Application of Chebyshev Polynomials to the Approximate Solution of Singular Integral Equations of the First Kind with Cauchy Kernel on the Real Half-line

J. Ahmadi Shali, A. Jodayree Akbarfam, and M. Kashfi

Abstract

In this paper, exact solution of the characteristic equation with Cauchy kernel on the real half-line is presented. Next, the Chebyshev polynomials of the second kind, $U_{n}(x)$, and fourth kind, $W_{n}(x)$, are used to derive numerical solutions of Cauchy-type singular integral equations of the first kind on the real half-line. The collocation points are chosen as the zeros of the Chebyshev polynomials of the first kind, $T_{n+2}(x)$, and third kind, $V_{n+1}(x)$. Moreover, estimations of errors of the approximated solutions are presented. The numerical results are given to show the accuracy of the methods presented.

1. Introduction

Let us consider the equation

$$
\begin{equation*}
\frac{1}{\pi} \int_{0}^{+\infty} \frac{\varphi(\sigma)}{\sigma-x} d \sigma+\frac{1}{\pi} \int_{0}^{+\infty} k(x, \sigma) \varphi(\sigma) d \sigma=f(x), \quad x>0 \tag{1.1}
\end{equation*}
$$

where $k(x, \sigma)$ and $f(x)$ are given real-valued H lder continuous functions and $\varphi(x)$ is an unknown function. The theory of equations of the form (1.1) and their approximate solutions for the case in which the integration line is a closed or open curve of finite length can be found in many references [1, 2, 4, 5, 9].

We apply the transformation of the form (see [7, 8])

$$
\begin{equation*}
\frac{1}{\sigma-x}=\frac{x+1}{\sigma+1} \frac{1}{\sigma-x}+\frac{1}{\sigma+1}, \tag{1.2}
\end{equation*}
$$

[^0]and rewrite (1.1) in the form
\[

$$
\begin{align*}
& \frac{1}{\pi} \int_{0}^{+\infty} \frac{(x+1) \varphi(\sigma)}{(\sigma+1)(\sigma-x)} d \sigma+\frac{1}{\pi} \int_{0}^{+\infty} \frac{\varphi(\sigma)}{\sigma+1} d \sigma \\
& \quad+\frac{1}{\pi} \int_{0}^{+\infty} k(x, \sigma) \varphi(\sigma) d \sigma=f(x), \quad x>0 . \tag{1.3}
\end{align*}
$$
\]

We assume that the behavior of the function $k(x, \sigma)$ as $\sigma \rightarrow+\infty$ is described by the relation

$$
k(x, \sigma)=\frac{k_{0}(x, \sigma)}{(\sigma+1)^{\alpha}}, \quad \alpha>1
$$

where $k_{0}(x, \sigma)$ is a H lder continuous function. By setting

$$
\begin{equation*}
x=\frac{1+t}{1-t}, \quad \sigma=\frac{1+\tau}{1-\tau} \tag{1.4}
\end{equation*}
$$

we reduce (1.3) to the form

$$
\begin{equation*}
\frac{1}{\pi} \int_{-1}^{1} \frac{\psi(\tau)}{\tau-t} d \tau-\frac{1}{\pi} \int_{-1}^{1} \frac{\psi(\tau)}{\tau-1} d \tau+\frac{1}{\pi} \int_{-1}^{1} k^{*}(t, \tau) \psi(\tau) d \tau=g(t), \quad t \in(-1,1) \tag{1.5}
\end{equation*}
$$

where

$$
\psi(\tau)=\varphi\left(\frac{1+\tau}{1-\tau}\right), g(t)=f\left(\frac{1+t}{1-t}\right), \quad k^{*}(t, \tau)=\left(\frac{2}{(1-\tau)^{2}}\right) k\left(\frac{1+t}{1-t}, \frac{1+\tau}{1-\tau}\right)
$$

