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1. Introduction
The concept of fuzzy set was first proposed by Zadeh [16] in 1965 and fuzzy subgroup was
presented by Rosenfeld [13]. In Liu [10] introduced the notion of fuzzy ideal of a ring. The notions
of fuzzy sub near ring, fuzzy ideal and fuzzy N-subgroup of a near ring was introduced by Salah
Abou-Zaid [1] and it has been studied by several authors (Kim and Jun [9], [8]; Narayanan [11];
Narayanan and Manikandan [12]; Saikia and Barthakur [14]; Kim and Kim [7], respectively).
The concept of intuitionistic fuzzy set was introduced by Atanassov [2] as a generalisation
of fuzzy set. This concept was further discussed by Dutta and Biswas [5]. Chinnadurai and
Kadalarasi [3] discussed the direct product of n (n = 1,2, . . . ,k) fuzzy sub near ring. Kim [6] was
introduced fuzzy ideal and fuzzy R-subgroups. Devi et al. [4] studied the intuitionistic fuzzy
strong bi-ideal of near ring. Pythagorean fuzzy set was introduced by Yager [15] in 2013.
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In this paper, we introduce the concept of a Pythagorean fuzzy strong bi-ideal of a near ring
and direct product of Pythagorean fuzzy ideal in near ring. We establish that every Pythagorean
fuzzy left N-subgroup or Pythagorean fuzzy left ideal of a near ring is a Pythagorean fuzzy
strong bi-ideal of a near ring and direct product of Pythagorean fuzzy ideals in the near ring
and also we establish that every Pythagorean left permutable fuzzy right N-subgroup or
Pythagorean left permutable fuzzy right ideal of the near ring is a Pythagorean fuzzy strong
fuzzy bi-ideal of the near ring.

2. Preliminaries
Definition 2.1 ([15]). Let us consider a universal set X . A Pythagorean fuzzy set P on X
is denoted and defined as P = {x, (WP(x),VP(x))/x ∈ X } where WP : X → [0,1] represents the
membership degree and VP : X → [0,1] represents the non-membership degree of x ∈ X to
the set P satisfying that 0 ≤ (WP(x))2 ≤ (VP(x))2 ≤ 1. Hence πP(x) =

√
1− (WP (x))2 + (VP (x))2

represents the indeterminacy of an object x ∈ X .

Definition 2.2 ([4]). An intuitionistic fuzzy set I = (WI ,VI) of a group (G,+) is said to be an
intuitionistic fuzzy subgroup of G if for all x, y ∈ N

(i) WI(x+ y)≥min{WI(x),WI(y)}.

(ii) WI(−x)=WI(x), or equivalently WI(x− y)≥min{WI(x),WI(y)}.

(iii) VI(x+ y)≤max{VI(x),VI(y)}.

(iv) VI(−x)=VI(x), or equivalently VI(x− y)≤max{VI(x),VI(y)}.

Definition 2.3 ([4]). An intuitionistic fuzzy subset I = (WI ,VI) of N is called an intuitionistic
fuzzy subnear-ring of N if for all x, y ∈ N

(i) WI(x− y)≥min{WI(x),WI(y)}.

(ii) WI(xy)≥min{WI(x),WI(y)}.

(iii) VI(x− y)≤max{VI(x),VI(y)}.

(iv) VI(xy)≤max{VI(x),VI(y)}.

Definition 2.4 ([4]). An intuitionistic fuzzy subset I = (WI ,VI ) of N is said to be an intuitionistic
fuzzy two-sided N-subgroup of N if

(i) I is an intuitionistic fuzzy subgroup of (N,+).

(ii) WI(xy)≥WI(x), for all x, y ∈ N.

(iii) WI(xy)≥WI(y), for all x, y ∈ N.

(iv) VI(xy)≤VI(x), for all x, y ∈ N.

(v) VI(xy)≤VI(y), for all x, y ∈ N.

If I satisfies (i), (ii) and (iv), then I is called an intuitionistic fuzzy right N-subgroup of N . If I
satisfies (i), (iii) and (v), then I is called an intuitionistic fuzzy left N-subgroup of N .
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3. Pythagorean Fuzzy Ideals in Near Ring
The aim of this study is to explore the idea of a Pythagorean fuzzy near ring and Pythagorean
fuzzy ideal of a near ring.

Definition 3.1. A Pythagorean fuzzy set P in a near ring N is called a Pythagorean fuzzy
subset of near ring of N if

(i) WP (h−k)≥min{WP (h),WP (k)}, VP (h−k)≤max{VP (h),VP (k)}.

(ii) WP (hk)≥min{WP (h),WP (k)}, VP (hk)≤max{VP (h),VP (k)}.

Definition 3.2. Let N be a near ring. A Pythagorean fuzzy set P in near ring N is called a
Pythagorean fuzzy set of N if

(i) WP (h−k)≥min{WP (h),WP (k)}, VP (h−k)≤max{VP (h),VP (h)}.

(ii) WP (k+h−k)≥WP (h), VP (k+h−k)≤VP (h).

(iii) WP (hk)≥WP (k), VP (hk)≤VP (k).

(iv) WP ((h+ t)k−hk)≥WP (t), VP ((h+ t)k−hk)≤VP (t).

A Pythagorean fuzzy subset with the above conditions (i)-(iii) is called a Pythagorean fuzzy left
ideal of N , where as a Pythagorean fuzzy subset with (i), (ii), and (iv) is called a Pythagorean
fuzzy right ideal of N .

Definition 3.3. A Pythagorean fuzzy set P = (WP ,VPi ) of N is said to be a Pythagorean fuzzy
bi-ideal of N if for all x, y ∈ N ,

(i) WP (h−k)≥min{WP (h),WP (k)}.

