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Abstract. In this paper, Magnetohydrodynamic (MHD) flow through various channels such as
rectangular, hexagonal, octagonal, decagonal, dodecagonal, and tetradecagonal channels of dusty
gas and dust particles has been analyzed under the influence of magnetic field parameters and time.
Numerical values of the velocity of dust particles and gas were calculated using Laplace transform
for a non-dimensional equation. It is observed that for a given value of the magnetic parameter,
the velocity of gas and dust particles decreases increases alternately as we move from one channel
to another channel and found that for a particular channel, the velocity of gas and dust particles
decreases as the value of magnetic field parameter increases. It is also observed that for a given value
of the magnetic parameter, the velocity of gas and the velocity of dust particles increase with time.
The velocity of dust particles is less than the velocity of the gas.
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1. Introduction
The study of dusty gas in a hexagonal channel was first considered by Sharma and Gupta [11].
With the same phenomenology, the thermal dispersion effect on the MHD flow of gas was
examined by Sharma and Varshney [10]. They obtained the velocity of gas and the velocity of
dust particles under the observation of thermal dispersion effect and volume fraction. Sharma et
al. [12] expressed the variations of velocity profile and temperature for distinct values of Prandtl
and Hartmann numbers by using the finite difference method. Chutia and Deka [1] investigated
velocity, magnetic field, and current density for different values of Hartmann number under
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moving walls in rectangular ducts by using the central difference method. Madhura and
Swetha [7] have employed Laplace and Fourier transforms and the Crank Nicolson method
to obtain the velocities of fluid and dust particles in a porous medium for different values of
volume fraction. They also found graphically that the nature of flow is parabolic. Madhura
et al. [8] determined that the velocity of dust particles and fluid decreases in Beltrami flow.
They also confirmed that vortex lines and streamlines are parallel. Kalpana and Madhura [4]
deduced that for non-conservative flow velocity of dust particles is lesser than the velocity of
the fluid, and the temperature is minimum near the wavy wall and maximum near a flat wall.
They also concluded that heat flux and shearing stress are higher for non-convective flow than
convective flow. Hamdan et al. [3] analyzed the dust-phase velocity and found that it is the
product of the phase velocity and a position function. Manuilovich [9] studied the motion of
dusty gas in a plane channel. Gupta et al. [2] expressed the velocity of the gas in a rectangular
channel with a constant pressure gradient. Madhura and Swetha [6] examined the motion of
dusty gas in a hexagonal channel with a time-dependent pressure gradient. Recently, Lal and
Agarwal [5] discussed dusty gas flow in a horizontal pipe with a pressure gradient. In this
paper, we obtained the velocity of gas and dust particles through different channels, namely
rectangular channel, hexagonal channel, octagonal channel, decagonal channel, dodecagonal
channel, and tetradecagonal channel.

2. Mathematical Formulation and Solution of the Problem
The governing equations of motion for dusty fluid are written as

∂u
∂t

=−1
ρ

∂P
∂z

+ µ

ρ

(
∂2u
∂x2 + ∂2u

∂y2

)
+ K N0

ρ
(v−u)− σβ2

0u
ρ

, (2.1)

∂v
∂t

= K
m′ (u−v), (2.2)

where u be the velocity of gas and v be the velocity of dust particles, ρ be the density, and m′ be
the mass. K be the Stoke’s resistance coefficient, N0 be the number density, σ be the electrical
conductivity, P0 be the pressure, v be the kinematic viscosity, and M is the magnetic parameter.

Assuming the following dimensionless variables as

x∗ = x
L

, y∗ = y
L

, z∗ = z
L

, P∗ = PL2

ρv
, t∗ = t

L2 , u∗ = Lu
v

, v∗ = Lv
v

, M = σL2β2
0

ρ
.

Dropping the star notation, the equations (2.1) and (2.2) reduce to
∂u
∂t

=−∂P
∂z

+
(
∂2u
∂x2 + ∂2u

∂y2

)
+ε (v−u)−Mu, (2.3)

∂v
∂t

= τ′ (u−v) , (2.4)

where φ= m′N0
ρ

, ε=φτ, τ0 = m′
K , τ′ = 1

τ0
and −∂P

∂z =φ(t).

