Factorization of Polynomials with Analytic Coefficients

Wayne Lawton

Abstract

We study monic univariate polynomials whose coefficients are analytic functions of a real variable and whose roots lie in a specified analytic curve. These include characteristic polynomials of unitary and hermitian matrices whose entries are analytic functions. We use a result of Newton to prove that every polynomial in such a class is a product of degree one polynomials in the class.

1. Introduction

\mathbb{R} and \mathbb{C} are the real and complex numbers and $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ is the unit circle. Functions defined by their Taylor series are called analytic. For $r>0$, $A\left(\mathbb{D}_{r}\right)$ is the ring of analytic functions on the open disc $\mathbb{D}_{r}=\{z \in \mathbb{C}:|z|<r\}$ and $A((-r, r))$ is the ring of analytic functions on the open interval $(-r, r)$. We let $\mathbb{C}[z] \subset \mathscr{C}_{0}^{\omega} \subset \mathbb{C}[[z]]$ denote the rings of polynomials, power series with complex coefficients that are absolutely convergent in \mathbb{D}_{r} for some $r>0$, and formal power series. We identify \mathscr{C}_{0}^{ω} with the rings of germs of functions in $\cup_{r>0} A((-r, r))$ and of functions in $\cup_{r>0} A\left(\mathbb{D}_{r}\right)$.
$\mathscr{C}_{0}^{\omega}[z]$ is the ring of polynomials with coefficients in \mathscr{C}_{0}^{ω}. Let $P(z) \in \mathscr{C}_{0}^{\omega}[z]$ be a monic polynomial of degree $d \geq 1$. Then there exist $r>0$ and $a_{0}, \ldots, a_{d-1} \in A\left(\mathbb{D}_{r}\right)$ such that $P(z)=z^{d}+a_{d-1} z^{d-1}+\cdots+a_{1} z+a_{0} \in \mathscr{C}_{0}^{\omega}[z]$. For $w \in \mathbb{D}_{r}$ we define $P_{w}(z) \in \mathbb{C}[z]$ by $P_{w}(z)=z^{d}+a_{d-1}(w) z^{d-1}+\cdots+a_{1}(w) z+a_{0}(w)$. If $\gamma \subset \mathbb{C}$ we say that $P(z)$ has roots in γ if there exists $s \in(0, r]$ such that for every $t \in(-s, s)$ all roots of $P_{t}(z)$ are in γ. We say that $P(z)$ is completely reducible if factors into monic polynomials in $\mathscr{C}_{0}^{\omega}[z]$ having degree one, or equivalently, if there exist $u \in(0, s]$ and $\lambda_{1}, \ldots, \lambda_{d} \in A\left(\mathbb{D}_{u}\right)$ such that for every $w \in \mathbb{D}_{u}, \lambda_{1}(w), \ldots, \lambda_{d}(w)$ are the roots (with multiplicity) of $P_{w}(z)$. The polynomial $z^{2}-t^{2}$ is completely reducible but the polynomial $z^{2}-t$ is not. In Section 3 we prove:

Theorem 1.1. Every monic polynomial $P(z) \in \mathscr{C}_{0}^{\omega}[z]$ that has roots in an analytic curve $\gamma \subset \mathbb{C}$ is completely reducible.

2. Preliminary Results

$\gamma \subset \mathbb{C}$ is an analytic curve if it is a real analytic submanifold of dimension 1. This means that for every point $p \in \gamma$ there exist $\epsilon>0$, an open neighborhood U of p in γ, and an analytic diffeomorphism $f:(-\epsilon, \epsilon) \rightarrow U$ with $f(0)=p$. Then $f^{\prime}(0) \neq 0$. For $z=x+i y \in \mathbb{C}$ with $x, y \in \mathbb{R}$ we define $\Re z=x$ and $\mathfrak{J} z=y$.

