X → X be a Z-contraction with respect
to a simulation function ζ, that is,

ζ(d(Tx,T y),d(x, y))≥ 0, for all x, y ∈ X .

Then T has a unique fixed point.
It is worth mentioning that the Banach contraction is an example of Z-contractions by defining
ζ : [0,∞)× [0,∞)→R via

ζ(t, s)=λs− t, for all s, t ∈ [0,∞),

where λ ∈ [0,1).
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Argoubi et al. [3] modified Definition 2.8 as follows.

Definition 2.10 ([3]). A simulation function is a function ζ : [0,∞)× [0,∞)→R that satisfies the
following conditions:

(i) ζ(t, s)< s− t, for all t, s > 0;

(ii) if {tn} and {sn} are sequences in (0,∞) such that

lim
n→∞ tn = lim

n→∞ sn = l ∈ (0,∞),

then

lim
n→∞supζ(tn, sn)< 0.

It is clear that any simulation function in the sense of Khojasteh et al. [14] (Definition 2.8) is
also a simulation function in the sense of Argoubi et al. [3] (Definition 2.10). The converse is not
true.

Example 2.11 ([3]). Define a function ζ : [0,∞)× [0,∞)→R by

ζ(t, s)=
{

1, if (s, t)= (0,0),
λs− t, otherwise,

where λ ∈ (0,1). Then ζ is a simulation function in the sense of Argoubi et al. [3].

In the following, some other examples of simulation functions in the sense of Definition 2.8.

(i) ζ(t, s)= cs− t, for all t, s ∈ [0,∞) where c ∈ [0,1),

(ii) ζ(t, s)= s−φ(s)− t, for all t, s ∈ [0,∞),

where φ :R+ →R+ is a lower semicontinuous function such that φ(t)= 0 if and only if t = 0.

3. Main Results
First, we introduce the following:

Definition 3.1. Let (X ,σ) be a metric-like space. Given T : X → X and α,β : X × X →R+. Then
T is said an (α,β)-admissible Z-contraction with respect to ζ if

ζ(α(Tx,T y)β(Tx,T y)σ(Tx,T y), M(x, y))≥ 0

for all x, y ∈ X , where ζ is a simulation function in the sense of Definition 2.8. Here

M(x, y)=max
{
σ(x, y),σ(x,Tx),σ(y,T y),

σ(x,T y)+σ(y,Tx)
4

}
.

Now, we introduce our main theorem.

Theorem 3.2. Let (X ,σ) be a complete metric-like space and a continuous self mapping
T : X → X be a (α,β)-admissible Z-contraction with respect to ζ simulation function satisfying as

ζ(α(Tx,T y)β(Tx,T y)σ(Tx,T y), M(x, y))≥ 0, (3.1)

for all x, y ∈ X , where

M(x, y)=max
{
σ(x, y),σ(x,Tx),σ(y,T y),

σ(x,T y)+σ(y,Tx)
4

}
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and there exists x0 ∈ X such that α(x0,Tx0)≥ 1, β(x0,Tx0)≥ 1.
Then T has a unique fixed point u ∈ X such that σ(u,u)= 0.

Proof. Let {xn} be a sequence in X such that xn+1 = Txn, for all = 0,1,2, . . . . If xn = xn+1 then
Txn = xn+1 = xn, i.e., xn is a fixed point of T . So proof is trivial. Now, we consider

xn 6= xn+1, for all n ∈N∪ {0}.

Since α(x0,Tx0)≥ 1⇒α(x0, x1)≥ 1 and T is an (α,β)-admissible, so

α(Tx0,Tx1)≥ 1⇒α(x1, x2)≥ 1.

Continuing, we have for all n ≥ 0

α(xn,xn+1)≥ 1. (3.2)

Similarly, for all n ≥ 0, we obtain

β(xn,xn+1)≥ 1. (3.3)

From (3.1), we have

0≤ ζ(α(Txn−1,Txn)β(Txn−1,Txn)σ(Txn−1,Txn), M(xn−1, xn))

= ζ(α(xn, xn+1)β(xn, xn+1)σ(xn, xn+1), M(xn−1, xn)). (3.4)

Since

M(xn−1, xn)=max
{
σ(xn−1, xn),σ(xn−1,Txn−1),σ(xn,Txn),

σ(xn−1,Txn)+σ(xn,Txn−1)
4

}
=max

{
σ(xn−1, xn),σ(xn−1, xn),σ(xn, xn+1),

σ(xn−1,xn+1)+σ(xn, xn)
4

}
.