We set $k^{*}(t, \tau) \equiv 0$ in (1.5) and first analyze the equation

$$
\begin{equation*}
\frac{1}{\pi} \int_{-1}^{1} \frac{\psi(\tau)}{\tau-t} d \tau-\frac{1}{\pi} \int_{-1}^{1} \frac{\psi(\tau)}{\tau-1} d \tau=g(t), \quad t \in(-1,1), g(1)=0 \tag{1.6}
\end{equation*}
$$

in two cases.
Case (I): If the solution $\psi(t)$ is sought in the class of H lder continuous functions on $(-1,1)$, bounded at the point $t=1$ and unbounded at the point $t=-1$, then, in view of [5], we have

$$
\begin{equation*}
\psi(t)=-\frac{1}{\pi} \sqrt{\frac{1-t}{1+t}} \int_{-1}^{1} \sqrt{\frac{1+\tau}{1-\tau}} \frac{(g(\tau)+\gamma)}{\tau-t} d \tau \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=\frac{1}{\pi} \int_{-1}^{1} \frac{\psi(\tau)}{\tau-1} d \tau \tag{1.8}
\end{equation*}
$$

Using the following relation (see [3]):

$$
\begin{equation*}
\text { p.v } \int_{a}^{b}\left(\frac{b-\tau}{\tau-a}\right)^{v} \frac{d \tau}{\tau-\xi}=(\pi \cot \pi v)\left(\frac{b-\xi}{\xi-a}\right)^{v}-\pi \csc (\pi v) \tag{1.9}
\end{equation*}
$$

we can rewrite (1.7) in the form

$$
\begin{equation*}
\psi(t)=-\sqrt{\frac{1-t}{1+t}}\left(\frac{1}{\pi} \int_{-1}^{1} \sqrt{\frac{1+\tau}{1-\tau}} \frac{g(\tau) d \tau}{\tau-t}+\gamma\right) \tag{1.10}
\end{equation*}
$$

where γ is an arbitrary constant.
The constant γ is uniquely determined if (1.6) is supplemented by the condition

$$
\begin{equation*}
\frac{1}{\pi} \int_{-1}^{1} \frac{\psi(\tau)}{\tau-1} d \tau=\gamma^{*} \tag{1.11}
\end{equation*}
$$

equivalent to (1.8). Substituting function (1.10) for $\psi(t)$ into this relation, we obtain $\gamma=\gamma^{*}$.
Case (II): If the solution $\psi(t)$ is sought in the class of H lder continuous functions on $(-1,1)$, bounded at the points $t= \pm 1$, then

$$
\begin{equation*}
\psi(t)=-\frac{1}{\pi} \sqrt{1-t^{2}} \int_{-1}^{1} \frac{(g(\tau)+\gamma)}{\sqrt{1-\tau^{2}}} \frac{d \tau}{\tau-t}, \tag{1.12}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\int_{-1}^{1} \frac{g(\tau)+\gamma}{\sqrt{1-\tau^{2}}} d \tau=0 \tag{1.13}
\end{equation*}
$$

(see [5]). Using the following relations

$$
\int_{-1}^{1} \frac{T_{n}(\tau)}{\sqrt{1-\tau^{2}}} \frac{d \tau}{\tau-t}= \begin{cases}\pi U_{n-1}(t), & n>0 \tag{1.14}\\ 0, & n=0\end{cases}
$$

and

$$
\begin{equation*}
\int_{-1}^{1} \frac{T_{0}(t)}{\sqrt{1-t^{2}}} d t=\pi \tag{1.15}
\end{equation*}
$$

we can rewrite (1.12) and (1.13) in the form

$$
\begin{equation*}
\psi(t)=-\frac{1}{\pi} \sqrt{1-t^{2}} \int_{-1}^{1} \frac{g(\tau)}{\sqrt{1-\tau^{2}}} \frac{d \tau}{\tau-t} \tag{1.16}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\gamma=-\frac{1}{\pi} \int_{-1}^{1} \frac{g(\tau)}{\sqrt{1-\tau^{2}}} d \tau \tag{1.17}
\end{equation*}
$$