2.1 Evolution of Velocity of Gas and Dust Particles Through a Rectangular Channel
Consider a rectangular channel under the effect of magnetic field parameter by using
the following transformations

X = y, Y = y+ x, Z = y− x .
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Equations (2.1) and (2.2) become
∂u
∂t

=φ(t)+
(
∂2

∂X2 +2
∂2

∂Y 2 +2
∂2

∂Z2 + ∂2

∂XY
−2

∂2

∂Y Z
+ ∂2

∂X Z

)
u+ε(v−u)−Mu, (2.5)

∂v
∂t

= τ′(u−v) . (2.6)

Associated with initial and boundary conditions

(i) u = v = 0 for t = 0, (2.7)

at X = 1
2

, Y = 1, Z = 1

(ii)
∂u
∂X

= 0= ∂v
∂X

,
∂u
∂Y

= 0= ∂v
∂Y

,
∂u
∂Z

= 0= ∂v
∂Z

. (2.8)

Here u and v are even functions so multiplying equations (2.5) and (2.6) by cos(lx) cos(mY )
cos(nZ) then integrate it with the limits 0 to 1

2 , 0 to 1 and 0 to 1 and using conditions (2.7)
and (2.8).

Equations (2.5) and (2.6) become
∂U
∂t

= (−1)l+m+n

lmn
φ(t)+BU +ε(V −U)−MU , (2.9)

∂V
∂t

= τ′(U −V ), (2.10)

where B = l2 +2m2 +2n2,

U =
∫ 1

2

0

∫ 1

0

∫ 1

0
u(X ,Y , Z)cos(lX )cos(mY )cos(nZ)dX dY dZ (2.11)

and

V =
∫ 1

2

0

∫ 1

0

∫ 1

0
v(X ,Y , Z)cos(lX )cos(mY )cos(nZ)dX dY dZ . (2.12)

Using Laplace transform, equations (2.9) and (2.10) become

PU = (−1)l+m+n

lmn
φ(P)−BU +ε(V −U)−MU , (2.13)

PV = τ′(U −V ), (2.14)

where U , V and φ(P) represents the Laplace transform of U , V and φ(t), respectively.

U = (−1)l+m+nφ(P)
lmn(P1 −P2)

[
P1 +ε
P −P1

− P2 +ε
P −P2

]
, (2.15)

V = (−1)l+m+nφ(P)
lmn(P1 −P2)

[
1

P −P1
− 1

P −P2

]
, (2.16)

where P1 and P2 are two roots of the quadratic equation

P2 + (B+ε+τ+M)P +εB = 0, (2.17)

P1 =−1
2

[(B+ε+τ+M)+ {(B+ε+τ+M)2 −4εB}
1
2 ], (2.18)

and

P2 =−1
2

[(B+ε+τ+M)− {(B+ε+τ+M)2 −4εB}
1
2 ]. (2.19)
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On using the Convolution theorem and substitute φ(t)= c, equations (2.15) and (2.16) become

u = 16c
3
p

3

∞∑
l=m=n=1

(−1)l+m+n

lmnB

[
1− 1

(P1 −P2)
{(P1 +B)eP2t − (P2 +B)eP1t}

]
cos(lX )cos(mY )cos(nZ),

(2.20)

v = 16c
3
p

3

∞∑
l=m=n=1

(−1)l+m+n

lmnB

[
1+ 1

(P1 −P2)
{P2eP1t −P1eP2t}

]
cos(lX )cos(mY )cos(nZ). (2.21)

2.2 Evolution of Velocity of Gas and Dust Particles Through a Hexagonal Channel
Consider a hexagonal channel under the effect of magnetic field parameter by using the following
transformations

X = y, Y = y+1.732x, Z = y−1.732x .

