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Application of Chebyshev Polynomials to the Approximate
Solution of Singular Integral Equations of the First Kind

with Cauchy Kernel on the Real Half-line

J. Ahmadi Shali, A. Jodayree Akbarfam, and M. Kashfi

Abstract In this paper, exact solution of the characteristic equation with Cauchy
kernel on the real half-line is presented. Next, the Chebyshev polynomials of
the second kind, Un(x), and fourth kind, Wn(x), are used to derive numerical
solutions of Cauchy-type singular integral equations of the first kind on the
real half-line. The collocation points are chosen as the zeros of the Chebyshev
polynomials of the first kind, Tn+2(x), and third kind, Vn+1(x). Moreover,
estimations of errors of the approximated solutions are presented. The numerical
results are given to show the accuracy of the methods presented.

1. Introduction

Let us consider the equation

1

π

∫ +∞

0

ϕ(σ)
σ− x

dσ+
1

π

∫ +∞

0

k(x ,σ)ϕ(σ)dσ = f (x), x > 0 , (1.1)

where k(x ,σ) and f (x) are given real-valued Hölder continuous functions and
ϕ(x) is an unknown function. The theory of equations of the form (1.1) and their
approximate solutions for the case in which the integration line is a closed or open
curve of finite length can be found in many references [1, 2, 4, 5, 9].

We apply the transformation of the form (see [7, 8])

1

σ− x
=

x + 1

σ+ 1

1

σ− x
+

1

σ+ 1
, (1.2)
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and rewrite (1.1) in the form

1

π

∫ +∞

0

(x + 1)ϕ(σ)
(σ+ 1)(σ− x)

dσ+
1

π

∫ +∞

0

ϕ(σ)
σ+ 1

dσ

+
1

π

∫ +∞

0

k(x ,σ)ϕ(σ)dσ = f (x), x > 0 . (1.3)

We assume that the behavior of the function k(x ,σ) as σ → +∞ is described by
the relation

k(x ,σ) =
k0(x ,σ)
(σ+ 1)α

, α > 1 ,

where k0(x ,σ) is a Hölder continuous function. By setting

x =
1+ t

1− t
, σ =

1+τ
1−τ , (1.4)

we reduce (1.3) to the form

1

π

∫ 1

−1

ψ(τ)
τ− t

dτ− 1

π

∫ 1

−1

ψ(τ)
τ− 1

dτ+
1

π

∫ 1

−1

k∗(t,τ)ψ(τ)dτ= g(t), t ∈ (−1, 1) ,

(1.5)

where

ψ(τ) = ϕ
�

1+τ
1−τ

�
, g(t) = f

�
1+ t

1− t

�
, k∗(t,τ) =

�
2

(1−τ)2
�

k
�

1+ t

1− t
,
1+τ
1−τ

�
.

We set k∗(t,τ)≡ 0 in (1.5) and first analyze the equation

1

π

∫ 1

−1

ψ(τ)
τ− t

dτ− 1

π

∫ 1

−1

ψ(τ)
τ− 1

dτ= g(t), t ∈ (−1, 1), g(1) = 0, (1.6)

in two cases.

Case (I): If the solution ψ(t) is sought in the class of Hölder continuous functions
on (−1, 1), bounded at the point t = 1 and unbounded at the point t = −1, then,
in view of [5], we have

ψ(t) =− 1

π

r
1− t

1+ t

∫ 1

−1

r
1+τ
1−τ

(g(τ) + γ)
τ− t

dτ , (1.7)

where

γ=
1

π

∫ 1

−1

ψ(τ)
τ− 1

dτ . (1.8)

Using the following relation (see [3]):

p.v

∫ b

a

�
b−τ
τ− a

�ν dτ

τ− ξ = (π cotπν)
�

b− ξ
ξ− a

�ν
−π csc(πν) , (1.9)
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we can rewrite (1.7) in the form

ψ(t) =−
r

1− t

1+ t

�
1

π

∫ 1

−1

r
1+τ
1−τ

g(τ)dτ
τ− t

+ γ
�

, (1.10)

where γ is an arbitrary constant.
The constant γ is uniquely determined if (1.6) is supplemented by the condition

1

π

∫ 1

−1

ψ(τ)
τ− 1

dτ= γ∗ , (1.11)

equivalent to (1.8). Substituting function (1.10) for ψ(t) into this relation, we
obtain γ= γ∗.

