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1. Introduction
Banach contraction principle proved by Polish Mathematician Stefan Banach in his thesis is a
very easy tool to find the fixed point of a mapping in the theory of metric spaces. According to this
principle, a mapping which is contractive in nature and defined on a complete metric space to
itself has a unique fixed point. Kannan [9] also studied some results on fixed points. Afterward,
most of the Mathematicians worked on it and generalize this principle in different metric
spaces. Bakhtin [1] came out with the definition of b-metric space in 1989. Cevik and Altun [2]
introduced the definition of vector metric space in 2009. Petre [4] developed the definition of
the vector b-metric space in 2014. From the literature survey of the last ten years, it is observed
that fixed point theory was combined with Graph theory.

Fixed point theory with a graph theory was firstly studied by Kirk and Espinola [8] in 2006.
After that Jachymski [7] in 2008, studied the Banach contraction principle and generalized
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it to mappings on a metric space endowed with a graph. Samreen et al. [10] proved some fixed
point theorems in b-metric space endowed with graph. In this paper, we generalize most of the
results of Jachymski [7].

2. Preliminaries and Definitions
Now, we will give some basic definitions and results in the field of fixed point theory and graph
theory before going to main results.

Definition 2.1 ([2]). A partially ordered linear space is a quadruple (E,+, ·,≤E) where (E,+, ·)
is a linear space over the field R of Real numbers and ≤E is a partial ordering on E such that

(i) u ≤E v ⇒ λu ≤E λv, where λ is non-negative real number.

(ii) u ≤E v ⇒ u+w ≤E v+w, for every u,v,w ∈ E.

Definition 2.2 ([2]). A Riesz space, or vector lattice, is a partially ordered linear space
(E,+, ·,≤E) such that (E,≤E)is a lattice.

Notation 2.3 ([2]). If {un} is a decreasing sequence in Riesz space whose inf{un}= u, then we
say sequence {un} is directed downwards and we use the symbol un ↓ u.

Definition 2.4 ([6]). A Riesz space E is said to be Archimedean if it is true for every u ∈ E+
that the decreasing sequence

{ 1
n u

}
satisfies 1

n u ↓ 0, where E+ = {u ∈ E : u ≥E 0}.

Lemma 2.5 ([9]). If u ≤E ku in a Riesz space E, where u ∈ E+ and k ∈ [0,1) then u = 0.

Example 2.6 ([6]). R2 is an Archimedean Riesz space with coordinate wise ordering but with
lexicographical ordering, it is non-Archimedean Riesz space.

Definition 2.7 ([6]). Suppose Z 6=φ and E is a Riesz space. A function d : Z×Z → E+ is said to
be E-b-metric if, for any u1,u2,u3 ∈ Z and s ≥ 1 any real number, the following conditions are
satisfied:

(i) d(u1,u2)≤E s[d(u1,u3)+d(u3,u2)].

(ii) d(u1,u2)= 0 iff u1 = u2.

The triplet (Z,d,E) is said to be E-b-metric space or vector-b-metric space.

Definition 2.8 ([6]). Suppose Z = C [−2,2]= E and d : C[−2,2]×C[−2,2]→ E+ be defined as

d( f , g)= | f − g|p, p > 1.

Then (Z,d,E) is E-b-metric space with s = 2p−1 > 1. Since the function |u|p (p > 1)is convex, we
have (∣∣∣∣1

2
u+ 1

2
v
∣∣∣∣)p

≤ 1
2
|u|p + 1

2
|v|p

so that

(|u+v|)p ≤ 2p−1(|u|p +|v|p).
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Therefore

d( f1, f3)= (| f1 − f3|)p

= (| f1 − f2 + f2 − f3|)p

≤ 2p−1[| f1 − f2|p +| f2 − f3|p]

= 2p−1[d( f1, f2)+d( f2, f3)] .

Thus condition (i) of Definition 2.7 holds with s = 2p−1 > 1.

Example 2.9 ([6]). Suppose Z = Lp[0,1] where p ∈ (0,1) and E = R2 and d : Lp[0,1]×Lp[0,1]→
R2+ such that d( f , g) = (a‖ f − g‖p,β‖ f − g‖p) where α,β ≥ 0 and α+β > 0. (Z,d,R2) is an
E-b-metric space with s = 21/p > 1.

We also know that Lp[0,1] is Riesz space with partial order f ≥ g iff f (u) ≥ g(u) for all
u ∈ [0,1].