Lemma 2.1. If $\gamma \subset \mathbb{C}$ is an analytic curve and $p \in \gamma$, then there exist $c \in \mathbb{C} \backslash\{0\}$, $\delta>0$, an open neighborhood V of p in γ, and an analytic function $h:(-\delta, \delta) \rightarrow \mathbb{R}$ such that $h(0)=0, h^{\prime}(0)=0$, and

$$
\begin{equation*}
\mathfrak{I}\left[\frac{z-p}{c}\right]=h\left(\mathfrak{R}\left[\frac{z-p}{c}\right]\right), \quad z \in V . \tag{2.1}
\end{equation*}
$$

Proof. Since γ is an analytic curve and $p \in \gamma$, there exist $\epsilon>0$, an open neighborhood U of p in γ, and an analytic diffeomorphism $f:(-\epsilon, \epsilon) \rightarrow U$ such that $f(0)=p$. Let $c=f^{\prime}(0)$. Then $c \neq 0$. Construct $g:(-\epsilon, \epsilon) \rightarrow \mathbb{C}$ by $g(t)=(f(t)-p) / c$ and $\psi=\Re g$. Since $\psi(0)=0$ and $\psi^{\prime}(0)=1$, the implicit function theorem for real analytic functions ([2, Theorem 1.4.3]) implies that there exist $\delta>0$ and an analytic function $\phi:(-\delta, \delta) \rightarrow(-\epsilon, \epsilon)$ such that $\phi(0)=0, \phi^{\prime}(0)=1$, and $\psi(\phi(t))=t, t \in(-\delta, \delta)$. Construct $h:(-\delta, \delta) \rightarrow \mathbb{R}$ by $h(t)=\mathfrak{J} g(\phi(t))$. Therefore $h(0)=\mathfrak{J} g(\phi(0))=\mathfrak{I} g(0)=\mathfrak{J} 0=0$ and $h^{\prime}(0)=\mathfrak{I}\left(g^{\prime}(0) \phi^{\prime}(0)\right)=\mathfrak{I} 1=0$. Let $V=f(\phi((-\delta, \delta)))$. Then V is an open neighborhood of p in γ, and for every $z \in V$ there exists $t \in(-\delta, \delta)$ with $z=f(\phi(t))$. Therefore

$$
\frac{z-p}{c}=\frac{f(\phi(t))-p}{c}=g(\phi(t)) .
$$

Equation (2.1) follows since $\mathfrak{J} g(\phi(t))=h(t)=h(\psi(\phi(t))=h(\Re g(\phi(t)))$.
Lemma 2.2. If $P(z)$ is a monic polynomial that is irreducible in $\mathscr{C}_{0}^{\omega}[z]$ and has degree $d \geq 2$ then there exist $r>0$ and $\eta \in A\left(\mathbb{D}_{r}\right)$ such that

$$
\begin{equation*}
P_{w^{d}}(z)=\prod_{k=0}^{d-1}\left[z-\eta\left(e^{2 \pi i k / d} w\right)\right], \quad w \in \mathbb{D}_{r} \tag{2.2}
\end{equation*}
$$

Proof. Abhyankar ([1, Newton's Theorem and Supplements 1 and 2 on page 89]) proves a version of this result for polynomials with coefficients in the ring of formal power series $\mathbb{C}[[w]]$ and says that it was proved by Newton in 1660 [5]. The version in Lemma 2.2 for coefficients in \mathscr{C}_{0}^{ω} follows from Weierstrass' M-test.

Lemma 2.3. If η in Equation (2.2) has the Taylor expansion $\eta(w)=\sum_{n=0}^{\infty} \eta_{n} w^{n}$, then there exists $L \geq 1$ such that $\eta_{L} \neq 0$ and d does not divide L.

Proof. Otherwise there exists $\mu \in A\left(\mathbb{D}_{r^{d}}\right)$ such that $\eta(w)=\mu\left(w^{d}\right), w \in \mathbb{D}_{r}$. Then Equation (2.2) implies that $P_{w^{d}}(z)=\left(z-\mu\left(w^{d}\right)\right)^{d}, w \in \mathbb{D}_{r}$. Since the function $w \rightarrow w^{d}$ maps \mathbb{D}_{r} onto $\mathbb{D}_{r^{d}}, P_{w}(z)=(z-\mu(w))^{d}, w \in \mathbb{D}_{r^{d}}$, so $P(z)$ is not irreducible in $\mathscr{C}_{0}^{\omega}[z]$. This contradiction completes the proof.