By a triangular inequality, we have
σ(xn−1, xn+1)+σ(xn, xn)

4
≤max {σ(xn−1, xn),σ(xn, xn+1)} .

Thus

M(xn−1, xn)=max{σ(xn−1, xn),σ(xn, xn+1)}.

Therefore from (3.4), we have

0≤ ζ(α(xn, xn+1)β(xn, xn+1)σ(xn, xn+1),max{σ(xn−1, xn),σ(xn, xn+1)})

<max{σ(xn−1, xn),σ(xn, xn+1)}−α(xn, xn+1)β(xn, xn+1)σ(xn, xn+1) (by (ζ2))

Then

α(xn, xn+1)β(xn, xn+1)σ(xn, xn+1)<max{σ(xn−1, xn),σ(xn, xn+1)}. (3.5)

Necessarily, we have

max{σ(xn−1, xn),σ(xn, xn+1)}=σ(xn−1, xn), for all n ≥ 1. (3.6)

Consequently, we obtain

α(xn, xn+1)β(xn, xn+1)σ(xn, xn+1)<σ(xn−1, xn), for all n ≥ 1. (3.7)

We know

σ(xn, xn+1)≤α(xn, xn+1)β(xn, xn+1)σ(xn, xn+1). (3.8)
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Since α(xn, xn+1)≥ 1 and β(xn, xn+1)≥ 1.
From (3.7) and (3.8) for all n ≥ 0, we have

σ(xn, xn+1)≤α(xn, xn+1)β(xn, xn+1)σ(xn, xn+1)<σ(xn−1, xn) (3.9)

i.e.

σ(xn, xn+1)<σ(xn−1, xn). (3.10)

The sequence {σ(xn, xn+1)} is non increasing. So there exist r ≥ 0 such that

lim
n→∞σ(xn−1, xn)= r.

We prove that

lim
n→∞σ(xn−1, xn)= 0. (3.11)

Now, we assume on the contrary such that r > 0. By (3.9) we have

lim
n→∞{α(xn, xn+1)β(xn, xn+1)σ(xn, xn+1)}= r.

Since r > 0 and letting sn = α(xn, xn+1)β(xn, xn+1)σ(xn, xn+1) and tn = σ(xn, xn+1) such that
lim

n→∞ sn = lim
n→∞ tn = r, then by (ζ3)

lim
n→∞supζ(sn, tn)< 0.

Since ζ(sn, tn)≥ 0, so

0≤ lim
n→∞supζ(sn, tn)< 0,

which is contradiction. So our assumption is false. Hence r = 0. Again we show that {xn} is a
Cauchy sequence in (X ,σ) i.e.

lim
n,m→∞σ(xn, xm)= 0. (3.12)

Suppose on the contrary that is {xn} is not a Cauchy sequence. Then there exist ε> 0 for which
we can assume subsequences xn(k) and xm(k) of xn with n(k)> m(k)> k such that for every k

σ(xn(k), xm(k))≥ ε (3.13)

and n(k) is the smallest number such that (3.13) holds. From (3.13), we get

σ(xn(k)−1, xm(k))< ε. (3.14)

Then by triangular inequality and (3.12), we have

ε≤σ(xn(k), xm(k))≤σ(xn(k), xn(k)−1)+σ(xn(k)−1, xm(k))

<σ(xn(k), xn(k)−1)+ε .

Taking n →∞ in above equation and applying (3.11), we get

lim
n→∞σ(xn(k), xm(k))= ε. (3.15)

From the triangular inequality, we have

σ(xn(k)+1, xm(k))≤σ(xn(k)+1, xn(k))+σ(xn(k), xm(k)).