Case (II): If the solutionψ(t) is sought in the class of Hölder continuous functions
on (−1, 1), bounded at the points t =±1, then

ψ(t) =− 1

π

p
1− t2

∫ 1

−1

(g(τ) + γ)p
1−τ2

dτ

τ− t
, (1.12)

provided that
∫ 1

−1

g(τ) + γp
1−τ2

dτ= 0 , (1.13)

(see [5]). Using the following relations
∫ 1

−1

Tn(τ)p
1−τ2

dτ

τ− t
=

¨
πUn−1(t), n> 0 ,

0, n= 0 ,
(1.14)

and ∫ 1

−1

T0(t)p
1− t2

d t = π , (1.15)

we can rewrite (1.12) and (1.13) in the form

ψ(t) =− 1

π

p
1− t2

∫ 1

−1

g(τ)p
1−τ2

dτ

τ− t
, (1.16)

provided that

γ=− 1

π

∫ 1

−1

g(τ)p
1−τ2

dτ . (1.17)

Therefore, in the original variables x , σ, the solution of (1.1) where k(x ,σ)≡ 0 is
expressed in the following forms:

Case (I): If the solution ϕ(x) is sought in the class of functions that are Hölder
continuous on [ε,+∞),ε > 0, vanish at infinity, i.e. lim

x→∞
ϕ(x) = 0, and can have

an integrable singularity in the neighborhood of x = 0, then

ϕ(x) =− 1p
x

�
1

π

∫ +∞

0

p
σ(x + 1)
σ+ 1

f (σ)
σ− x

dσ+ γ
�

, (1.18)
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where γ is an arbitrary constant. Additionally, if the solution ϕ(x) satisfies the
condition

− 1

π

∫ +∞

0

ϕ(σ)
σ+ 1

dσ = γ∗ , (1.19)

where γ∗ is an arbitrary number, then the unique solution of (1.1) is given by the
formula (1.18) with γ= γ∗.

Case (II): If the solution ϕ(x) is sought in the class of bounded Hölder functions
on (0,+∞) vanishing at infinity, then

ϕ(x) =− 1

π

p
x

∫ +∞

0

f (σ)p
σ

dσ

(σ− x)
, (1.20)

provided that

− 1

π

∫ +∞

0

ϕ(σ)
σ+ 1

dσ =− 1

π

∫ +∞

0

f (σ)p
σ(σ+ 1)

dσ . (1.21)

2. Approximate Solutions of the Complete Equation

In this section, we will derive an approximate solution of (1.5) in two cases.

Case (I): An approximate solution in the case that the solution of (1.5) is bounded
at the point t = 1 and unbounded at the point t =−1 is expressed of the form

ψn(τ) =

r
1−τ
1+τ

n∑

j=0

β jWj(τ), (2.1)

where Wj is the Chebyshev polynomial of the fourth kind which is defined by the
following recurrence relation

W0(τ) = 1, W1(τ) = 2τ+ 1,

Wn(τ) = 2τWn−1(τ)−Wn−2(τ), n≥ 2. (2.2)

We rewrite (1.5) in the form

1

π

∫ 1

−1

ψ(τ)
τ− t

dτ+
1

π

∫ 1

−1

k∗(t,τ)ψ(τ)dτ= g(t) + γ∗, t ∈ (−1, 1), (2.3)

where γ∗ is determined of (1.11). If we substitute (2.1) in (2.3) and use the
relation (see [6])

∫ 1

−1

r
1−τ
1+τ

Wj(τ)

τ− t
dτ=−πVj(t) , (2.4)

we get
n∑

j=0

β j(−Vj(t) +
1

π
Q∗j(t)) = g(t) + γ∗ , (2.5)
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where

Q∗j(t) =

∫ 1

−1

k∗(t,τ)

r
1−τ
1+τ

Wj(τ)dτ , (2.6)

and Vj is the Chebyshev polynomial of the third kind which is defined by the
following recurrence relation

V0(τ) = 1, V1(τ) = 2τ− 1,

Vn(τ) = 2τVn−1(τ)− Vn−2(τ), n≥ 2. (2.7)

Using the zeros of Vn+1(τ),

t i = cos
�
(2i− 1)π
(2i+ 3)

�
, i = 1, 2, . . . , n+ 1 , (2.8)

as the collocation points, we obtain the coefficients {β j}n0 by solving the following
system of linear equations

n∑

j=0

β j

�
− Vj(t i) +

1

π
Q∗j(t i)

�
= g(t i) + γ

∗, i = 1, 2, . . . , n+ 1. (2.9)

In the special case that k∗(t,τ)≡ 0, the approximate solution (1.6) is
n∑

j=0

−β jVj(t i) = g(t i) + γ
∗, i = 1, 2, . . . , n+ 1. (2.10)

Case (II): An approximate solution in the case that the solution of (1.5) is bounded
at the points t =±1 is expressed of the form

ψn(τ) =
p

1−τ2
n∑

j=0

α jU j(τ) , (2.11)

where U j is the Chebyshev polynomial of the second kind which is defined by the
following recurrence relation

U0(τ) = 1, U1(τ) = 2τ,

Un(τ) = 2τUn−1(τ)− Un−2(τ), n≥ 2. (2.12)

We rewrite (1.5) in the form

1

π

∫ 1

−1

ψ(τ)
τ− t

dτ+
1

π

∫ 1

−1

k∗(t,τ)ψ(τ)dτ= g(t) + γ, t ∈ (−1, 1), (2.13)

where γ is determined of (1.17). If we substitute (2.11) in (2.13) and use the
relation (see [6])

∫ 1

−1

p
1−τ2U j(τ)

τ− t
dτ=−πT j+1(t) , (2.14)

then we will obtain
n∑

j=0

α j

�
− T j+1(t) +

1

π
Q j(t)

�
= g(t) + γ , (2.15)
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where

Q j(t) =

∫ 1

−1

k∗(t,τ)
p

1−τ2U j(τ)dτ . (2.16)

Let tk be the zeros of Tn+2(t), i.e.

tk = cos
�
(2k− 1)π
(2n+ 4)

�
, k = 1, 2, . . . , n+ 2. (2.17)

Substituting the collocation points (2.17) in (2.15), we obtain the coefficients
{α j}n0 by solving the following system of linear equations

n∑

j=0

α j

�
− T j+1(t i) +

1

π
Q j(t i)

�
= g(t i) + γ, i = 1, 2, . . . , n+ 1.