Therefore, in the original variables x, σ, the solution of (1.1) where $k(x, \sigma) \equiv 0$ is expressed in the following forms:
Case (I): If the solution $\varphi(x)$ is sought in the class of functions that are H lder continuous on $[\varepsilon,+\infty), \varepsilon>0$, vanish at infinity, i.e. $\lim _{x \rightarrow \infty} \varphi(x)=0$, and can have an integrable singularity in the neighborhood of $x=0$, then

$$
\begin{equation*}
\varphi(x)=-\frac{1}{\sqrt{x}}\left(\frac{1}{\pi} \int_{0}^{+\infty} \frac{\sqrt{\sigma}(x+1)}{\sigma+1} \frac{f(\sigma)}{\sigma-x} d \sigma+\gamma\right) \tag{1.18}
\end{equation*}
$$

where γ is an arbitrary constant. Additionally, if the solution $\varphi(x)$ satisfies the condition

$$
\begin{equation*}
-\frac{1}{\pi} \int_{0}^{+\infty} \frac{\varphi(\sigma)}{\sigma+1} d \sigma=\gamma^{*} \tag{1.19}
\end{equation*}
$$

where γ^{*} is an arbitrary number, then the unique solution of (1.1) is given by the formula (1.18) with $\gamma=\gamma^{*}$.
Case (II): If the solution $\varphi(x)$ is sought in the class of bounded H lder functions on $(0,+\infty)$ vanishing at infinity, then

$$
\begin{equation*}
\varphi(x)=-\frac{1}{\pi} \sqrt{x} \int_{0}^{+\infty} \frac{f(\sigma)}{\sqrt{\sigma}} \frac{d \sigma}{(\sigma-x)} \tag{1.20}
\end{equation*}
$$

provided that

$$
\begin{equation*}
-\frac{1}{\pi} \int_{0}^{+\infty} \frac{\varphi(\sigma)}{\sigma+1} d \sigma=-\frac{1}{\pi} \int_{0}^{+\infty} \frac{f(\sigma)}{\sqrt{\sigma}(\sigma+1)} d \sigma \tag{1.21}
\end{equation*}
$$

2. Approximate Solutions of the Complete Equation

In this section, we will derive an approximate solution of (1.5) in two cases.
Case (I): An approximate solution in the case that the solution of (1.5) is bounded at the point $t=1$ and unbounded at the point $t=-1$ is expressed of the form

$$
\begin{equation*}
\psi_{n}(\tau)=\sqrt{\frac{1-\tau}{1+\tau}} \sum_{j=0}^{n} \beta_{j} W_{j}(\tau) \tag{2.1}
\end{equation*}
$$

where W_{j} is the Chebyshev polynomial of the fourth kind which is defined by the following recurrence relation

$$
\begin{align*}
& W_{0}(\tau)=1, \quad W_{1}(\tau)=2 \tau+1 \\
& W_{n}(\tau)=2 \tau W_{n-1}(\tau)-W_{n-2}(\tau), \quad n \geq 2 \tag{2.2}
\end{align*}
$$

We rewrite (1.5) in the form

$$
\begin{equation*}
\frac{1}{\pi} \int_{-1}^{1} \frac{\psi(\tau)}{\tau-t} d \tau+\frac{1}{\pi} \int_{-1}^{1} k^{*}(t, \tau) \psi(\tau) d \tau=g(t)+\gamma^{*}, \quad t \in(-1,1) \tag{2.3}
\end{equation*}
$$

where γ^{*} is determined of (1.11). If we substitute (2.1) in (2.3) and use the relation (see [6])

$$
\begin{equation*}
\int_{-1}^{1} \sqrt{\frac{1-\tau}{1+\tau}} \frac{W_{j}(\tau)}{\tau-t} d \tau=-\pi V_{j}(t) \tag{2.4}
\end{equation*}
$$

we get

$$
\begin{equation*}
\sum_{j=0}^{n} \beta_{j}\left(-V_{j}(t)+\frac{1}{\pi} Q_{j}^{*}(t)\right)=g(t)+\gamma^{*} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{j}^{*}(t)=\int_{-1}^{1} k^{*}(t, \tau) \sqrt{\frac{1-\tau}{1+\tau}} W_{j}(\tau) d \tau \tag{2.6}
\end{equation*}
$$

and V_{j} is the Chebyshev polynomial of the third kind which is defined by the following recurrence relation

$$
\begin{align*}
V_{0}(\tau) & =1, \quad V_{1}(\tau)=2 \tau-1 \\
V_{n}(\tau) & =2 \tau V_{n-1}(\tau)-V_{n-2}(\tau), \quad n \geq 2 \tag{2.7}
\end{align*}
$$