Example 2.10. Let Z = {0,1,2}, E = R2 and d : Z×Z → R2 be defined as

d(1,2)= d(2,1)= (2,2),

d(0,1)= d(1,0)= (2,2),

d(0,2)= d(2,0)= (8,8) .

Since d(2,0)= (8,8)≤ d(2,1)+d(1,0). So (Z,d,E) is not a metric space but it is E-b-metric space
with s ≥ 2.

Definition 2.11 ([2]). A sequence 〈un〉 in (Z,d,E) is said to be E-converge to some u ∈ Z,

written as un
d,E−→u, if there exists a sequence 〈an〉 in E such that an ↓ 0 and d(un,u)≤E an for

all n.

Definition 2.12 ([2]). A sequence 〈un〉 in (Z,d,E) is said to be E-Cauchy if there exists a
sequence 〈an〉 in E such that an ↓ 0 and d(un,un+p)≤E an for all n and p.

Definition 2.13 ([7]). Two sequences {un}n∈N and {vn}n∈N in Riesz space E are said to be
E-Cauchy Equivalent if both sequences are E-Cauchy sequence and there is a sequence {an} in
E such that an ↓ 0 and d(un,vn)≤E an for all n.

Definition 2.14 ([7]). Let T be a mapping on an E-b-metric space (Z,d,E) to itself. T is said
to be a Picard operator (P.O.) if T has a unique fixed point u∗ and there exists a sequence an in
E such that an ↓ 0 and d(Tnu,u∗)≤ an for all n.

Definition 2.15 ([7]). Let T be a mapping on E-b-metric space (Z,d,E) to itself. T is said to
be a weakly Picard operator if for every u ∈ Z, sequence Tnu E-converges to fixed point of T
and this fixed point need not be unique.
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2.1 Preliminaries of Graph Theory
Notation 2.16. We use the symbol E′(G) which means set of edges of graph G.
Suppose (Z,d,E) is an E-b-metric space and ∆ = {(u,u) : u ∈ Z}. A graph G is a pair (V ,E′)
where E′ = E′(G), the set of its edges such that ∆ ⊂ E′(G) and V = V (G) is a set of vertices
coinciding with Z. Assume the graph has no parallel edges.
The graph G−1 is obtained by reversing the direction of edges where it’s set of edges and vertices
are defined as follows:

V (G−1)=V (G) and E′(G−1)= {(u,v) ∈ Z×Z : (v,u) ∈ E′(G)} .

Consider the graph G̃ consisting all the edges of G and G−1 and all vertices of G i.e.

E′(G̃)= E′(G)∪E′(G−1) and V (G̃)=V (G) .

Definition 2.17. A subgraph G′(U ,F) of a graph G(V ,E) is a graph in which U ⊆ V and F
contains all those edges of E which are associated with vertices of U .

Definition 2.18. Suppose G is a graph. A path in graph G from vertex u to vertex v of length
n{n ∈ N∪ {0}} is a sequence (ui)n

i=0 of n+ 1 distinct vertices such that u0 = u, un = v and
(ui,ui+1) ∈ E′(G) for i = 1,2, . . . ,n.

Definition 2.19. Suppose G is a graph. We say that graph G is connected if there is a path
between any two vertices of G and it is weakly connected if G̃ is connected.

Notion 2.20. Consider any vertex u in a graph G. We denote the component of G containing u
by Gu which is a subgraph of G. The subgraph Gu contained all those vertices and edges of G
which involves in any path in G starting at u. We can observe vertices of Gu as an equivalence
class [u]G defined on V (G) by the relation R which is defined as vertex u is related to vertex v
if there is a path from u to v. By this relation R, we can see easily, V (Gu)= [u]G . It is very easy
exercise to check the subgraph Gu is connected.

Definition 2.21 ([7]). Let (Z,d) be a metric space with graph G. A mapping f : Z → Z is said
to be a Banach G-contraction if

(i) for all u,v ∈ Z

(u,v) ∈ E′(G)⇒ ( f u, f v) ∈ E′(G) .

(ii) there exists α ∈ [0,1), for all u,v ∈ Z

(u,v) ∈ E′(G)⇒ d( f u, f v)≤αd(u,v).

Remark. We need not to define Banach-G contraction in E-b-metric space with graph
separately because in condition (ii) of Definition 2.21 less than or equal to (≤) symbol can
be replaced by general partial order relation (≤E).