In the special case that k∗(t,τ)≡ 0, the approximate solution (1.6) is

n∑

j=0

−α j T j+1(t i) = g(t i) + γ, i = 1, 2, . . . , n+ 1.

3. Error Estimation

Now, we give an error estimation for the approximate solutions of (1.5). Let
ψn(t) be approximate solution and en(t) = ψn(t) −ψ(t), be the error function
associated with ψn(t), where ψ(t) is the exact solution of (1.5). Since ψn(t) is an
approximate solution, it satisfies in

1

π

∫ 1

−1

ψn(τ)
τ− t

dτ− 1

π

∫ 1

−1

ψn(τ)
τ− 1

dτ+
1

π

∫ 1

−1

k∗(t,τ)ψn(τ)dτ= g(t)+Hn(t), (3.1)

where Hn(t) is a perturbation term and it is obtained from

Hn(t) =
1

π

∫ 1

−1

ψn(τ)
τ− t

dτ− 1

π

∫ 1

−1

ψn(τ)
τ− 1

dτ+
1

π

∫ 1

−1

k∗(t,τ)ψn(τ)dτ−g(t). (3.2)

Subtracting (1.5) from (3.2), yields the equation

1

π

∫ 1

−1

en(τ)
τ− t

dτ− 1

π

∫ 1

−1

en(τ)
τ− 1

dτ+
1

π

∫ 1

−1

k∗(t,τ)en(τ)dτ= Hn(t) (3.3)

for the error function en(t). To find an approximation ên(t) to en(t), we can solve
(3.3) by the same ways as we did for (1.5). In this case, only the function g(t)
will be replaced by the perturbation term Hn(t). Note that the integrals in above
equations are considered as the Cauchy principal value integrals.
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4. Numerical Example

In this section, we give a numerical example to clarify accuracy of the presented
method. The results of example are reported in Tables 1 and 2. Moreover, we can
compare numerical results for en(t) = |ψn(t)−ψ(t)| and |ên(t)| in Tables 1 and 2.

In the case (I), we consider γ∗ = 1
π

∫ 1

−1
g(τ)p
1−τ2

dτ.

Example.

1

π

∫ +∞

0

ϕ(σ)
σ− x

dσ =
1

2x + 3
, x > 0 . (4.1)

Table 1. Numerical results in the case (I)

x t ψn(t) ψ(t) |en(t)| |ên(t)|
0.11 −0.8 −1.0165553508894 −1.0165553508893 0.9e-13 0.12e-12

0.25 −0.6 −0.61737130758516 −0.61737130758512 0.4e-13 0.39e-13

0.33 −0.5 −0.50710962108493 −0.50710962108493 0 0.34e-13

0.538 −0.3 −0.35318599623723 −0.35318599623724 0.1e-13 0

0.81 −0.1 −0.24644645519425 −0.24644645519422 0.3e-13 0.22e-13

1.5 0.2 −0.13299316185546 −0.13299316185548 0.2e-13 0

1.857 0.3 −0.10358852081208 −0.10358852081207 0.1e-13 0.14e-13

5.66 0.7 −0.018570177408511 −0.018570177408511 0 0.25e-14

9 0.8 −0.0056932440108893 −0.005693244010887 0.2e-14 0.66e-15

19 0.9 0.0026083711357127 0.002608371135713 0 0.91e-15

Table 2. Numerical results in the case (II)

x t ψn(t) ψ(t) |en(t)| |ên(t)|
0.11 −0.8 0.084465163544256 0.084465163544250 0.6e-14 0

0.25 −0.6 0.11664236870396 0.11664236870397 0.1e-13 0

0.33 −0.5 0.12856486930665 0.12856486930664 0.1e-13 0.106e-11

0.538 −0.3 0.14696001818300 0.14696001818299 0.1e-13 0.442e-12

0.81 −0.1 0.15929487067914 0.15929487067915 0.1e-13 0.353e-12

1 0 0.16329931618555 0.16329931618555 0 0.306e-12

1.5 0.2 0.16666666666667 0.16666666666667 0 0

1.857 0.3 0.16572087156806 0.16572087156806 0 0

5.66 0.7 0.13560353243826 0.13560353243826 0 0.393e-13

9 0.8 0.11664236870396 0.11664236870397 0.1e-13 0.209e-13

19 0.9 0.086805514244158 0.086805514244163 0.5e-14 0.597e-14
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