3. Proof of Theorem 1.1

Assume to the contrary that there exist an analytic curve $\gamma \subset \mathbb{C}$ and a monic polynomial $P(z) \in \mathscr{C}_{0}^{\omega}[z]$ of degree $d \geq 2$ that has roots in γ and is not completely reducible. We may assume that $P(z)$ is irreducible in $\mathscr{C}_{0}^{\omega}[z]$ so Lemma 2.2 implies there exist $r>0$ and $\eta \in A\left(\mathbb{D}_{r}\right)$ that satisfy Equation (2.2). Since the roots of $P(z)$ are in γ, there exists $s \in(0, r]$ such that $\eta(w) \in \gamma$ whenever $w^{d} \in \mathbb{R}$ and $w \in \mathbb{D}_{s}$. Let $p=\eta(0)$. Lemma 2.1 implies that there exist $c \in \mathbb{C} \backslash\{0\}, \delta>0$, an open neighborhood V of p in γ, and an analytic function $h:(-\delta, \delta) \rightarrow \mathbb{R}$ such that $h(0)=0, h^{\prime}(0)=0$, and Equation (2.1) holds. Since η is continuous there exists $u \in(0, s]$ such that $\eta(w) \in V$ whenever $w^{d} \in \mathbb{R}$ and $w \in \mathbb{D}_{u}$. Construct $\lambda=(\eta-p) / c$ with Taylor series $\sum_{n=0}^{\infty} \lambda_{n} w^{n}$. Then $\lambda_{0}=0$ and Lemma 2.3 implies that there exists a smallest integer $L \geq 1$ such that $\lambda_{L} \neq 0$ and d does not divide L. Choose $k \in\{0,1,2, \ldots, d-1\}$ such that $\mathfrak{I}\left(e^{\pi i k L / d} \lambda_{L}\right) \neq 0$ and construct $\zeta(t)=\mathfrak{J} \lambda\left(e^{\pi i k / d} t\right), t \in(-u, u)$ with Taylor series $\sum_{n=0}^{\infty} \zeta_{n} t^{n}$. Then $\zeta_{L}=\mathfrak{J}\left(e^{\pi i k L / d} \lambda_{L}\right) \neq 0$. If $t \in(-u, u)$ then $\eta\left(e^{\pi i k L / d} t\right) \in V$ so Equation (2.1) gives $\zeta(t)=h\left(\Re \lambda\left(e^{\pi i k L / d} t\right)\right)$. The facts that $1 \leq m<L$ implies that d divides m or $\lambda_{m}=0, \lambda_{0}=0, h^{\prime}(0)=0$, and d does not divide L, imply that $\zeta_{L}=0$.

This contradiction completes the proof.
Remark 3.1. In ([3, Corollary 1]) we proved that a monic $P(z) \in \mathscr{C}_{0}^{\omega}[z]$ of degree 2 that has roots in \mathbb{T} is completely reducible and used results in [4] to prove that the eigenvalues of certain unitary matrices (arising in quantum physics) with analytic entries are global analytic functions on \mathbb{T} if the characteristic polynomials of the matrices are completely reducible. Theorem 1.1 ensures this condition holds.

References

[1] S.S. Abhyankar, Algebraic Geometry for Scientists and Engineers, American Mathematical Society, Providence, Rhode Island, 1990.
[2] S.G. Krantz and H.R. Parks, A Primer of Real Analytic Functions, Birkh user, Basel, 1992.
[3] W. Lawton, Bose and Einstein meet Newton, pages 41-50 in Proceedings of the International Conference in Mathematics and Applications ICMA-MU2011, Twin Towers Hotel, 88 Rong Muang, Patumwan, Bangkok 10330, Thailand, December 17-19, 2011 (http://arxiv.org/abs/1111.3475)
[4] W. Lawton, A. Mouritzen, J. Wang and J. Gong, Spectral relationships between kicked Harper and on-resonance double kicked rotor operators, Journal of Mathematical Physics 50 (3), Article 032103 (2009) (26 pages) (http://arxiv.org/abs/0807.4276)
[5] I. Newton, Geometria Analitica, (1660).
Wayne Lawton, Department of Mathematics, Mahidol University, Bangkok 10400, Thailand; School of Mathematics and Statistics, University of Western Australia, Perth, Australia.
E-mail: scwlw@mahidol.ac.th