Definition 2.22 ([7]). Let (Z,d) be a metric space with graph G. The function f : Z → Z is said
to be orbitally G-continuous if for all u,v ∈ Z and any sequence {kn}, n ∈N of positive integers,
f kn u−→v and ( f kn u, f kn+1 u) ∈ E′(G) imply that f ( f kn u)−→ f v for n ∈N.
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Proposition 2.23. Let (Z,d,E) is an E-b metric space with constant s ≥ 1 and graph G. If
f : Z → Z is a G-contraction with α ∈ [0,1) then f is both a G̃-contraction and G−1-contraction.

Proof. Since f is G-contraction. Therefore, for all u,v ∈ Z,

(u,v) ∈ E′(G)⇒ ( f u, f v) ∈ E′(G)

and α ∈ [0,1), for all u,v ∈ Z.

(u,v) ∈ E′(G)⇒ d( f u, f v)≤E αd(u,v).

Now

(u,v) ∈ E′(G)⇒ (v,u) ∈ E′(G−1).

Thus if

( f u, f v) ∈ E′(G)⇒ ( f v, f u) ∈ E′(G−1).

Since d is E-b-metric.
We have

(v,u) ∈ E′(G−1)⇒ d( f v, f u)≤E αd(v,u).

Thus f is G−1-contraction in E-b-metric space Z.
Similarly, we can show f is G̃-contraction.

3. Main Results
Let Fix f = {u ∈ Z : f (u)= u}. Throughout this section, G is considered as a directed graph.

Lemma 3.1. Let (Z,d,E) be an E-b-metric space with constant s ≥ 1 and graph G. Let f : Z → Z
be a G-contraction with constant α. Therefore, given u ∈ Z and v ∈ [u]G̃ , there exists an element
C(u,v) ∈ E+ satisfying

d( f nu, f nv)≤E αnC(u,v), for all n ∈N.

Proof. Suppose u ∈ Z and v ∈ [u]G̃ . Then, there is a finite sequence (ui)N
i=0 in G̃ from u to v i.e.

u0 = u, uN = v and (ui−1,ui) ∈ E′(G̃) for i = 1,2, . . . , N . By Proposition 2.23, f is a G̃-contraction.

⇒ ( f nui−1, f nui) ∈ E′(G̃) and d( f ui−1, f ui)≤E αd(ui−1,ui).

An easy induction shows

d( f 2ui−1, f 2ui)≤E αd( f ui−1, f ui)≤E α2d(ui−1,ui),

d( f nui−1, f nui)≤E αnd(ui−1,ui), for all n ∈ N and i = 1,2, . . . , N.

Now, we use the triangular inequality of E-b-metric, we get

d( f nu, f nv)≤E s[d( f nu, f nu1)+d( f nu1, f nv)]

= sd( f nu, f nu1)+ sd( f nu1, f nv) .

By repeated use of Triangular inequality

⇒ d( f nu, f nv)≤E sd( f nu, f nu1)+ s2d( f nu1, f nu2)+ s3d( f nu2, f nu3)+·· ·
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+ sN−1d( f nuN−2, f nuN−1)+ sN d( f nuN , f nv)

≤E αn

(
N∑

i=1
sid (ui−1,ui)

)
.

So, it is suffices to set

C(u,v)=
N∑

i=1
sid(ui−1,ui).

Theorem 3.2. If (Z,d,E) is an Archimedean, E-b-metric space with constant s ≥ 1 and directed
weakly connected graph G then for any G-contraction f : Z → Z with constant α and αs ∈ [0,1),
given u,v ∈ Z, ( f nu)n and ( f nv)n are E-Cauchy equivalent.

Proof. Suppose u ∈ Z, then [u]G̃ = Z so f u ∈ [u]G̃ .
Now by Lemma 3.1, we get d( f nu, f n+1u)≤E αnC(u, f u).
Sincev = f u, we obtain

d( f nu, f n+1u)≤E αnC(u, f u), n ≥ 1, for alln ∈ N . (3.1)

Now, we will claim that { f nu}nis an E-Cauchy sequence. For this consider m > n, using the
triangular inequality, we get

d( f nu, f mu)≤E sd( f nu, f n+1u)+ s2d( f n+1u, f n+2u)+ s3d( f n+2u, f n+3u)+ . . .

+ sm−nd( f m−1u, f mu)

From the use of (3.1)

≤E [sαn + s2αn+1 + . . .+ sm−nαm−1]C(u, f u)

≤E sαn[1+ sα+ s2α2 + . . .+ sm−n−1αm−n−1]C(u, f u)

≤E
sαn

1− sα
C(u, f u) .