(ii) (WP ◦N ◦WP )∩ (WP ◦N)?WP ⊆WP .

(iii) VP (h−k)≤max{VP (h),VP (k)}.

(iv) (VP ◦N ◦VP )∪ (VP ◦N)?VP ⊇VP .

Theorem 3.4. Let C and D be Pythagorean fuzzy ideals of N . If C ⊂ D, then C ∪ D is a
Pythagorean fuzzy ideal of N .

Proof. Let C and D be Pythagorean fuzzy ideals of N . Let h,k, t ∈ N ; then,

WC∪D(h−k)=max(WC(h−k),WD(h−k))

≥max{min{WC(h),WC(k)},min{WD(h),WD(k)}}

=min{max{WC(h),WD(h)},max{WC(k),WD(k)}}

=min{WC∪D(h),WC∪D(k)}

and for non-membership grade, we have

VC∪D(h−k)=min(VC(h−k),VD(h−k))

≤min{max{VC(h),VC(k)},max(VD(h),VD(k))}
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=max{min{VC(h),VD(h)}max{VC(k),VD(k)}}

=max{VC∪D(h),VC∪D(k)}.

Next, we write

WC∪D(k+h−k)=max{WC(k+h−k),WD(k+h−k)}

≥max{WC(h),WD(h)}

=WC∪D(h)

and for non-membership grade, we get

VC∪D(k+h−k)=min{VC(k+h−k),VD(k+h−k)}

≤min{VC(h),VD(h)}

=VC∪D(h).

Furthermore, we deduce that

WC∪D(hk)=max{WC(hk),WD(hk)}

≥max{WC(k),WD(k)}

=WC∪D(k),

VC∪D(hk)=min{VC(hk),VD(hk)}

≤min{VC(k),VD(k)}

=VC∪D(k).

At last, we obtain

VC∪D((h+ t)k−hk)=max{WC((h+ t)k−hk),WD((h+ t)k−hk)}

≥max{WC(t),WD(t)}

=WC∪D(t),

VC∪D((h+ t)k−hk)=min{VC((h+ t)k−hk),VD((h+ t)k−hk)}

≤min{VC(t),VD(t)}

=VC∪D(t) .

Therefore, C∪D is a Pythagorean fuzzy ideal of N .

Theorem 3.5. Let C and D be Pythagorean fuzzy ideals of X . If C ⊂ D, then C ∩ D is a
Pythagorean fuzzy ideal of N.

Proof. Let C and D be Pythagorean fuzzy ideals of N . Let h,k, t ∈ N . Then, the following are
obtained.
For truth grade, we get

WC∩D(h−k)=min{WC(h−k),WD(h−k)}

≥min{min{WC(h),WC(k)},min{WD(h),WD(k)}}
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=min{min{WC(h),WD(h)},min{WC(k),WD(k)}}

=min{WC∩D(h),WC∩D(k)} .

For non-membership grade, we obtain

VC∩D(h−k)=max{VC(h−k),VD(h−k)}

≤max{max{VC(h),VC(k)},max{VD(h),VD(k)}}

=max{max{VC(h),VD(h)},max{VC(k),VD(k)}}

=max{VC∩D(h),VC∩D(k)} .

Next, we obtain

WC∩D(k+h−k)=min{WC(k+h−k),WD(k+h−k)}

≥min{WC(h),WD(h)}

=WC∩D(h) .

Similarly,

VC∩D(k+h−k)=max{VC(k+h−k),VD(k+h−k)}

≤max{VC(h),VD(h)}

=VC∩D(h) .

Furthermore, we deduce that

WC∩D(hk)=min{WC(hk),WD(hk)}

≥min{WC(k),WD(k)}

=WC∩D(k),

VC∩D(hk)=max{VC(hk),VD(hk)}

≤max{VC(k),VD(k)}

=VC∩D(k).

Finally, we conclude that

WC∩D((h+ t)k−hk)=min{WC((h+ t)k−hk),WD((h+ t)k−hk)}

≥min{WC(t),WD(t)}

=WC∩D(t),

VC∩D((h+ t)k−hk)=max{VC((h+ t)k−hk),VD((h+ t)k−hk)}

≤max{VC(t),VD(t)}

=VC∩D(t).

Therefore, C∩D is a Pythagorean fuzzy ideal of N .
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Theorem 3.6. Let P be a Pythagorean fuzzy ideal of N . Then,

Pm = {〈h,WPm(h),VPm(h)〉 : h ∈ N}

is a Pythagorean fuzzy ideal of N , where m is a positive integer and WPm(h) = (WP(h))m and
VPm(h)= (VP (h))m.

Proof. Let P be a Pythagorean fuzzy ideal of N . Let h,k, t ∈ N . Then, the following are observed.
For truth grade, we can write

WPm(h−k)= (WP (h−k))m

≥ (min{WP (h),WP (k)})m

=min{(WP (h))m, (WP (k))m}

=min{WPm(h),WPm(k)} .

For non-membership grade, we obtain the following:

VPm(h−k)= (VP (h−k))m

≤ (max{VP (h),VP (k)})m

=max{(VP (h))m, (VP (k))m}

=max(VPm(h),VPm(k)) .

Next, it is obtained that

WPm(k+h−k)= (WP (k+h−k))m

≥ (WP (h))m

=WPm(h),

[−2pt]VPm(k+h−k)= (VP (k+h−k))m

≤ (VP (h))m

=VPm(h) .

Also, we examine that

WPm(hk)= (WP (hk))m

≥ (WP (k))m

=WPm(k),

VPm(hk)= (VP (hk))m

≤ (VP (k))m

=VPm(k) .

At last, we write that

WPm((h+ t)k−hk)= (WP ((h+ t)k−hk))m

≥ (WP (t))m

=WPm(t) ,
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VPm((h+ t)k−hk)= (VP ((h+ t)k−hk))m

≤ (VP (t))m

=VPm(t) .