Using the zeros of $V_{n+1}(\tau)$,

$$
\begin{equation*}
t_{i}=\cos \left(\frac{(2 i-1) \pi}{(2 i+3)}\right), \quad i=1,2, \ldots, n+1, \tag{2.8}
\end{equation*}
$$

as the collocation points, we obtain the coefficients $\left\{\beta_{j}\right\}_{0}^{n}$ by solving the following system of linear equations

$$
\begin{equation*}
\sum_{j=0}^{n} \beta_{j}\left(-V_{j}\left(t_{i}\right)+\frac{1}{\pi} Q_{j}^{*}\left(t_{i}\right)\right)=g\left(t_{i}\right)+\gamma^{*}, \quad i=1,2, \ldots, n+1 . \tag{2.9}
\end{equation*}
$$

In the special case that $k^{*}(t, \tau) \equiv 0$, the approximate solution (1.6) is

$$
\begin{equation*}
\sum_{j=0}^{n}-\beta_{j} V_{j}\left(t_{i}\right)=g\left(t_{i}\right)+\gamma^{*}, \quad i=1,2, \ldots, n+1 \tag{2.10}
\end{equation*}
$$

Case (II): An approximate solution in the case that the solution of (1.5) is bounded at the points $t= \pm 1$ is expressed of the form

$$
\begin{equation*}
\psi_{n}(\tau)=\sqrt{1-\tau^{2}} \sum_{j=0}^{n} \alpha_{j} U_{j}(\tau) \tag{2.11}
\end{equation*}
$$

where U_{j} is the Chebyshev polynomial of the second kind which is defined by the following recurrence relation

$$
\begin{align*}
& U_{0}(\tau)=1, \quad U_{1}(\tau)=2 \tau \\
& U_{n}(\tau)=2 \tau U_{n-1}(\tau)-U_{n-2}(\tau), \quad n \geq 2 \tag{2.12}
\end{align*}
$$

We rewrite (1.5) in the form

$$
\begin{equation*}
\frac{1}{\pi} \int_{-1}^{1} \frac{\psi(\tau)}{\tau-t} d \tau+\frac{1}{\pi} \int_{-1}^{1} k^{*}(t, \tau) \psi(\tau) d \tau=g(t)+\gamma, \quad t \in(-1,1) \tag{2.13}
\end{equation*}
$$

where γ is determined of (1.17). If we substitute (2.11) in (2.13) and use the relation (see [6])

$$
\begin{equation*}
\int_{-1}^{1} \frac{\sqrt{1-\tau^{2}} U_{j}(\tau)}{\tau-t} d \tau=-\pi T_{j+1}(t) \tag{2.14}
\end{equation*}
$$

then we will obtain

$$
\begin{equation*}
\sum_{j=0}^{n} \alpha_{j}\left(-T_{j+1}(t)+\frac{1}{\pi} Q_{j}(t)\right)=g(t)+\gamma, \tag{2.15}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{j}(t)=\int_{-1}^{1} k^{*}(t, \tau) \sqrt{1-\tau^{2}} U_{j}(\tau) d \tau \tag{2.16}
\end{equation*}
$$

Let t_{k} be the zeros of $T_{n+2}(t)$, i.e.

$$
\begin{equation*}
t_{k}=\cos \left(\frac{(2 k-1) \pi}{(2 n+4)}\right), \quad k=1,2, \ldots, n+2 \tag{2.17}
\end{equation*}
$$

Substituting the collocation points (2.17) in (2.15), we obtain the coefficients $\left\{\alpha_{j}\right\}_{0}^{n}$ by solving the following system of linear equations

$$
\sum_{j=0}^{n} \alpha_{j}\left(-T_{j+1}\left(t_{i}\right)+\frac{1}{\pi} Q_{j}\left(t_{i}\right)\right)=g\left(t_{i}\right)+\gamma, \quad i=1,2, \ldots, n+1
$$

In the special case that $k^{*}(t, \tau) \equiv 0$, the approximate solution (1.6) is

$$
\sum_{j=0}^{n}-\alpha_{j} T_{j+1}\left(t_{i}\right)=g\left(t_{i}\right)+\gamma, \quad i=1,2, \ldots, n+1
$$