Since αs ∈ [0,1), s ≥ 1 and α ∈ [0,1)

⇒ d( f nu, f mu)≤E
αns

1− sα
C(u, f u) ↓ 0

⇒ { f nu} is E-Cauchy sequence.

Since v ∈ [u]G̃ and use of above lemma yields d( f nu, f nv) ≤αnC(u,v). Hence { f nu} and { f nv}
are E-Cauchy equivalent.

Theorem 3.3. Let (Z,d,E) be an E-b-metric space endowed with constant s ≥ 1 and a directed
graph G. If f : Z → Z is G-contraction with constant α and αs ∈ [0,1), given u,v ∈ Z, { f nu} and
{ f nv} are E-Cauchy equivalent, then Card(Fix f )≤ 1.

Proof. Let f be a G-contraction and we assume that u,v ∈Fix f .
⇒ f u = u and f v = v
⇒ f nu = u and f nv = v
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Since { f nu} and { f nv} are E-Cauchy equivalent, so by definition of E-Cauchy equivalent there
exists {an} in E such that an ↓ 0 and d( f nu, f nv)≤ an for all n.

⇒ d(u,v)≤ an ↓ 0, for alln

⇒ u = v.

Corollary 3.4. Let (Z,d,E) be Archimedean, complete E-b-metric space endowed with constant
s ≥ 1 and a graph G. If G is weakly connected, then for any G-contraction f : Z → Z with constant
α and αs ∈ [0,1), there exists u∗ ∈ Z such that f nu

d,E−→u∗ for all u ∈ Z and ( f nu,u∗) ∈ E′(G̃).

Proof. Result of this corollary implies from Theorem 3.2 and Theorem 3.3.

Proposition 3.5. Suppose that f : (Z,d,E)→ (Z,d,E) is a G-contraction with constant α and
αs ∈ [0,1) such that for some u0 ∈ Z, f (u0) ∈ [u0]G̃ . Then [u0]G̃ is f -invariant and f /[u0]G̃
is a G̃u0 -contraction. Furthermore, if u,v ∈ [u0]G̃ , then ( f nu)n∈N and ( f nv)n∈N are E-Cauchy
equivalent.

Proof. Let u ∈ [u0]G̃ . Then there is a path (ui)N
i=0 in G̃ from u0 to u, i.e. uN = u and

(ui−1,ui) ∈ E′(G̃) for i = 1,2, . . . , N .
Because f is G-contraction, so f is also G̃-contraction which yields ( f ui−1, f ui) ∈ E′(G̃) for
i = 1,2, . . . , N i.e. ( f ui)N

i=0 is path in G̃ from f u0 to f u.
Thus f (u) ∈ [ f (u0)]G̃ .
Since by hypothesis, f u0 ∈ [u0]G̃ i.e. [ f (u0)]G̃ = [u0]G̃ .

⇒ f (u)= [u0]G̃ .

Thus [u0]G̃ is f -invariant.
Now, let (u,v) ∈ E′(G̃uo). This means that there is path (ui)N

i=0 in G̃ from u0 to v such that
uN−1 = u.
Since f (u0) ∈ [u0]G̃ , let (vi)M

i=0 be a path in G̃ from u0 to f u0. Repeating the argument from
the last part of the proof, we infer (v0,v1, . . . ,vM , f u1, . . . , f uN) is a path in G̃ from u0 to f v, in
particular ( f uN−1, f uN) ∈ E′(G̃u0) i.e. ( f u, f v) ∈ E′(G̃u0). Moreover, since E′(G̃u0) ⊆ E′(G̃) and
f is G̃-contraction. We conclude that contraction condition for G̃u0 holds. Thus f [u0]G̃ is a
G̃u0 -E-contraction. Last statement of theorem is directly implied from Theorem 3.2.

Theorem 3.6. Let (Z,d,E) be an Archimedean, complete E-b-metric space endowed with graph
with constant s ≥ 1. Suppose G satisfying the following property
P. If (un)n∈N is any sequence in Z where un

d,E−→u and there is edge between consecutive terms
of sequence i.e. (un,un+1) ∈ E′(G) for any n ∈ N then there is a subsequence (ukn)n∈N with
(ukn ,u) ∈ E′(G).
Let Z f = {u ∈ Z : (u, f u) ∈ E′(G)} and f : Z → Z be a G-contraction with constant α and αs ∈ [0,1).
Then

(1) For all u ∈ Z f , f /[u]G̃ is a Picard operator.