Therefore, Pm is a Pythagorean fuzzy ideal of Nm.

4. Pythagorean Fuzzy Strong Bi-ideals of Near-Rings
Definition 4.1. A Pythagorean fuzzy bi-ideal P = (W ,V ) of N is called a Pythagorean fuzzy
strong bi-ideal of N , if

(i) (N ◦W ◦W)⊆W .

(ii) (N ◦V ◦V )⊇V .

Example 4.2. Let N = {0,a,b, c} be a near-ring with two binary operations ‘+’ and is defined as
follows.

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

and

· 0 a b c
0 0 0 0 0
a 0 0 a 0
b 0 0 b 0
c 0 0 c 0

Define a Pythagorean fuzzy set P = (A,B), where A : N → [0,1] by A(0) = 0.8, A(a) = 0.6,
A(b)= 0.3= A(c). Then (A◦N◦A)(0)= 0.3, (A◦N◦A)(a)= 0.3, (A◦N◦A)(b)= 0.3, (A◦N◦A)(c)=
0.3, (N ◦ A ◦ A)(0) = 0.3, (N ◦ A ◦ A)(a) = 0.3, (N ◦ A ◦ A)(b) = 0.3, (N ◦ A ◦ A)(c) = 0.3 and so
A is a Pythagorean fuzzy strong bi-ideal of N and B : N → [0,1] by B(0) = 0.2, B(a) = 0.7,
B(b)= 0.9= B(c). Then (B◦N◦B)(0)= 0.9, (B◦N◦B)(a)= 0.9, (B◦N◦B)(b)= 0.9, (B◦N◦B)(c)= 0.9,
(N ◦B ◦B)(0) = 0.9, (N ◦B ◦B)(a) = 0.9, (N ◦B ◦B)(b) = 0.9, (N ◦B ◦B)(c) = 0.9 and so B is a
Pythagorean fuzzy strong bi-ideal of N . Thus P = (A,B) is a Pythagorean fuzzy strong bi-
ideal of N .

Theorem 4.3. Let {Pi} = {(WPi ,VPi ) : i ∈ I} be any family of Pythagorean fuzzy strong bi-
ideals in a near-ring N . Then

⋂
i∈I

Pi is a Pythagorean fuzzy strong bi-ideal of N , where⋂
i∈I

Pi =
{( ⋂

i∈I
WPi ,

⋃
i∈I

VPi

)}
, for all i ∈ I .

Proof. Let {Pi : i ∈ I} be any family of Pythagorean fuzzy strong bi-ideals of N.
Now for all x, y ∈ N ,⋂

i∈I
WPi (x− y)=min{WPi (x− y)/i ∈ I}

≥min{min{WPi (x),WPi (y)} : i ∈ I}

(since WPi is a Pythagorean fuzzy subgroup of N)
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=min
{⋂

i∈I
W(x),

⋂
i∈I

W(y) : i ∈ I
}
,⋃

i∈I
VPi (x− y)=max{VPi (x− y) : i ∈ I}

≤max{max{VPi (x),VPi (y)} : i ∈ I}

(since VPi is a Pythagorean fuzzy subgroup of N)

=max
{⋃

i∈I
V (x),

⋃
i∈I

V (y) : i ∈ I
}
.

Therefore
⋂
i∈I

Pi is a Pythagorean fuzzy subgroup of N .

To prove:
⋂
i∈I

Pi is a Pythagorean fuzzy bi-ideal of N.

Now for all x ∈ N , since WPi =
⋂
i∈I

WPi ⊆WPi , for every i ∈ I , we have

((WPi ◦N ◦WPi )∩ (WPi ◦N)?WPi )(x)≤ ((WPi ◦N ◦WPi )∩ (WPi ◦N)?WPi )(x)

(since WPi is a Pythagorean fuzzy bi-ideal of N)

≤WPi (x), for every i ∈ I.

It follows that

((WPi ◦N ◦WPi )∩ (WPi ◦N)?WPi ))(x)≤ inf{WPi (x) : i ∈ I}

=
(⋂

i∈I
WPi (x)

)
=WPi (x).

Thus (WPi ◦N ◦WPi )∩ (WPi ◦N)?WPi ) ⊆WPi .
So WPi is a Pythagorean fuzzy bi-ideal of N.
Now for all x ∈ N, since VPi =

⋃
i∈I

VPi ⊇VPi for some i ∈ I, we have

((VPi ◦N ◦VPi )∪ (VPi ◦N)?VPi ))(x)≥ ((VPi ◦N ◦VPi )∪ (VPi ◦N)?VPi ))(x)

(since VPi is a Pythagorean fuzzy bi-ideal of N)

≥VPi (x), for some i ∈ I.

It follows that

((VPi ◦N ◦VPi )∪ (VPi ◦N)?VPi ))(x)≥ sup{VPi (x) : i ∈ I}

=
(⋃

i∈I
VPi (x)

)
=VPi (x).

Thus (VPi ◦N ◦VPi )∪ (VPi ◦N)?VPi ) ⊇VPi .

So VPi is a Pythagorean fuzzy bi-ideal of N.

Thus
⋂
i∈I

Pi is a Pythagorean fuzzy bi-ideal of N .

Next, we prove
⋂
i∈I

Pi is a Pythagorean fuzzy strong bi-ideal of N.
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Now for all x ∈ N , since WPi =
⋂
i∈I

WPi ⊆WPi , for every i ∈ I , we have

(N ◦WPi ◦WPi )(x)≤ (N ◦WPi ◦WPi )(x)

≤WPi (x) for every i ∈ I

(since WPi is a Pythagorean fuzzy strong bi-ideal of N).

