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Finiteness of the Cyclic Group Related to the Group
Inverse of A Matrix and Finite Markov Chains

Hanifa Zekraoui

Abstract The Group inverse is one of the generalized inverses possessing the
properties the closest to the normal inverse. The positive and negative powers of
a given matrix A (the latter being interpreted as powers of A#, the group inverse
of A), together with the projector AA# as the unit element, constitute an Abelian
group. In this paper, we are going to give equivalent conditions so that this group
is finite, and applying the result in finite Markov chains.

1. Introduction

The most of the properties of the generalized inversion were handled in the
work of A. Ben Israël and T.N.E. Greville [1], also in the work of Z. Nashed [3].
Some algebraic structures on the set of generalized inverses of matrices are studied
in [4]. Some algebraic properties are widely studied in [5]. The Group inverse is
one of the generalized inverses possessing the properties the closest to the normal
inverse. The positive and negative powers of a given matrix A (the latter being
interpreted as powers of A# the Group inverse of A), together with the projector
AA# as the unit element, constitute an Abelian group. In this paper, we are going to
give equivalent conditions so that this group is finite. In all the content, K design
the real or the complex field. r(A), R(A), N(A) denote respectively, the rank, the
range and the null space of a matrix A.

2. The Group Inverse of a Matrix

The definition of the Group inverse was firstly given by I. Erdèlyi in [2].
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Definition 1. Let A be a square matrix of order n. The Group inverse of A denoted
by A#, is the square matrix satisfying the following equations




AA#A= A ,

A#AA# = A# ,

AA# = A#A .

(1)

Remark 2. From the third equation, we get

R(A) = R(A#) and N(A) = N(A#).

2.1. Existence and uniqueness

Lemma 3. Let A be a square matrix. The following conditions are equivalent

(i) r(A) = r(A2).
(ii) R(A) = R(A2).

(iii) N(A) = N(A2).
(iv) R(A)⊕ N(A) =Kn (R(A) and N(A) are complementary).
(v) A# exists and unique.

Proof. Equivalences between (i), (ii) and (iii) are obvious, as we have r(X ) +
dim N(X ) = n, for any matrix X of order n.

We will prove equivalence between (i) and (iv). In fact, it is sufficient to prove
equivalence between (i) and N(A) ∩ R(A) = {0}. Let x ∈ N(A) ∩ R(A), then
there exists y such that 0 = Ax = A2 y , which implies that y ∈ N(A2) = N(A).
Consequently, x = Ay = 0.

Conversely, let N(A) ∩ R(A) = {0}, then if x ∈ R(A) such that Ax = 0, then
x = 0. Which means that, the restriction of A to R(A) (as an endomorphism) is
an automorphism. Therefore R(A2) = A(R(A)) = R(A).

Now we prove the equivalence between (ii) and (v). Suppose that R(A) = R(A2),
then, there exists a matrix X such that

A= A2X . (2)

Let A = BC be the rank factorization of A, and let Bl and Cr be left and right
inverses of B and C respectively. Then equation (2) yields

A= BC = BCBCX . (3)

Thus, multiplying (3) on the left by Bl and on the right by Cr gives

(Bl B)(CCr) = I = (CB)CX Cr (4)

which means that (CB) is invertible. Let X = B(CB)−2C . By substituting in system
(1), we obtain

AXA= BCB(CB)−2CBC = BC = A ,

XAX = B((CB)−2CBCB)(CB)−2C = B(CB)−2C = X ,
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and

AX = BCB(CB)−2C = B(CB)−1C = XA .

It follows that X = A#. Inversely, if A# exists, then equation A2X = A is equivalent
to R(A) = R(A2).

Uniqueness. Suppose that there are two Group inverses G1 and G2. We apply
successively system (1), we obtain G1 = G2

1A = G2
1(A

2G2) = G1(G1A2)G2 =
G1AG2 = G1(A2G2)G2 = (G1A2)G2

2 = AG2
2 = G2. ¤

2.2. Characterization of the Group Inverse by the Index of the Matrix

Definition 4. Let A be a square matrix. The smallest positive integer k for which

R(Ak) = R(Ak+1), (5)

called the index of A and denoted by Ind A.

Lemma 5 ([1]). Let A be a square matrix. Then the following statements are
equivalent:

(i) Ind A= k.
(ii) The smallest positive exponent for which (5) holds is k.

(iii) If A is singular and m(λ) is its minimal polynomial, k is the multiplicity of
λ= 0 as a zero of m(λ).

From Definition 4, and Lemma 5, it follows:

Corollary 6. A square matrix A has the group inverse if and only if Ind A= 1.