(2) If G is weakly connected graph and Z f 6= ;, then f is Picard operator on Z.
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(3) If Z′ =∪{[u]G̃ : x ∈ Z f } then f /Z′ is Weakly Picard operator on Z.

(4) If f ⊆ E′(G) i.e. there is an edge between every element of Z and its image, then f is Weakly
Picard operator on Z.

(5) Card(Fix f )=Card{[u]G̃ : u ∈ Z f }.

(6) Fix f 6= ;⇔ Z f 6= ;.

(7) f has a unique fixed point iff ∃ u0 ∈ Z f such that Z f ⊆ [u0]G̃ .

Proof. (1) Firstly, we will claim that there exists u∗ ∈ [u]G̃ such that f nu
d,E−→u∗ and u∗ is fixed

point of f i.e. f u∗ = u∗.
Let u ∈ Z f , then f u ∈ [u]G̃ . Therefore, by Proposition 3.5 if v ∈ [u]G̃ , then { f nv}n and { f nu}n are
E-Cauchy equivalent. Because Z is E-Complete, so there exists u∗ such that

f nu
d,E−→u∗ (3.2)

i.e. { f nv}n E-converges to some element of Z say u∗ and also { f nu}n E-converges to u∗ ∈ Z.
Because (u, f u) ∈ E′(G) so, by using the definition of G-contraction, we obtain

( f nu, f n+1u) ∈ E′(G), for alln ∈ N . (3.3)

Since Z has the property P, therefore there exists a subsequence f kn u such that

( f kn u,u∗) ∈ E′(G), for alln.

From (3.3), we obtain a path (u, f u, f 2u, . . . , f kn u,u∗) from u to u∗ in graph G (also in G̃).
Thus u∗ ∈ [u]G̃ .
Now, we will claim that u∗ is fixed point of f .
Since f is G-contraction, so we have d( f kn+1u, f u∗)≤E αd( f kn u,u∗).
Also, we know that limit of E-convergent sequence and its subsequence is same, so f kn u

d,E−→u∗

and also f kn+1u
d,E−→u∗. Therefore, there exists a sequence {an} ↓ 0 in E such that

d( f kn+1u, f u∗)≤E akn+1 ↓ 0, for all n

and

d( f kn u, f u∗)≤E akn ↓ 0, for all n.

Therefore

d(u∗, f u∗)≤E s[d(u∗, f kn u)+d( f kn u, f u∗)]

≤E s[d(u∗, f kn u)+ sd( f kn u, f kn+1u)+ sd( f kn+1u, f u∗)]

≤E s[akn + sαd( f kn−1u, f kn u)+ sαakn]

≤E

[
sakn +

αkn s3

1− sα
C(u, f u)+ s2αakn

]
↓ 0

where d( f kn u, f kn+1u)≤E
αkn s2

1−sα C(u, f u) ↓ 0 and C(u, f u) ∈ E

d(u∗, f u∗)≤ 0 ⇒ f u∗ = u∗.

Thus f /[u]G̃ is a Picard operator.
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(2) If we assume G a weakly connected graph, then [u]G̃ = Z ⇒ f is Picard operator.

(3) Let Z′ =∪{[u]G̃ : u ∈ Z f }. Now, we prove that f /Z′ is Weakly Picard operator.
f : [u]G̃ → [u]G̃ is a Picard operator by (1)
For all u ∈ Z f , (u, f u) ∈ E′(G).
Consider arbitrary element v ∈ Z′ =∪[u]G̃ . This imply that there exists u ∈ Z f such that v ∈ [u]G̃ .
Thus v ∈ Z′ ⇒ v ∈ [u]G̃ . Because f /[u]G̃ is Picard operator, so f /Z′ is Weakly Picard operator.

(4) We have Z f = {u ∈ Z : (u, f u) ∈ E′(G)}. If f ⊆ E′(G) which means there exists an edge between
the element and its image under f , then Z f = Z.

Z′ =∪{[u]G̃ : u ∈ Z f }=∪{[u]G̃ : u ∈ Z}= Z .

From (3), f /Z′ is Weakly Picard operator.
⇒ f /Z is Weakly Picard operator.

(5) Consider a mapping ψ from Fix f to {[u]G̃ : u ∈ Z f } i.e.