It follows that,

(N ◦WPi ◦WPi )(x)≤ inf{WPi (x) : i ∈ I}

=
(⋂

i∈I
WPi (x)

)
=WPi (x).

Thus N ◦WPi ◦WPi ⊆WPi . So WPi is a Pythagorean fuzzy strong bi-ideal of N.

Now for all x ∈ N , since VPi =
⋃
i∈I

VPi ⊇VPi , for some i ∈ I , we have

(N ◦VPi ◦VPi )(x)≥ (N ◦VPi ◦VPi )(x)

≥VPi (x) for every i ∈ I

(since VPi is a Pythagorean fuzzy strong bi-ideal of N).

It follows that,

(N ◦VPi ◦VPi )(x)≥ sup{VPi (x) : i ∈ I}

=
(⋃

i∈I
VPi (x)

)
=VPi (x).

Thus N ◦VPi ◦VPi ⊇VPi . So VPi is a Pythagorean fuzzy strong bi-ideal of N.
Thus

⋂
i∈I

VPi is a Pythagorean fuzzy strong bi-ideal of N.

Theorem 4.4. Every left permutable Pythagorean fuzzy right N-subgroup of N is a Pythagorean
fuzzy strong bi-ideal of N.

Proof. Let P = (WP ,VP ) be a left permutable Pythagorean fuzzy right N-subgroup of N .
To prove: P is a Pythagorean fuzzy strong bi-ideal of N.
First, we prove P is a Pythagorean fuzzy bi-ideal of N.
Choose a,b, c, x, y, i,b1,b2, x1, x2, y1, y2 ∈ N such that a = bc = x(y+ i)− xy, b = b1b2, x = x1x2

and y= y1 y2. Then

(WP ◦N ◦WP )∩ ((WP ◦N)?WP )(a)

=min{(WP ◦N ◦WP )(a), ((WP ◦N)?WP )(a)}

=min{sup
a=bc

min{(WP ◦N)(b),WP (c)}, ((WP ◦N)?WP )(x(y+ i)− xy)}

=min{sup
a=bc

min{ sup
b=b1b2

min{WP (b1), N(b2)},WP (c)}, ((WP ◦N)?WP )(x(y+ i)− xy)}
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(since N(z)= 1, for all z ∈ N)

=min{sup
a=bc

min{{ sup
b=b1b2

{WP (b1),WP (c)}}, ((WP ◦N)?WP )(x(y+ i)− xy)}}

(since WP is a Pythagorean fuzzy right N-subgroup of N,

WP (bc)=WP (b1b2c)=WP (b1(b2c))≥WP (b1))

≤min{sup
a=bc

min{WP (bc), N(c)}, N(x(y+ i)− xy)}

=min{sup
a=bc

min{WP (bc), N(x(y+ i)− xy)}}=WP (bc)=WP (a).

Thus (WP ◦N ◦WP )∩ ((WP ◦N)?WP )⊆WP .
Hence WP is a Pythagorean fuzzy bi-ideal of N.
Choose a,b, c, x, y, i,b1,b2, x1, x2, y1, y2 ∈ N such that a = bc = x(y+ i)− xy, b = b1,b2, x = x1x2

and y= y1 y2. Then

(VP ◦N ◦VP )∪ ((VP ◦N)?VP ))(a)

=max{(VP ◦N ◦VP )(a), ((VP ◦N)?VP )(a)}

=max{ inf
a=bc

max{(VP ◦N)(b),VP (c)}, ((VP ◦N)?VP )(x(y+ i)− xy)}

=max{ inf
a=bc

max{ inf
b=b1b2

max{VP (b1), N(b2)},VP (c)}, ((VP ◦N)?VP )(x(y+ i)− xy)}

(since N(z)= 0, for all z ∈ N)

=max{ inf
a=bc

max{ inf
b=b1b2

{VP (b1),VP (c)}, ((VP ◦N)?VP )(x(y+ i)− xy)}

(since VP is a Pythagorean fuzzy right N-subgroup of N)

VP (bc)=VP (b1b2c)=VP (b1(b2c))≤VP (b1)

≥max{ inf
a=bc

max{VP (bc), N(c)}, N(x(y+ i)− xy)}

=max{ inf
a=bc

max{VP (bc), N(x(y+ i)− xy)}}

=VP (bc)

=VP (a).

Thus (VP ◦N ◦VP )∪ ((VP ◦N)?VP )) (a)⊇VP .
Hence VP is a Pythagorean fuzzy bi-ideal of N.
Thus P = (WP ,VP ) is a Pythagorean fuzzy bi-ideal of N.
Next we prove: P is a Pythagorean fuzzy strong bi-ideal of N .
Choose a,b, c,b12b2 ∈ N such that a = bc and b = b1,b2. Then

N ◦WP ◦WP (a)= sup
a=bc

min{(N ◦WP )(b),WP (c)}

= sup
a=bc

min{ sup
b=b1b2

min{N(b1),WP (b2)},WP (c)}

= sup
a=bc

min{ sup
b=b1b2

{WP (b2),WP (c)}}
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(since WP is a left permutable Pythagorean fuzzy right N-subgroup of N)

WP (bc)=WP ((b1b2)c)=WP ((b2b1)c)≥WP (b2) and N(c)≥WP (c)

≤ sup
a=bc

min{WP (bc), N(c)}

= sup
a=bc

min{WP (bc),1}

= sup
a=bc

WP (bc)

=WP (a).