2.3. The Cyclic Group

The name “Group inverse” was first given by I. Erdelyi [2], because the positive
and the negative powers of a given matrix A (the negative powers of A being
interpreted as positive powers of A#), together with the projector AA# as the unit
element, constitute an abelian group under matrix multiplication.

In fact, let A be a square matrix and A# its Group inverse. Set G = {Ak, k ∈ Z}.
As AA# = A#A, it is sufficient to check multiplication only in the left side. Remark
that for any k ∈ Z, (AA#)Ak = AA#AAk−1 = AAk−1 = Ak, which means that AA# is
the unit of G. As AA# = A#A then A and A# are the inverses of each other (within
the meaning of the inversion in the group). Therefore the negative powers of A are
the positive ones of A#. Notice also that G is cyclic, generated byA or A#, so we
designate this group by C(A).

Problem 7. Does it exist a positive integer k for which Ak = AA# ?

The following theorem will give equivalent conditions for the existence.

Theorem 8. Let A be a square matrix of order n such that A# exists. The following
conditions are equivalent
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(i) There exists a positive integer k for which Ak = AA#.
(ii) C(A) is a finite group of order k.

(iii) A is similar to diagonal block matrix
�

S 0
0 0

�
where S is a k-root of unity.

Proof. The first two conditions are just a simple consequence of cyclic groups.
Now if Ak = AA# then Ak is a projector on R(A). Therefore Ak = I on R(A) and

Ak = 0 on N(A). By Jordan form, this means that the non zero eigenvalues of A are
the roots of unity of order k on R(A) and, A= N a nilpotent block matrix of index
k on N(A). Then, there exists an invertible matrix P such that

A= P−1
�

S 0
0 N

�
P ,

where S is a root of unity of order k. If we take

X = P−1
�

S−1 0
0 N t

�
P ,

then X is a {1, 2}-inverse of A (i.e. X satisfies the first two equations of system (1)).
As AX is idempotent we have

AX = (AX )k = P−1
�

Ir 0
0 (NN t)k

�
P . (6)

To have the Group inverse, X should satisfy AX = XA,which implies that NN t =
N t N , and this yields (NN t)k = N k(N t)k = 0. From the equality in (5), we obtain
NN t = (NN t)k = 0, and so N = 0 because NN t is positive semidefinite. Finally,

A= P−1
�

S 0
0 0

�
P .

Conversely, if

A= P−1
�

S 0
0 0

�
P ,

then, the characteristic polynomial of A is t(n−k)(tk − 1). Consequently,

Kn = ker(Ak − I)⊕ ker An−k .

As

ker(Ak − I) = R(A),

ker An−k = N(A) ,

we have
¨

Ak = I on R(A) ,
Ak = 0 on N(A)

which means that Ak = AA#. ¤
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3. Application in Markov Chains

Definition 9. A square matrix P = (pi j) of order n satisfying

pi j ≥ 0, i, j ∈ {1, . . . , n} and
n∑

j=1

pi j = 1

is called stochastic.

Lemma 10 ([1]). Every stochastic matrix is similar to
�

Ik 0
0 K

�
(7)

where 1 /∈ s(K) (s(K) is the spectrum of K).

Lemma 11. Let P be a stochastic matrix. Then I − P has the Group inverse.

Proof. It follows by lemma (10) that, there exists a nonsingular matrix Q such that

I − P =Q−1
�

0 0
0 I − K

�
Q .

As 1 /∈ s(K), it follows that I − K is nonsingular. It is then fairly easy to show that

(I − P)# =Q−1
�

0 0
0 (I − K)−1

�
Q .¤

Definition 12. A square matrix is said to be reducible if by a rearrangement of
rows and columns can be brought to the block matrix of the form

�
A B
0 C

�
.

Theorem 13. Let P be a stochastic matrix such that the cyclic group C (I − P) is
finite, then

(i) P has the Group inverse.
(ii) P is reducible.

Proof. (i) By Theorem 8, there exists a smallest positive integer s (the order of
C(I − P)) such that

(I − K)s = I .

It follows that the minimal polynomial of K is

m(λ) = λ(1+ (1−λ) + . . .+ (1−λ)s−1),

and 1 is the multiplicity of λ = 0 as a zero of m(λ), from which it follows by
Lemma 5 that Ind K = 1. By Corollary 6, K# exists, and therefore P# exists.

(ii) As λ = 0 ∈ s(K), then, the form (7) shows that P has at least one zero row,
which by a rearrangement of rows and columns can be brought to the bottom left
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corner of P, say

P =Q−1




Ik 0 0
0 R 0
0 0 0


Q ,

where Q is a permutation matrix, and 1, 0 /∈ s(R). Therefore, P is reducible. ¤
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