Equations (2.1) and (2.2) become
∂u
∂t

=φ(t)+
(
∂2

∂X2 +4
∂2

∂Y 2 +4
∂2

∂Z2 + ∂2

∂XY
−2

∂2

∂Y Z
+ ∂2

∂X Z

)
u+ε(v−u)−Mu, (2.22)

∂v
∂t

= τ′(u−v) . (2.23)

Associated with initial and boundary conditions

(i) u = v = 0 for t = 0, (2.24)

at X = 0.866, Y = 1.732, Z = 1.732

(ii)
∂u
∂X

= ∂v
∂X

= 0,
∂u
∂Y

= ∂v
∂Y

= 0,
∂u
∂Z

= ∂v
∂Z

= 0. (2.25)

Further, the velocity of gas and the velocity of dust particles are solved in the same manner as
in a rectangular channel.

2.3 Evolution of Velocity of Gas and Dust Particles Through an Octagonal Channel
Consider an octagonal channel under the effect of magnetic field parameter by using the
following transformations

X = y, Y = y+2.414x, Z = y−2.414x .

Equation (2.1) and (2.2) become
∂u
∂t

=φ(t)+
(
∂2

∂X2 +6.827
∂2

∂Y 2 +6.827
∂2

∂Z2 + ∂2

∂XY
−2

∂2

∂Y Z
+ ∂2

∂X Z

)
u+ε(v−u)−Mu, (2.26)

∂v
∂t

= τ′(u−v) . (2.27)

Associated with initial and boundary conditions

(i) u = v = 0 for t = 0, (2.28)

at X = 1.207, Y = 2.414, Z = 2.414

(ii)
∂u
∂X

= ∂v
∂X

= 0,
∂u
∂Y

= ∂v
∂Y

= 0,
∂u
∂Z

= ∂v
∂Z

= 0. (2.29)

Further, the velocity of gas and the velocity of dust particles are solved in the same manner as
in a rectangular channel.
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2.4 Evolution of Velocity of Gas and Dust Particles Through a Decagonal Channel
Consider a decagonal channel under the effect of magnetic field parameter by using the following
transformations

X = y, Y = y+3.077x, Z = y−3.077x .

Equation (2.1) and (2.2) become
∂u
∂t

=φ(t)+
(
∂2

∂X2 +10.468
∂2

∂Y 2 +10.468
∂2

∂Z2 + ∂2

∂XY
−2

∂2

∂Y Z
+ ∂2

∂X Z

)
u+ε(v−u)−Mu, (2.30)

∂v
∂t

= τ′(u−v) . (2.31)

Associated with initial and boundary conditions

(i) u = v = 0 for t = 0, (2.32)
at X = 1.539, Y = 3.077, Z = 3.077

(ii)
∂u
∂X

= ∂v
∂X

= 0,
∂u
∂Y

= ∂v
∂Y

= 0,
∂u
∂Z

= ∂v
∂Z

= 0. (2.33)

Further, the velocity of gas and the velocity of dust particles are solved in the same manner as
in a rectangular channel.

2.5 Evolution of Velocity of Gas and Dust Particles Through a Dodecagonal Channel
Consider a dodecagonal channel under the effect of magnetic field parameter by using
the following transformations

X = y, Y = y+3.732x, Z = y−3.732x .

Equations (2.1) and (2.2) become
∂u
∂t

=φ(t)+
(
∂2

∂X2 +14.928
∂2

∂Y 2 +14.928
∂2

∂Z2 + ∂2

∂XY
−2

∂2

∂Y Z
+ ∂2

∂X Z

)
u+ε(v−u)−Mu, (2.34)

∂v
∂t

= τ′(u−v) . (2.35)

Associated with initial and boundary conditions

(i) u = v = 0 for t = 0, (2.36)
at X = 1.866, Y = 3.732, Z = 3.732

(ii)
∂u
∂X

= ∂v
∂X

= 0,
∂u
∂Y

= ∂v
∂Y

= 0,
∂u
∂Z

= ∂v
∂Z

= 0. (2.37)

Further, the velocity of gas and the velocity of dust particles are solved in the same manner as
in a rectangular channel.

2.6 Evolution of Velocity of Gas and Dust Particles Through a Tetradecagonal Channel
Consider a tetradecagonal channel under the effect of magnetic field parameter by using
the following transformations

X = y, Y = y+4.381x, Z = y−4.381x .