Taking limit n →∞ and using (3.11), (3.13) and (3.15), we have

lim
n→∞σ(xn(k)+1, xm(k))= ε. (3.16)
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Similarly, it is easy to show that

lim
n→∞σ(xn(k)+1, xm(k)+1)= ε. (3.17)

Since T is an (α,β)-admissible Z-contraction with respect to ζ and using (ζ3)

0≤ lim
n→∞supζ(α(Txn(k),Txm(k))β(Txn(k),Txm(k))σ(Txn(k),Txm(k)), M(xn(k), xm(k)))

0≤ lim
n→∞supζ(α(xn(k)+1, xm(k)+1)β(xn(k)+1, xm(k)+1)σ(xn(k)+1, xm(k)+1), M(xn(k), xm(k))). (3.18)

Since

M(xn(k), xm(k))=max
{
σ(xn(k), xm(k)),σ(xn(k),Txn(k)),σ(xm(k),Txm(k)),

σ(xn(k),Txm(k))+σ(xm(k),Txn(k))
4

}
=max

{
σ(xn(k), xm(k)),σ(xn(k), xn(k)+1),σ(xm(k), xm(k)+1),

σ(xn(k),xm(k)+1)+σ(xm(k), xn(k)+1)
4

}
.

From (3.11), (3.15), (3.16) and (3.17)

lim
n→∞σ(xn(k)+1, xm(k)+1)= lim

n→∞M(xn(k), xm(k))= ε. (3.19)

From (3.18) and (3.19), we have

0≤ lim
n→∞supζ(α(xn(k)+1, xm(k)+1)β(xn(k)+1, xm(k)+1)σ(xn(k)+1, xm(k)+1), M(xn(k), xm(k)))< 0,

which is contradict due to our assumption. So {xn} is a Cauchy sequence.
Since (X ,σ) be a complete metric-like space, then there exist x ∈ X and using (3.12) such that

lim
n→∞σ(xn, x)=σ(x, x)= lim

n,m→∞σ(xn, xm)= 0. (3.20)

We show that x is a fixed point of T . Since T is continuous and xn → x as n →∞. So from (3.20),

lim
n→∞σ(xn+1,Tx)= lim

n→∞σ(Txn,Tx)=σ(Tx,Tx)= 0. (3.21)

Using Lemma 2.5 and (3.21), we have

lim
n→∞σ(xn+1,Tx)=σ(x,Tx). (3.22)

From (3.21) and (3.22), we have

σ(x,Tx)=σ(Tx,Tx)= 0. (3.23)

Hence Tx = x, that is x is a fixed point of T .
Now, we shall show that the uniqueness of fixed point of x. We argue by contrary. Assume that
there exist u ∈ X such that Tu = u and x 6= u. Now,

0≤ ζ(α(Tx,Tu)β(Tx,Tu)σ(Tx,Tu), M(x,u)) (3.24)

where

M(x,u)=max
{
σ(x,u),σ(x,Tu),σ(u,Tu),

σ(x,Tu)+σ(u,Tx)
4

}
=max

{
σ(x,u),σ(x,u),σ(u,u),

σ(x,u)+σ(u, x)
4

}
=σ(x,u). (3.25)
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From (3.24) and (3.25), we have

0≤ ζ(α(Tx,Tu)β(Tx,Tu)σ(Tx,Tu),σ(x,u))

≤σ(x,u)−α(Tx,Tu)β(Tx,Tu)σ(Tx,Tu)

=σ(x,u)−α(x,u)β(x,u)σ(x,u)

=σ(x,u)[1−α(x,u)β(x,u)]< 0.

Since α(x,u) ≥ 1, β(x,u) ≥ 1, which is a contradiction. So x = u. Hence T has a unique fixed
point.

Corollary 3.3. In Theorem 3.2, if we have choose any one of the ζ simulation given below, we
have the same result and proof are similar to these corollary:

ζ(α(x,Tx)β(y,T y)σ(Tx,T y), M(x, y))≥ 0, (3.26)

ζ(α(x, y)β(Tx,T y)σ(Tx,T y), M(x, y))≥ 0, (3.27)

ζ(α(x, y)β(x, y)σ(Tx,T y), M(x, y))≥ 0, (3.28)

ζ(α(Tx,T y)β(x, y)σ(Tx,T y), M(x, y))≥ 0. (3.29)

Next, we apply Theorem 3.2 to obtain different results in literature. The first one is Banach
type.

Corollary 3.4. Let (X ,σ)be a complete metric-like space and let T be a self-mapping on X
satisfying the following conditions:

(i) T is (α,β)-admissible Z-contraction;

(ii) there exists x0 ∈ X such that α(x0,Tx0)≥ 1 and β(x0,Tx0)≥ 1;

(iii) α(Tx,T y)β(Tx,T y)σ(Tx,T y)≤λM(x, y), for all x, y ∈ X and λ ∈ [0,1);

(iv) T is σ continuous.
Then T has a unique fixed point u ∈ X with σ(u,u)= 0.

