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1. Introduction
Some new notions in the concept of ideal nano topological spaces were introduced by Parimala et
al. [5]. Recently, More new classes of sets and it is properties were introduced and investigated
by several topologist for some example ([1–3, 8, 9, 12–15]) and [16] in ideal nano topological
spaces.

An ideal I [19] on a topological space (X ,τ) is a non-empty collection of subsets of X which
satisfies the following conditions:

(1) A ∈ I and B ⊂ A imply B ∈ I , and

(2) A ∈ I and B ∈ I imply A∪B ∈ I .
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Given a topological space (X ,τ) with an ideal I on X . If ℘(X ) is the family of all subsets of X ,
a set operator (·)? :℘(X )→℘(X ), called a local function of A with respect to τ and I is defined as
follows: for A ⊂ X , A?(I,τ)= {x ∈ X : U ∩ A ∉ I for every U ∈ τ(x)} where τ(x)= {U ∈ τ : x ∈U} [6].
The closure operator defined by cl?(A) = A ∪ A?(I,τ) [20] is a Kuratowski closure operator
which generates a topology τ?(I,τ) called the ?-topology finer than τ. The topological space
together with an ideal on X is called an ideal topological space or an ideal space denoted by
(X ,τ, I). We will simply write A? for A?(I,τ) and τ? for τ?(I,τ). In this paper, we propose to
introduce the new classes of ng#-closed sets, nIg# -closed sets, nαg#-closed sets and completely
nano codense in ideal an nano topological space. Also, we studied the nIg# -closed sets and
establish their various characteristic properties.

2. Preliminaries
Definition 2.1 ([11]). Let U be a non-empty finite set of objects called the universe and R be
an equivalence relation on U named as the indiscernibility relation. Elements belonging to the
same equivalence class are said to be indiscernible with one another. The pair (U ,R) is said to
be the approximation space. Let X ⊆U .

(1) The lower approximation of X with respect to R is the set of all objects, which can
be for certain classified as X with respect to R and it is denoted by LR(X ). That is,
LR(X )= ⋃

x∈U
{R(x) : R(x)⊆ X }, where R(x) denotes the equivalence class determined by x.

(2) The upper approximation of X with respect to R is the set of all objects, which can
be possibly classified as X with respect to R and it is denoted by UR(X ). That is,
UR(X )= ⋃

x∈U
{R(x) : R(x)∩ X 6=φ}.

(3) The boundary region of X with respect to R is the set of all objects, which can be classified
neither as X nor as not −X with respect to R and it is denoted by BR(X ). That is,
BR(X )=UR(X )−LR(X ).

Definition 2.2 ([18]). Let U be the universe, R be an equivalence relation on U and τR(X )=
{U ,φ,LR(X ),UR(X ),BR(X )} where X ⊆U . Then τR(X ) satisfies the following axioms:

(1) U and φ ∈ τR(X ),

(2) the union of the elements of any sub collection of τR(X ) is in τR(X ),

(3) the intersection of the elements of any finite subcollection of τR(X ) is in τR(X ).
Thus τR(X ) is a topology on U called the nano topology with respect to X and (U ,τR(X ))

is called the nano topological space. The elements of τR(X ) are called nano-open sets (briefly
n-open sets). The complement of a n-open set is called n-closed.

In the rest of the paper, we denote a nano topological space by (U ,N), where N = τR(X ).
The nano-interior and nano-closure of a subset A of U are denoted by n-int(A) and n-cl(A),
respectively.

Definition 2.3 ([18]). A subset A of a space (U ,N) is called
(1) nano α-open if A ⊆ n-int(n-cl(n-int(A))).

(2) nano semi-open if A ⊆ n-cl(n-int(A)).

(3) nano pre open set (briefly np-open set) if A ⊆ n-int(n-cl(A)).
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The complements of the above mentioned sets are called their respective closed sets.

Definition 2.4. A subset A of a space (U ,N) is called
(1) nano g-closed [4] if ncl(A)⊆G, whenever A ⊆G and G is nano open.

(2) nano αg-closed [7] if n-αcl(A)⊆G whenever A ⊆G and G is nano open.
The complements of the above used sets are called their respective open sets.

Definition 2.5. A subset A of a space (U ,N) is called
(1) nano dense (briely n-dense) [17] if n-cl(A)=U .

(2) nano codense (briely n-codense) [2] if U − A is n-dense.