Therefore N ◦WP ◦WP ⊆WP .
Hence WP is a Pythagorean fuzzy strong bi-ideal of N .
Choose a,b, c,b12b2 ∈ N such that a = bc and b = b1b2. Then

N ◦VP ◦VP (a)= inf
a=bc

max{(N ◦VP )(b),VP (c)}

= inf
a=bc

max{ inf
b=b1b2

max{N(b1),VP (b2)},VP (c)}

= inf
a=bc

max{ inf
b=b1b2

{VP (b2),VP (c)}}

(since VP is a left permutable Pythagorean fuzzy right N-subgroup of N)

VP (bc)=VP ((b1b2)c)=VP ((b2b1)c)≤VP (b2) and N(c)≤VP (c)

≥ inf
a=bc

max{VP (bc), N(c)}

= inf
a=bc

max{VP (bc),0}

= inf
a=bc

VP (bc)

=VP (a).

Therefore (N ◦VP ◦VP )⊇VP .
Hence VP is a Pythagorean fuzzy strong bi-ideal of N.

Theorem 4.5. Every Pythagorean fuzzy left N-subgroup of N is a Pythagorean fuzzy strong
bi-ideal of N.

Proof. Let P = (WP ,VP ) be a Pythagorean fuzzy left N-subgroup of N.
To prove: P is a Pythagorean fuzzy strong bi-ideal of N.
First, we prove: P is a Pythagorean fuzzy bi-ideal of N.
Choose a,b, c, x, y, i, c1, c2, x1, x2, y1, y2 ∈ N such that a = bc = x(y+ i)− xy, c = c1c2, x = x1x2 and
y= y1 y2. Then

(WP ◦N ◦WP )∩ ((WP ◦N)?WP ))(a)

=min{(WP ◦ (N ◦WP ))(a), ((WP ◦N)?WP )(a)}

=min{sup
a=bc

min{WP (b), (N ◦WP )(c)}, ((WP ◦N)?WP )(x(y+ i)− xy)}
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=min{sup
a=bc

min{WP (b), sup
c=c1c2

min{N(c1),WP (c2)}, ((WP ◦N)?WP )(x(y+ i)− xy)}

=min{sup
a=bc

min{WP (b), sup
c=c1c2

WP (c2)}, ((WP ◦N)?WP )(x(y+ i)− xy)}

(since WP is a Pythagorean fuzzy left N-subgroup of N)

WP (bc)=WP (bc1c2)=WP ((bc1)c2)≥WP (c2)

≤min{sup
a=bc

min{N(b),WP (bc)}, N(x(y+ i)− xy)}

=WP (bc)=WP (a).

Thus (WP ◦N ◦WP )∩ ((WP ◦N)?WP )) ⊆WP .
Hence WP is a Pythagorean fuzzy bi-ideal of N.
Choose a,b, c, x, y, i, c1, c2, x1, x2, y1, y2 ∈ N such that a = bc = x(y+ i)− xy, c = c1, c2, x = x1x2

and y= y1 y2. Then

(VP ◦N ◦VP )∪ ((VP ◦N)?VP ))(a)

=max{(VP ◦N ◦VP )(a), ((VP ◦N)?VP )(a)}

=max{ inf
a=bc

max{VP (b), (N ◦VP )(c)}, ((VP ◦N)?VP )(x(y+ i)− xy)}

=max{ inf
a=bc

max{VP (b), inf
c=c1c2

max{N(c1),VP (c2)}}, ((VP ◦N)?VP )(x(y+ i)− xy)}

=max{ inf
a=bc

max{VP (b), inf
c=c1c2

VP (c2)}((VP ◦N)?VP )(x(y+ i)− xy)}

(since VP is a Pythagorean fuzzy left N-subgroup of N)

VP (bc)=VP (b(c1c2))=VP ((bc1)c2)≤VP (c2)

≥max{ inf
a=bc

max{N(b),VP (bc)}, N(x(y+ i)− xy)}

=VP (bc)

=VP (a).

Thus (VP ◦N ◦VP )∪ ((VP ◦N)?VP )⊇VP .
Hence VP is a Pythagorean fuzzy bi-ideal of N.
Thus P = (WP ,VP ) is a Pythagorean fuzzy bi-ideal of N.
Next, we prove: P is a Pythagorean fuzzy strong bi-ideal of N .
Choose a,b, c, c1, c2 ∈ N such that a = bc and c = c1, c2. Then

N ◦WP ◦WP (a)= sup
a=bc

min{N(b), (WP ◦WP )(c)}

= sup
a=bc

min{N(b), sup
c=c1c2

min{WP (c1),WP (c2)}}

= sup
a=bc

min{1, sup
c=c1c2

min{WP (c1),WP (c2)}}

(since WP is a Pythagorean fuzzy left N-subgroup of N)

WP (bc)=WP (bc1c2)=WP ((bc1)c2)≥WP (c2)

≤ sup
a=bc

min{N(c1),WP (bc)}
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= sup
a=bc

min{1,WP (bc)}

=WP (bc)

=WP (a).

Therefore N ◦WP ◦WP ⊆WP .
Hence WP is a Pythagorean fuzzy strong bi-ideal of N.
Choose a,b, c, c12c2 ∈ N such that a = bc and c = c1, c2. Then

(N ◦VP ◦VP )(a)= inf
a=bc

max{N(b), (VP ◦VP )(c)}

= inf
a=bc

max{N(b), inf
c=c1c2

max{VP (c1),VP (c2)}}

= inf
a=bc

max{0, inf
c=c1c2

max{VP (c1),VP (c2)}}

= inf
a=bc

max{VP (c1),VP (c2)}

(since VP is a Pythagorean fuzzy left N-subgroup of N)

VP (bc)=VP (bc1c2)=VP ((bc1)c2)≤VP (c2)

≥ inf
a=bc

max{N(c1),VP (bc)}

= inf
a=bc

max{0,VP (bc)}

=VP (bc)=VP (a).

Therefore N ◦VP ◦VP ⊇VP .
Hence VP is a Pythagorean fuzzy strong bi-ideal of N.
Thus P = (WP ,VP ) is a Pythagorean fuzzy strong bi-ideal of N .