Equations (2.1) and (2.2) become
∂u
∂t

= φ(t)+
(
∂2

∂X2 +20.196
∂2

∂Y 2 +20.196
∂2

∂Z2 + ∂2

∂XY
−2

∂2

∂Y Z
+ ∂2

∂X Z

)
u+ε(v−u)−Mu, (2.38)
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∂v
∂t

= τ′(u−v) . (2.39)

Associated with initial and boundary conditions

(i) u = v = 0 for t = 0, (2.40)
at X = 2.19, Y = 4.381, Z = 4.381

(ii)
∂u
∂X

= ∂v
∂X

= 0,
∂u
∂Y

= ∂v
∂Y

= 0,
∂u
∂Z

= ∂v
∂Z

= 0. (2.41)

Further, the velocity of gas and the dust particles are solved in the same manner as in a
rectangular channel.

3. Results and Discussion
The velocity of dusty gas and dust particles is investigated for distinct channels with number of
sides N . Variation of velocity for distinct values of magnetic parameter M with respect to time
t are tabulated and shown in graphs. It is evident from the graphs that for a given value of M,
the velocity decreases increases alternately as we increase the sides of channels and also found
that as time increases, the velocity of gas and dust particles increases. The velocity of the gas is
more than the dust particles (Tables 1-3 and Figures 1-6).

Table 1. Velocities for distinct N and M at t = 0.1

For t = 0.1

N u/c v/c

For M = 1 For M = 6 For M = 11 For M = 1 For M = 6 For M = 11

4 .05882 .04756 .03921 .000710 .000620 .000540

6 .00323 .00265 .00222 .000041 .000036 .000032

8 .03066 .02571 .02193 .000420 .000370 .000340

10 .00382 .00326 .00286 .000057 .000051 .000046

12 .01851 .01630 .01453 .000300 .000280 .000250

14 .00438 .00394 .00359 .000075 .000069 .000064

Table 2. Velocities for distinct N and M at t = 0.2

For t = 0.2

N u/c v/c

For M = 1 For M = 6 For M = 11 For M = 1 For M = 6 For M = 11

4 .09057 .06346 .04745 .00238 .00186 .001510

6 .00439 .00325 .00253 .00013 .00010 .000085

8 .03698 .02905 .02378 .00118 .00098 .000840

10 .00420 .00350 .00298 .00015 .00013 .000110

12 .01928 .01676 .01483 .00071 .00063 .000570

14 .00444 .00399 .00362 .00017 .00016 .000140
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Table 3. Velocities for distinct N and M at t = 0.3

For t = 0.3
N u/c v/c

For M = 1 For M = 6 For M = 11 For M = 1 For M = 6 For M = 11

4 .10783 .06916 .04964 .00453 .00328 .00254

6 .00482 .00340 .00260 .00023 .00017 .00014

8 .03832 .02963 .02412 .00198 .00160 .00135

10 .00424 .00352 .00300 .00023 .00020 .00017

12 .01932 .01683 .01491 .00112 .00099 .00088

14 .00444 .00400 .00364 .00026 .00024 .00022

Figure 1. Velocity profiles of gas for distinct channels under magnetic parameter M at time t = 0.1

Figure 2. Velocity profiles of dust particles for distinct channels under magnetic parameter M at time
t = 0.1
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Figure 3. Velocity profiles of gas for distinct channels under magnetic parameter M at time t = 0.2

Figure 4. Velocity profiles of dust particles for distinct channels under magnetic parameter M at time
t = 0.2

Figure 5. Velocity profiles of gas for distinct channels under magnetic parameter M at time t = 0.3
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Figure 6. Velocity profiles of dust particles for distinct channels under magnetic parameter M at time
t = 0.3

4. Conclusions
A numerical study of the velocity of dusty gas and dust particles has been developed under
the effects of magnetic field parameters through different channels with time. Tables 1-3 and
Figures 1-6 depicted the variation of velocities for different channels and concluded that as we
move from one channel to another, velocity decreases increases alternately for a given value of
M. As time increases, the velocity of gas and dust particles increases for a given value of M.
For a particular channel, the velocity of gas and dust particles decreases for a given value of M
and velocity of dust particles is lesser than the velocity of the gas.
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