3. Error Estimation

Now, we give an error estimation for the approximate solutions of (1.5). Let $\psi_{n}(t)$ be approximate solution and $e_{n}(t)=\psi_{n}(t)-\psi(t)$, be the error function associated with $\psi_{n}(t)$, where $\psi(t)$ is the exact solution of (1.5). Since $\psi_{n}(t)$ is an approximate solution, it satisfies in

$$
\begin{equation*}
\frac{1}{\pi} \int_{-1}^{1} \frac{\psi_{n}(\tau)}{\tau-t} d \tau-\frac{1}{\pi} \int_{-1}^{1} \frac{\psi_{n}(\tau)}{\tau-1} d \tau+\frac{1}{\pi} \int_{-1}^{1} k^{*}(t, \tau) \psi_{n}(\tau) d \tau=g(t)+H_{n}(t) \tag{3.1}
\end{equation*}
$$

where $H_{n}(t)$ is a perturbation term and it is obtained from

$$
\begin{equation*}
H_{n}(t)=\frac{1}{\pi} \int_{-1}^{1} \frac{\psi_{n}(\tau)}{\tau-t} d \tau-\frac{1}{\pi} \int_{-1}^{1} \frac{\psi_{n}(\tau)}{\tau-1} d \tau+\frac{1}{\pi} \int_{-1}^{1} k^{*}(t, \tau) \psi_{n}(\tau) d \tau-g(t) \tag{3.2}
\end{equation*}
$$

Subtracting (1.5) from (3.2), yields the equation

$$
\begin{equation*}
\frac{1}{\pi} \int_{-1}^{1} \frac{e_{n}(\tau)}{\tau-t} d \tau-\frac{1}{\pi} \int_{-1}^{1} \frac{e_{n}(\tau)}{\tau-1} d \tau+\frac{1}{\pi} \int_{-1}^{1} k^{*}(t, \tau) e_{n}(\tau) d \tau=H_{n}(t) \tag{3.3}
\end{equation*}
$$

for the error function $e_{n}(t)$. To find an approximation $\hat{e}_{n}(t)$ to $e_{n}(t)$, we can solve (3.3) by the same ways as we did for (1.5). In this case, only the function $g(t)$ will be replaced by the perturbation term $H_{n}(t)$. Note that the integrals in above equations are considered as the Cauchy principal value integrals.

4. Numerical Example

In this section, we give a numerical example to clarify accuracy of the presented method. The results of example are reported in Tables 1 and 2 . Moreover, we can compare numerical results for $e_{n}(t)=\left|\psi_{n}(t)-\psi(t)\right|$ and $\left|\hat{e}_{n}(t)\right|$ in Tables 1 and 2. In the case (I), we consider $\gamma^{*}=\frac{1}{\pi} \int_{-1}^{1} \frac{g(\tau)}{\sqrt{1-\tau^{2}}} d \tau$.

Example.

$$
\begin{equation*}
\frac{1}{\pi} \int_{0}^{+\infty} \frac{\varphi(\sigma)}{\sigma-x} d \sigma=\frac{1}{2 x+3}, \quad x>0 \tag{4.1}
\end{equation*}
$$

Table 1. Numerical results in the case (I)

x	t	$\psi_{n}(t)$	$\psi(t)$	$\left\|e_{n}(t)\right\|$	$\left\|\hat{e}_{n}(t)\right\|$
0.11	-0.8	-1.0165553508894	-1.0165553508893	$0.9 \mathrm{e}-13$	$0.12 \mathrm{e}-12$
0.25	-0.6	-0.61737130758516	-0.61737130758512	$0.4 \mathrm{e}-13$	$0.39 \mathrm{e}-13$
0.33	-0.5	-0.50710962108493	-0.50710962108493	0	$0.34 \mathrm{e}-13$
0.538	-0.3	-0.35318599623723	-0.35318599623724	$0.1 \mathrm{e}-13$	0
0.81	-0.1	-0.24644645519425	-0.24644645519422	$0.3 \mathrm{e}-13$	$0.22 \mathrm{e}-13$
1.5	0.2	-0.13299316185546	-0.13299316185548	$0.2 \mathrm{e}-13$	0
1.857	0.3	-0.10358852081208	-0.10358852081207	$0.1 \mathrm{e}-13$	$0.14 \mathrm{e}-13$
5.66	0.7	-0.018570177408511	-0.018570177408511	0	$0.25 \mathrm{e}-14$
9	0.8	-0.0056932440108893	-0.005693244010887	$0.2 \mathrm{e}-14$	$0.66 \mathrm{e}-15$
19	0.9	0.0026083711357127	0.002608371135713	0	$0.91 \mathrm{e}-15$