Theorem 4.6. Every Pythagorean fuzzy left ideal of N is a Pythagorean fuzzy strong bi-ideal
of N .

Proof. Let P = (WP ,VP ) be a Pythagorean fuzzy left ideal of N.
To prove: P is a Pythagorean fuzzy strong bi-ideal of N.
First we prove: P is a Pythagorean fuzzy bi-ideal of N.
Choose a,b, c, x, y, i,b1,b2, x1, x2, y1, y2 ∈ N such that a = bc = x(y+ i)− xy, b = b1b2,

x = x1x2 and y= y1 y2.

Then

(WP ◦N ◦WP )∩ ((WP ◦N)?WP )(a)

=min{(WP ◦N ◦WP )(a), ((WP ◦N)?WP )(a)}

=min{sup
a=bc

min(WP ◦N)(b),WP (c), ((WP ◦N)?WP )(x(y+ i)− xy)}

=min{sup
a=bc

min{(WP ◦N)(b1b2),WP (c)}, sup
a=x(y+i)−xy

min(WP ◦N)(x), (WP ◦N)(y),WP (i)}

(since WP ◦N ⊆ N and since WP is a Pythagorean fuzzy left ideal of N
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WP (x(y+ i)− xy)≥WP (i))

≤min{sup
a=bc

min{N(b1b2), N(c)}, sup
a=x(y+i)−xy

min{N(x), N(y), }WP (x(y+ i)− xy)}

=WP (x(y+ i)− xy)

=WP (a).

Thus (WP ◦N ◦WP )∩ ((WP ◦N)?WP ) ⊆WP .
Hence WP is a Pythagorean fuzzy bi-ideal of N.
Choose a,b, c, x, y, i,b1,b2, x1, x2, y1, y2 ∈ N such that a = bc = x(y+ i)−xy,b = b1b2, x = x1x2 and
y= y1 y2. Then

(VP ◦N ◦VP )∪ ((VP ◦N)?VP )(a)

=max{(VP ◦N ◦VP )(a), ((VP ◦N)?VP )(a)}

=max{ inf
a=bc

max{(VP ◦N)(b),VP (c)}((VP ◦N)?VP )(x(y+ i)− xy)}

=max{{ inf
a=bc

max(VP ◦N)(b1b2),VP (c)}, inf
a=x(y+i)−xy

max{(VP ◦N)(x), (VP ◦N)(y),VP (i)}}

(since VP ◦N ⊇ N and since VP is a Pythagorean fuzzy left ideal of N)

VP (x(y+ i)− xy)≤VP (i)

≥max{ inf
a=bc

max{N(b1b2), N(c)}, inf
a=x(y+i)−xy

max{N(x), N(y)},VP (x(y+ i)− xy)}

=VP (x(y+ i)− xy)

=VP (a).

Therefore (VP ◦N ◦VP )∪ ((VP ◦N)?VP )⊇VP .
Hence VP is a Pythagorean fuzzy bi-ideal of N.
Thus P = (WP ,VP ) is a Pythagorean fuzzy bi-ideal of N.
Next we prove: P is a Pythagorean fuzzy strong bi-ideal of N .
Choose a,b, c,b1b2 ∈ N such that a = bc = b(n+ c)−bn. Then

N ◦WP ◦WP (a)= sup
a=bc

min{(N ◦WP )(b),WP (c)}

= sup
a=bc

min{ sup
b=b1b2

min{N(b1),WP (b2),WP (c)}}

= sup
a=bc

min{ sup
b=b1b2

{WP (b2),WP (c)}}

(since A is a Pythagorean fuzzy left ideal of N)

WP (a)=WP (bc)=WP (b(n+ c)−bn)≥WP (c) and

= sup
a=bc

min{N(b2),WP (b(n+ c)−bn)}

=min{1,WP (bc)}

=WP (bc)

=WP (a).

Therefore N ◦WP ◦WP ⊆WP . Hence WP is a Pythagorean fuzzy strong bi-ideal of N.
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Choose a,b, c,b1,b2 ∈ N such that a = bc and b = b1b2. Then

N ◦VP ◦VP (a)= inf
a=bc

max{(N ◦VP )(b),VP (c)}

= inf
a=bc

max{ inf
b=b1b2

max{N(b1),VP (b2)},VP (c)}

= inf
a=bc

max{ inf
b=b1b2

{VP (b2),VP (c)}} (since P is an anti fuzzy left ideal of N),

VP (a)=VP (bc)=VP (b(n+ c)−bn)≤VP (c)) and

≥ inf
a=bc

max{N(b2),VP (b(n+ c)−bn)}

= inf
a=bc

max{0,VP (bc)}

=VP (bc)

=VP (a).

Therefore N ◦VP ◦VP ⊇VP . Hence VP is a Pythagorean fuzzy strong bi-ideal of N.
Thus P = (WP ,VP ) is a Pythagorean fuzzy strong bi-ideal of N .

Theorem 4.7. Let P = (WP ,VP ) be any Pythagorean fuzzy strong bi-ideal of a near-ring N . Then
WP (axy)≥min{WP (x),WP (y)} and VP (axy)≤max{VP (x),VP (y)}, for all a, x, y ∈ N .

Proof. Assume that (WP ,VP ) is a Pythagorean fuzzy strong bi-ideal of N .
Then N ◦WP ◦WP ⊆WP and N ◦VP ◦VP ⊇VP .
Let a, x,y be any element of N . Then

WP (axy)≥ (N ◦WP ◦WP )= sup
axy=pq

min{(N ◦WP )(p),WP (q)}

≥min{(N ◦WP )(ax),WP (y)}

=min{ sup
ax=z1z2

min{N(z1),WP (z2)},WP (y)}

≥min{min{N(a),WP (x)},WP (y)}

=min{min{1,WP (x),WP (y)}}

=min{WP (x),WP (y)}.