A nano topological space (U ,N) with an ideal I on U is called [5] an ideal nano topological
space and is denoted by (U ,N, I). Gn(x)= {Gn | x ∈Gn,Gn ∈N}, denotes the family of nano open
sets containing x.

Definition 2.6 ([5]). Let (U ,N, I) be a space with an ideal I on U . Let (·)?n be a set operator
from ℘(U) to ℘(U) (℘(U) is the set of all subsets of U ). For a subset A ⊆U , A?n (I,N)= {x ∈U :
Gn ∩ A ∉ I , for every Gn ∈Gn(x)} is called the nano local function (briefly, n-local function) of A
with respect to I and N. We will simply write A?n for A?n (I,N).

Theorem 2.7. Let (U ,N, I) be a space and A and B be subsets of U . Then
(1) A ⊆ B ⇒ A?n ⊆ B?n ,

(2) A?n = n-cl(A?n )⊆ n-cl(A) (A?n is a n-closed subset of n-cl(A)),

(3) (A?n )?n ⊆ A?n ,

(4) (A∪B)?n = A?n ∪B?n ,

(5) V ∈N⇒V ∩ A?n =V ∩ (V ∩ A)?n ⊆ (V ∩ A)?n ,

(6) J ∈ I ⇒ (A∪ J)?n = A?n = (A− J)?n .

Theorem 2.8. Let (U ,N, I) be a space with an ideal I and A ⊆ A?n , then A?n = n-cl(A?n )= n-cl(A).

Definition 2.9. Let (U ,N, I) be a space. The set operator n-cl? called a nano ?-closure is
defined by n-cl?(A)= A∪ A?n for A ⊆ X .

It can be easily observed that n-cl?(A)⊆ n-cl(A).

Theorem 2.10 ([5]). In a space (U ,N, I), if A and B are subsets of U , then the following results
are true for the set operator n-cl?:

(1) A ⊆ n-cl?(A).

(2) n-cl?(φ)=φ and n-cl?(U)=U .

(3) I f A ⊂ B, then n-cl?(A)⊆ n-cl?(B).

(4) n-cl?(A)∪n-cl?(B)= n-cl?(A∪B).

(5) n-cl?(n-cl?(A))= n-cl?(A).

Definition 2.11 ([5]). A subset A of a space (U ,N, I) is said to be nano-I-open (briefly, nI-open)
if A ⊆ n-int(A?n ).
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Definition 2.12. A subset A of a space (U ,N, I) is called
(1) nano ?-closed (briefly, n?-closed) [10] if A∗

n ⊆ A.

(2) nano Ig-closed (briefly, nIg-closed) [10] if A∗
n ⊆G whenever A ⊆G and G is n-open.

(3) n?-dense [10] if n-cl?(A)=U .

(4) N-codense ideal [5] if N∩I= {φ}.

3. On nIg#-Closed Sets
Definition 3.1. A subset A of an ideal nano topological space (U ,N,I) is said to be

(1) nIg# -closed if A?n ⊆G whenever A ⊆G and G is nαg-open.

(2) nIg# -open if its complement is nIg# -closed.

Definition 3.2. A subset A of a nano topological space (U ,N) is said to be nano g#-closed
(briefly ng#-closed) if n-cl(A)⊆G whenever A ⊆G and G is nαg-open.

The complement of ng#-closed is called ng#-open.

Proposition 3.3. If (U ,N,I) is any ideal nano topological space, then every nIg# -closed set is
nIg-closed but not conversely.

Proof. It follows from the fact that every nano open set is nαg-open.

As shown in the following example:

Example 3.4. Let U = {a,b, c} with U/R = {{b}, {a, c}} and X = {b, c} then N = {φ,U , {b}, {a, c}}.
Let I= {φ, {a,b}}. It is clear that {b} is nIg-closed but not nIg# -closed.

Theorem 3.5. If (U ,N,I) is any ideal nano topological space and A ⊆U , then the following are
equivalent:

(1) A is nIg# -closed.

(2) n-cl?(A)⊆G whenever A ⊆G and G is nαg-open in U .

Proof. (1)⇒(2): Let A ⊆ G where G is nαg-open in U . Since A is nIg# -closed, A?n ⊆ G and so
n-cl?(A)= A∪ A?n ⊆G.

(2)⇒(1): It follows from the fact that A?n ⊆ n-cl?(A)⊆G.

Theorem 3.6. Every n?-closed set is nIg# -closed but not conversely.

Proof. Let A be a n?-closed set. To prove A is nIg# -closed, let G be any nαg-open set such that
A ⊆U . Since A is n?-closed, A?n ⊆ A ⊆U . Thus A is nIg# -closed.