Table 2. Numerical results in the case (II)

x	t	$\psi_{n}(t)$	$\psi(t)$	$\left\|e_{n}(t)\right\|$	$\left\|\hat{e}_{n}(t)\right\|$
0.11	-0.8	0.084465163544256	0.084465163544250	$0.6 \mathrm{e}-14$	0
0.25	-0.6	0.11664236870396	0.11664236870397	$0.1 \mathrm{e}-13$	0
0.33	-0.5	0.12856486930665	0.12856486930664	$0.1 \mathrm{e}-13$	$0.106 \mathrm{e}-11$
0.538	-0.3	0.14696001818300	0.14696001818299	$0.1 \mathrm{e}-13$	$0.442 \mathrm{e}-12$
0.81	-0.1	0.15929487067914	0.15929487067915	$0.1 \mathrm{e}-13$	$0.353 \mathrm{e}-12$
1	0	0.16329931618555	0.16329931618555	0	$0.306 \mathrm{e}-12$
1.5	0.2	0.16666666666667	0.16666666666667	0	0
1.857	0.3	0.16572087156806	0.16572087156806	0	0
5.66	0.7	0.13560353243826	0.13560353243826	0	$0.393 \mathrm{e}-13$
9	0.8	0.11664236870396	0.11664236870397	$0.1 \mathrm{e}-13$	$0.209 \mathrm{e}-13$
19	0.9	0.086805514244158	0.086805514244163	$0.5 \mathrm{e}-14$	$0.597 \mathrm{e}-14$

References

[1] N.I. Muskhelishvilli, Singular Integral Equations, Nauka, Moscow, 1968 (in Russian).
[2] F.D. Gakhov, Boundary Value Problems, Nauka, Moscow, 1977 (in Russian).
[3] R. Estrada and R.P. Kanwal, Singular Integral Equations, Birkh user, Boston, 2000.
[4] I.K. Lifanov, L.N. Poltavskii and G.M. Vainikko, Hypersingular Integral Equations and Their Applications, Chapman and Hall/CRC, 2004.
[5] I.K. Lifanov, Singular Integral Equation and Discrete Vortices, VSO, The Netherlands, 1996.
[6] J.C. Mason and D.C. Handscomb, Chebyshev Polynomials, CRC Press LLC, 2003.
[7] D. Pylak, Application of Jacobi polynomials to the approximate solution of a singular integral equation with Cauchy kernel on the real half-line, Computational Methods in Applied Mathematics 6(3) (2006), 326-335.
[8] D. Pylak, R. Smarzewski and M.A. Sheshko, A singular integral equation with a Cauchy kernel on the real half-line, Differential Equations 41(12) (2005), 1696-1708.
[9] M. Kashfi and S. Shahmorad, Approximate solution of a singular integral Cauchy-Kernel equation of the first kind, Computational Methods in Applied Mathematics 10(4) (2010), 359-367.
J. Ahmadi Shali, Department of Mathematics and Computer Science, University of Tabriz, Tabriz, Iran.
E-mail: J_ahmadishali@tabrizu.ac.ir
A. Jodayree Akbarfam, Department of Mathematics and Computer Science, University of Tabriz, Tabriz, Iran.
E-mail: Akbarfam@yahoo.com
M. Kashfi, Department of Mathematics, Islamic Azad University, Shabestar Branch, Shabestar, Iran.
E-mail: mahnaz.kashfi@gmail.com

Received March 9, 2012
Accepted June 26, 2012

[^0]: 2010 Mathematics Subject Classification. 65R20.
 Key words and phrases. Singular integral equation; Cauchy kernel; Approximate solution; Chebyshev polynomials; Collocation points.