This show that WP (axy)≥min{WP (x),WP (y)}, for all a, x, y ∈ N

VP (axy)≤ (N ◦VP ◦VP )(axy)

= inf
axy=pq

max{(N ◦VP )(p),VP (q)}

≤max{(N ◦VP )(ax),VP (y)}

=max{ inf
ax=z1z2

max{N(z1),VP (z2)},VP (y)}

≤max{max{N(a),VP (x)},VP (y)}

=max{max{0,VP (x)},VP (y)}

=max{VP (x),VP (y)}.

This shows that VP (axy)≤max{VP (x),VP (y)}, for all a, x, y ∈ N .
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5. Direct Product of Pythagorean Fuzzy Ideals of Near-Rings
This section some basic properties such as union, intersection, homomorphic image, and pre-
image of Pythagorean fuzzy ideals of near ring.

Definition 5.1. Let C and D be Pythagorean fuzzy subsets of near-rings (PFSSNR) N1 and N2,
respectively. Then, the direct product of Pythagorean fuzzy subsets of near-rings is defined by
C×D : N1 ×N2 → [0,1] such that

C×D = {〈(h,k),WC×D(h,k),VC×D(h,k;h ∈ N1,k ∈ N2)},

where

WC×D(h,k)=min{WC(h),WD(k)} ,

VC×D(h,k)=max{VC(h),VD(k)} .

Definition 5.2. Let C and D be Pythagorean fuzzy subsets of near-rings N1 and N2,
respectively. Then, C×D is a Pythagorean fuzzy ideal of N1 ×N2 if it satisfies the following
conditions:

(i) WC×D((h1,h2)− (k1,k2))≥min{WC×D(h1,h2),WC×D(k1,k2)},

(ii) VC×D((h1,h2)− (k1,k2))≤max{VC×D(h1,h2),VC×D(k1,k2)},

(iii) WC×D((k1,k2)+ (h1,h2)− (k1,k2))≥min(WC×D(h1,h2)),

(iv) VC×D((k1,k2)+ (h1,h2)− (k1,k2))≤max(VC×D(h1,h2)),

(v) WC×D((h1,h2)(k1,k2))≥WC×D(k1,k2),

(vi) VC×D((h1,h2)(k1,k2))≤VC×D(k1,k2),

(vii) WC×D([(h1,h2)+ (t1, t2)](k1,k2)− (h1,h2)(k1,k2))≥WC×D(t1, t2),

(viii) VC×D([(h1,h2)+ (t1, t2)](k1,k2)− (h1,h2)(k1,k2))≤VC×D(t1, t2).

Theorem 5.3. Let C and D be Pythagorean fuzzy ideals of N1 and N2, respectively. Then C×D
is a Pythagorean fuzzy ideal of N1 ×N2.

Proof. Let C and D be Pythagorean fuzzy ideals of N1 and N2, respectively.
Let (h1,h2), (k1,k2), (t1, t2) ∈ N1 ×N2. Then, the following are obtained.
For truth grade, we obtain the following:

WC×D((h1,h2)− (k1,k2))=WC×D(h1 −k1,h2 −k2)

=min{WC(h1 −k1),WD(h2 −k2)}

≥min{min{WC(h1),WD(k1)},min{WD(h2),WD(k2)}}

=min{min{WC(h1),WD(h1)},min{WC(k1),WD(k2)}}

=min{WC×D(h1,h2),WC×D(k1,k2)}.

For non-membership grade, we get

VC×D((h1,h2)− (k1,k2))=VC×D(h1 −k1,h2 −k2)
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=max{VC(h1 −k1),VD(h2 −k2)}

≤max{max{VC(h1),VC(k1)},max{VD(h2),VD(k2)}}

=max{max{VC(h1),VD(h2)},max{VC(k1),VD(k2)}}

=max{VC×D(h1,h2),VC×D(k1,k2)}.

Next, it is clear that

WC×D((k1,k2)+ (h1,h2)− (k1,k2))=WC×D(k1 +h1 −k1,k2 +h2 −k2)

=min{WC(k1 +h1 −k1),WD(k2 +h2 −k2)}

≥min{WC(h1),WD(h2)}

=WC×D(h1,h2),

VC×D((k1,k2)+ (h1,h2)− (k1,k2))=VC×D(k1 +h1 −k1,k2 +h2 −k2)

=max{VC(k1 +h1 −k1),VD(k2 +h2 −k2)}

≤max{VC(h1),VD(h2)}

=VC×D(h1,h2).

Moreover, we deduce the following inequalities:

WC×D((h1,h2)(k1,k2))=WC×D(h1k1,h2k2)

=min{WC(h1k1),WD(h2k2)}

≥min{WC(k1),WD(k2)}

=WC×D(k1,k2),

VC×D((h1,h2)(k1,k2))=VC×D(h1k1,h2k2)

=max{VC(h1k1),VD(h2k2)}

≤max{VC(k1),VD(k2)}

=VC×D(k1,k2).

Finally, we prove that

WC×D((h1,h2)+ (t1, t2)− (k1,k2)− (h1,h2)(k1,k2))

=WC×D([h1 + t1]k1 −h1k1, [h2 + t2]k2 −h2k2)

=min{WC([h1 + t1]k1 −h1k1),WD([h2 + t2]k2 −h2k2)}

≥min{WC(t1),WD(t2)}

=WC×D(t1, t2).

Also,

VC×D((h1,h2)+ (t1, t2)− (k1,k2)− (h1,h2)(k1,k2))

=VC×D([h1 + t1]k1 −h1k1, [h2 + t2]k2 −h2k2)

=max{(VC[h1 + t1]k1 −h1k1), (VD[h2 + t2]k2 −h2k2)}
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≤max{VC(t1),VD(t2)}

=VC×D(t1, t2).