Theorem 3.7. Let (U ,N,I) be an ideal nano topological space. For every A ∈ I, A is nIg# -closed.

Proof. Let A ∈ I and let A ⊆ G where G is nαg-open. Since A ∈ I, A?n = φ ⊆ G. Thus A is
nIg# -closed.
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Theorem 3.8. If (U ,N,I) is an ideal nano topological space, then A?n is always nIg# -closed for
every subset A of U .

Proof. Let A?n ⊆G where G is nαg-open. Since (A?n )?n ⊆ A?n , we have (A?n )?n ⊆G. Hence A?n is
nIg# -closed.

Theorem 3.9. Let (U ,N,I) be an ideal nano topological space. Then every nIg# -closed, nαg-open
set is n?-closed.

Proof. Let A be nIg# -closed and nαg-open. We have A ⊆ A where A is nαg-open. Since A is
nIg# -closed, A?n ⊆ A. Thus A is n?-closed.

Corollary 3.10. Let (U ,N,I) be an ideal nano topological space and A be an nIg# -closed set.
Consider the following statements:

(1) A is a n?-closed set,

(2) n-cl?(A)− A is a nαg-closed set,

(3) A?n − A is a nαg-closed set.

Proof. Then (1)⇒(2) and (2)⇒(3) hold.

(1)⇒(2): By (1) A is n?-closed. Hence A?n ⊆ A and n-cl?(A)− A = (A∪ A?n )− A = φ which is a
nαg-closed set.

(2)⇒(3): n-cl?(A)−A = A?n ∪A−A = (A?n ∪A)∩Ac = (A?n ∩Ac)∪(A∩Ac)= (A?n ∩Ac)∪φ= A?n −A
which is a nαg-closed set by (2).

Theorem 3.11. Let (U ,N,I) be an ideal nano topological space. Then every ng#-closed set is a
nIg# -closed set but not conversely.

Proof. Let A be a ng#-closed set. Let G be any nαg-open set such that A ⊆ G. Since A is
ng#-closed, n-cl(A)⊆G. So, A?n ⊆ n-cl(A)⊆G and thus A is nIg# -closed.

Example 3.12. Let U = {a,b, c,d} with U/R = {{a}, {c}, {b,d}} and X = {a,b} then N = {φ,U , {a},
{b,d}, {a,b,d}}. Let I= {φ, {d}}. It is clear that {d} is nIg# -closed but not ng#-closed.

Theorem 3.13. If (U ,N,I) is an ideal topological space and A is a n?-dense in itself, nIg# -closed
subset of U , then A is ng#-closed.

Proof. Let A ⊆ G where G is nαg-open. Since A is nIg# -closed, A?n ⊆G. As A is n?-dense in
itself, n-cl(A)= A?n . Thus n-cl(A)⊆G and hence A is ng#-closed.

Corollary 3.14. If (U ,N,I) is any ideal nano topological space where I = {φ}, then A is nIg# -
closed if and only if A is ng#-closed.

Proof. In (U ,N,I), if I = {φ} then A?n = n-cl(A) for the subset A. A is nIg# -closed ⇔ A?n ⊆ G
whenever A ⊆G and G is nαg-open ⇔ n-cl(A)⊆G whenever A ⊆G and G is nαg-open ⇔ A is
ng#-closed.
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Corollary 3.15. In an ideal nano topological space (U ,N,I), where I is n-codense, if A is a nano
semi-open and nIg# -closed subset of U , then A is ng#-closed.

Proof. A is n?-dense in itself.

Therefore A is ng#-closed.

Remark 3.16. We have the following implications for the subsets stated above:

n-closed ng#-closed ng-closed

n?-closed nIg# -closed nIg-closed

- -

- -
? ? ?

None of the above implications are reversible.

Theorem 3.17. Let (U ,N,I) be an ideal nano topological space and A ⊆U . If A ⊆ B ⊆ A?n , then
A?n = B?n and B is n?-dense in itself.

Proof. Since A ⊆ B, then A?n ⊆ B?n and since B ⊆ A?n , then B?n ⊆ (A?n )?n ⊆ A?n . Therefore A?n = B?n
and B ⊆ A?n ⊆ B?n . Hence proved.

Theorem 3.18. Let (U ,N,I) be an ideal nano topological space. Then every subset of U is
nIg# -closed if and only if every nαg-open set is n?-closed.