Proof. Following the steps of Theorem 3.2, by taking as a ζ-simulation function,

ζ(t, s)=λs− t.

Corollary 3.5. Let (X ,σ) be a complete metric-like space and let T be a self-mapping on X
satisfying the following conditions:

(i) T is (α,β)-admissible Z-contraction;

(ii) there exists x0 ∈ X such that α(x0,Tx0)≥ 1 and β(x0,Tx0)≥ 1;

(iii) there exists a lower semi-continuous ϕ :R+ →R+ with ϕ−1 = {0} such that

α(Tx,T y)β(Tx,T y)σ(Tx,T y)≤ M(x, y)−ϕ(M(x, y)), for all x, y ∈ X ;

(iv) T is σ continuous.
Then T has a unique fixed point u ∈ X with σ(u,u)= 0.

Proof. It is sufficient to take ζ(t, s)= s−ϕ(s)− t.
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Example 3.6. Take X = [0,∞) endowed with the metric like σ(x, y) = x + y. Consider the

mapping T : X → X given by Tx =
{

x
3 , if 0≤ x ≤ 1
3x, otherwise.

Note that (X ,σ) is complete metric-like space. Define mappings α,β : X × X →R+ by

α(x, y)=β(x, y)=
{

1, if x, y ∈ [0,1]
0, otherwise.

Note that T is an (α,β)-admissible if α(x, y)≥1 and β(x, y)≥1⇒α(Tx,T y)≥1 and β(Tx,T y)≥ 1,
for all x, y ∈ X .
By definition of α,β and x, y ∈ [0,1], we have α(Tx,T y)=α( x

3 , y
3

)= 1.
Similarly, β(Tx,T y)= 1.
From above, it is clear that T is an (α,β)-admissible mapping. Let ζ(t, s)=λs− t, λ ∈ [0,1], for
all s, t ≥ 0. Also, for x, y ∈ X such that α(x, y)≥ 1 and β(x, y)≥ 1. So, x, y ∈ [0,1]. In this case we
have

α(Tx,T y)β(Tx,T y)σ(Tx,T y), M(x, y)=
(( x

3
+ y

3

)
, M(x, y)

)
. (3.30)

Now

M(x, y)=max
{
σ(x, y),σ(x,Tx),σ(y,T y),

σ(x,T y)+σ(y,Tx)
4

}
=max

{
(x+ y),

(
x+ x

3

)
,
(
y+ y

3

)
,

(
x+ y

3

)+ (
y+ x

3

)
4

}
.

Since x, y ∈ [0,1], therefore

M(x, y)= x+ y. (3.31)

From (3.30) and (3.31), we have

(α(Tx,T y)β(Tx,T y)σ(Tx,T y), M(x, y))=
(( x

3
+ y

3

)
, x+ y

)
.

It follows that

ζ(α(Tx,T y)β(Tx,T y)σ(Tx,T y), M(x, y))= ζ
(( x

3
+ y

3

)
, x+ y

)
=λ(x+ y)−

( x
3
+ y

3

)
.

If we take λ= 1
2 , we get( x+ y

2

)
−

( x
3
+ y

3

)
≥ 0

i.e.

ζ(α(Tx,T y)β(Tx,T y)σ(Tx,T y), M(x, y))≥ 0.

Also, let {xn} be a sequence in X such that α(xn, xn+1)≥ 1, β(xn, xn+1)≥ 1 for all n and xn → x ∈ X .
Then, {xn}⊂ [0,1] and x2

n + x2 → 2x2 as n →∞. Thus, xn → x as n →∞ in (X , | · |). This implies
that x ∈ [0,1] and so α(xn, x) = 1, β(xn, x) = 1 for all n. Moreover, there exists x0 ∈ X such
that α(x0,Tx0) ≥ 1, β(x0,Tx0) ≥ 1. In fact, for x0 = 1, we have α(1,T1) = α

(
1, 1

3

)= 1. Similarly,
β(1,T1) = β

(
1, 1

3

) = 1. Thus, all the conditions of Theorem 3.2 are verified. Here x = 0 is the
unique fixed point of T .
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4. Conclusion
In this attempt, we studied (α,β)-admissible mappings with respect to Z-contraction and proved
some fixed point results in complete metric-like spaces. Our results are generalization and
extension of many existing results in the literature. Finally, we show one example to support
the obtained results.
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