Therefore, C×D is a Pythagorean fuzzy ideal of N1 ×N2.

6. Homomorphism of Pythagorean Fuzzy Ideals of Near-Rings
This section is concerned with the direct product of Pythagorean fuzzy ideals of near ring.

Definition 6.1. Let R and S be two near rings. Then, the mapping f : R → S is called a
near-ring homomorphism if for all h,k ∈ R, the following hold:

(i) f (h+k)= f (h)+ f (k),

(ii) f (hk)= f (h) f (k).

Definition 6.2. Let U and Y be two nonempty sets and f : U →Y be a function.

(i) If D is a Pythagorean fuzzy set in Y , then the preimage of D under f denoted by f −1(D),
is the Pythagorean fuzzy set in U defined by

f −1(D)= {〈(h), f −1(WD(h)), f −1(VD(h))〉 : h ∈U},

where f −1(WD(h))=WD( f (h)) and f −1(VD(h))=VD( f (h)) and so on.

(ii) If C is a Pythagorean fuzzy set in U , then the image of C under f denoted by f (C) is the
Pythagorean fuzzy set in Y defined by f (C)= {〈(k), f (WC(k)), f (VC(k))〉 : k ∈Y }, where

f (WC(k))=
 sup

h∈ f −1(k)
WC(h), if f −1(k) 6= 0

0, otherwise

f (VC(k))=
 inf

h∈ f −1(k)
VC(h), if f −1(k) 6= 0

1, otherwise

where f (VP (k))= (1− f (1−VP ))(k).

Theorem 6.3. Let N and N ′ be two near rings and f be a homomorphism of N onto N ′. If C′ is
a Pythagorean fuzzy ideal of N ′, then f −1(C) is a Pythagorean fuzzy ideal of N .

Proof. Suppose h,k, t ∈ N . Then, we can deduce the following inequalities:
For membership grade,

f −1(WC)(h−k)=WC( f (h−k))

=WC( f (h)− f (k))

≥min(WC( f (h),WC( f (k))))

=min( f −1(WC)(h), f −1(WC)(k)) .

For non-membership grade, we write

f −1(VC)(h−k)=VC( f (h−k))
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=VC( f (h)− f (k))

≤max(VC( f (h),VC( f (k))))

=max( f −1(VC)(h), f −1(VC)(k)) .

Also, we acquire the following:

f −1(WC)(k+h−k)=WC( f (k+h−k))

=WC( f (k)+ f (h)− f (k))

≥min(WC( f (h)))

=min( f −1(WC)(h)),

f −1(VC)(k+h−k)=VC( f (k+h−k))

=VC( f (k)+ f (h)− f (k))

≤max(VC( f (h)))

=max( f −1(VC)(h)) .

Furthermore, for membership grade, we obtain

f −1(WC)(hk)=WC( f (hk))

=WC( f (h) f (k))

≥min(WC( f (k)))

=min( f −1(WC)(k)) .

For non-membership grade, we note

f −1(VC)(hk)=VC( f (hk))

=VC( f (h) f (k))

≤max(VC( f (k)))

=max( f −1(VC)(k)) .

Finally, for truth grade, we obtain

f −1(WC)((h+ t)k−hk)=WC( f [(h+ t)k−hk])

=WC([ f (h)+ f (t)] f (k)− f (h) f (k))

≥min(WC( f (t)))

=min( f −1(WC)(t)) .

For non-membership grade,

f −1(VC)((h+ t)k−hk)=VC( f [(h+ t)k−hk])

=VC([ f (h)+ f (t)] f (k)− f (h) f (k))

≤max(VC( f (t)))

=max( f −1(VC)(t)) .

Therefore, f −1(C) is a Pythagorean fuzzy ideal of N.
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Theorem 6.4. Let N1 and N2 be two near rings and f be a homomorphism of N1 and N2. If C
is a Pythagorean fuzzy ideal of N1, then f (C) is a Pythagorean fuzzy ideal of N2.

Proof. Let k1,k2,k3 ∈ N2 and h1,h2,h1 ∈ N1. Then, the following are observed.
For truth grade, we can write

f (WC(k1 −k2))= sup
h1,h2∈ f −1(N2)

WC(h1 −h2)

≥ sup
h1,h2∈ f −1(N2)

min(WC(h1),WC(h2))

=min( sup
h1∈ f −1(N2)

WC(h1), sup
h2∈ f −1(N2)

WC(h2))

=min( f (WC(k1)), f (WC(k2))) .

Also,

f (WC(k1 +k2 −k1))= sup
h1∈h2∈ f −1(N2)

WC(h1 +h2 −h1)

≥ sup
h1∈ f −1(N2)

WC(h1)

= f (WC(k1)) .

Furthermore, we write

f (Wc(k1k2))= sup
h1,h2∈ f −1(N2)

WC(h1h2)

≥ sup
h2∈ f −1(N2)

WC(h2)

= f (WC(k2)) .

Finally, we get

f (WC)((k1 +k3)k2 −k1k2)= sup
h1,h2,h3∈ f −1(N2)

WC((h1 +h3)h2 −h1h2)

≥ sup
h1,h2,h3∈ f −1(N2)

WC(h3)

= f (WC(k3)) .

For non-membership grade, we deduce that

f (VC(k1 −k2))≤max( f (VC(k1)), f (VC(k2)))

f (VC(k1 +k2 −k1))≤ f (VC(k2))

f (VC(k1k2))≤ f (VC(k2))

f (VC((k1 +k3)k2 +k1k2))≤ f (VC(k3)) .

Hence, f (C) is a Pythagorean fuzzy ideal of N2.
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