Proof. Suppose every subset of U is nIg# -closed. Let G be nαg-open in U . Then G ⊆G ⊆U and
G is nIg# -closed by assumption. It implies G?

n ⊆G. Hence G is n?-closed.
Conversely, let A ⊆ U and G be nαg-open such that A ⊆ G. Since G is n?-closed by

assumption, we have A?n ⊆G?
n ⊆U . Thus A is nIg# -closed.

Theorem 3.19. Let (U ,N,I) be an ideal nano topological space and A ⊆U . Then A is nIg# -open
if and only if F ⊆ n-int?(A) whenever F is nαg-closed and F ⊆ A.

Proof. Suppose A is nIg# -open. If F is nαg-closed and F ⊆ A, then U -A ⊆U -F and so n-cl?(U -
A)⊆U -F . Therefore F ⊆U − (n-cl?(U − A))= n-int?(A). Hence F ⊆ n-int?(A).

Conversely, suppose the condition holds. Let G be a nαg-open set such that U−A ⊆G. Then
U −G ⊆ A and so U −G ⊆ n-int?(A). Therefore n-cl?(U −A)⊆G. So U −A is nIg# -closed. Hence
A is nIg# -open.

The following Theorem gives a characterization of normal spaces in terms of nIg# -open sets.

Definition 3.20. A subset A of a nano topological space (U ,N) is said to be a completely nano
codense (briely completely n-codense) if NPO(X )∩ I = {φ}, where NPO(X ) is the family of all
nano preopen sets.

Theorem 3.21. Let (U ,N,I) be an ideal nano topological space where I is completely n-codense.
Then the following are equivalent:

(1) U is normal,
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(2) for any disjoint nano closed sets A and B, there exist disjoint nIg# -open sets U and V such
that A ⊆G and B ⊆ H,

(3) for any nano closed set A and nano open set H containing A, there exists an nIg# -open set
G such that A ⊆G ⊆ n-cl?(G)⊆ H.

Proof. (1)⇒(2): The proof follows from the fact that every nano open set is nIg# -open.

(2)⇒(3): Suppose A is nano closed and V is a nano open set containing A. Since A and X −V
are disjoint nano closed sets. There exist disjoint nIg# -open sets G and W such that A ⊆ G
and U − H ⊆ W . Since U − H is nαg-closed and W is nIg# -open, U − H ⊆ n-int?(W). Then
U − (n-int?(W))⊆ H. Again G∩W =φ which implies that G∩n-int?(W)=φ and so G ⊆U − (n-
int?(W). Then n-cl?(G) ⊆U − (n-int?(W) ⊆ H and thus G is the required nIg# -open sets with
A ⊆G ⊆ n-cl?(G)⊆ H.

(3)⇒(1): Let A and B be two disjoint nano closed subsets of U . Then A is a nano closed set
and U −B is a nano open set containing A. By hypothesis, there exists a nIg# -open set G
such that A ⊆G ⊆ n-cl?(G)⊆U −B. Since G is nIg# -open and A is nαg-closed we have, A ⊆ n-
int?(G). Since I is completely n-codense, N? ⊆Nα and so n-int?(G) and G − (n-cl?(G)) ∈Nα.
Hence A ⊆ n-int?(G) ⊆ n-int(n-cl(n-int(n-int?(G)))) = U and B ⊆ U -(n-cl?(U)) ⊆ n-int(n-cl(n-
int(U − (n-cl?(G)))))= H. G and H are the required disjoint nano open sets containing A and B
respectively, which proves (1).

Definition 3.22. A subset A of a nano topological space (U ,N) is said to be a nαg#-closed set if
n-clα(A)⊆G whenever A ⊆G and G is nαg-open. The complement of a nαg#-closed set is said
to be a nαg#-open set.

If I=N, it is not difficult to see that nIg# -closed sets coincide with nαg#-closed sets and so
we have the following corollary:

Corollary 3.23. Let (U ,N,I) be an ideal nano topological space where I=N. Then the following
are equivalent:

(1) U is normal,

(2) for any disjoint nano closed sets A and B, there exist disjoint nαg#-open sets G and H
such that A ⊆G and B ⊆ H,

(3) for any nano closed set A and nano open set H containing A, there exists a nαg#-open set
G such that A ⊆G ⊆ n-clα(G)⊆ H.

4. Conclsuion
The notions of sets in an ideal nano topological space is extensively developed and used in data
mining, computational topology for geometric design and molecular design, computer-aided
design, computer-aided geometric design, digital topology, information systems, particle physics
and quantum physics etc.
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