ψ : Fix f → A = {[u]G̃ : u ∈ Z f }.

Defined u →ψ(u)= [u]G̃ .
We will prove thar ψ is one-one (injection) and onto (surjection).
We have ψ(Fix f )⊂ A.

Surjection. Let [u]G̃ ∈ A, thus u ∈ Z f . From (1), f /[u]G̃ is a Picard operator i.e. f nu
d,E−→ u∗ such

that u∗ is a fixed point of f i.e. f u∗ = u∗ ∈Fix f .
Then u∗ ∈ [u]G̃ ∩Fix f ⇒ ψ(u∗)= [u]G̃ ∈ A.
Thus for any [u]G̃ ∈ A there exists u∗ ∈Fix f such that ψ(u∗)= [u]G̃ .

Injection. Suppose u1,u2 ∈Fix f such that ψ(u1)=ψ(u2), then [u1]G̃ = [u2]G̃
⇒ u2 ∈ [u1]G̃ .

By using (1) we get f [u]G̃ is Picard operator, then

f nu2
d,E−→ u1 ⇒ [u1]G̃ ∩Fix f = {u1}.

Since u2 ∈Fix f and u1 ∈ Fixf , then u1 = u2, which shows ψ is a injection.

⇒ Card(Fix f )=Card A.

(6) Condition (6) can be obtained from (5) as a consequence.

(7) f has a unique fixed point iff ∃ u0 ∈ Z f such that Z f ⊆ [u0]G̃ .

Let u0 ∈ Z f such that Z f ⊆ [u0]G̃ . Then from (1) part and (5) part, f has a unique fixed point
because Card(Fix f )=Card{[u]G̃ : u ∈ Z f }.

For the converse part, Assume that there is only one fixed point of f i.e. u0 ∈ Z such that
f (u0)= u0.

⇒ u0 ∈ Z f because (u0, f u0) ∈ E′(G).

As we assume earlier that ∆⊆ E′(G).

Now, we show that Z f ⊆ [u0]G̃ .
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For this let v ∈ Z f .

⇒ (v, f v) ∈ E′(G).

But from (1) part if v ∈ Z f , then f is P.O. on [v]G̃ .

⇒ f (v)= v

⇒ u0 ∈ [v]G̃
⇒ v ∈ [u0]G̃
⇒ Z f ⊆ [u0]G̃

Theorem 3.7. Assume (Z,d,E) is an Archimedean, complete E-b metric space with graph G
and f : Z → Z is a G-contraction with constant α and αs ∈ [0,1). Also, assume f is orbitally
G-continuous mapping.
Let Z f = {u ∈ Z, (u, f u) ∈ E′(G)}. Under above hypothesis we can obtain following conclusions.

(1) If u ∈ Z f and v ∈ [u]G̃ then the sequence ( f nv)n∈N E-converges to fixed point of mapping f
and limit of sequence f nv is independent of v.

(2) If graph G is weakly connected and Z f is non empty then f is Picard operator.

(3) If f ⊆ E(G) i.e. for all u ∈ Z we have {(u, f u) : u ∈ Z} ⊆ E′(G) then f is Weakly Picard
operator.

Proof. (1) Let u ∈ Z f and v ∈ [u]G̃ . Then by Proposition 3.5, { f nu}u∈N and { f nv}v∈N E-converges
to same point u∗ (say). Since u ∈ Z f that implies (u, f (u)) ∈ E′(G). By using the definition of
GE-contraction, we have ( f u, f 2u) ∈ E′(G) and ( f nu, f n+1u) ∈ E′(G) for n ∈ N .
Since f is orbitally G-continuous. Therefore

f ( f nu)
d,E−→ f (u∗)

i.e.

d( f n+1u, f u∗)≤E an ↓ 0, for some {an}⊆ E.

Now

d( f u∗,u∗)≤E sd( f u∗, f n+1u∗)+ sd( f n+1u,u∗)≤E s(an +bn) ↓ 0

⇒ f (u∗)= u∗

(2) Suppose Z f is non empty and G is weakly connected.

Therefore for arbitrary u ∈ Z f , [u]G̃ = Z, part (1) imply that f is Picard operator. Since

f ⊆ E(G)

⇒ Z f 6=φ

⇒ For each u ∈ Z f , f is P.O. on [u]G̃ which imply that f is Weakly Picard operator on Z.
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4. Conclusions
We generalized the results of Jachymski [7] by considering E-b-metric space with graph in place
of metric space with graph.
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