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1. Introduction
The Monge-Ampere equation

uxxuyy −u2
xy + f (x, y)= 0, (1.1)

is a semi-linear non-homogeneous partial differential equation with f (x, y) as non-homogeneous
part of the equation. The name “Monge-Ampere equation” has been derived from its early
formulation in two different directions. One by the French mathematician, civil engineer
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and the inventor of descriptive geometry Gaspard Monge (1746-1818) [16] while the second
by the French physicist Andre Marie Ampere (1775-1836) [2]. In 1781, Gaspard Monge
originally formulated and analyzed the problem of optimal transportation, initiating a profound
mathematical theory, which connects the different areas of differential geometry, nonlinear
partial differential equations, linear programming and probability theory. It was later studied
by Minkowski (1864-1909) [14,15], Lewy (1904-1988) [12], Bernstein (1918-1990) [1] and many
others. During the last century the development of Monge-Ampere equation was closely related
to geometric problems. It also arise in meteorology and fluid mechanics. In fluid mechanics it is
coupled with transport equation, like semi-geostrophic equation. Due to its applications and
beautiful theory, Monge-Ampere type equations are important and get lot of attention and are
studied extensively [17].

In general, finding solutions of non-linear partial differential equations is not an easy
task. Mathematicians have developed different techniques for the solutions of such equations.
For finding the solutions, Sophus Lie developed a very useful technique that can be applied
to all types of differential equations. His technique is based on the group of transformations
that a differential equation may have. Each group of transformations corresponds to a family
of group invariant solutions, which are solutions that remain unchanged when transformed
under a Lie group of point transformations of the differential equation. By considering group of
transformations of a differential equation infinite number of such groups can be obtained which
lead to infinite number of group invariant solutions. One can divide these invariant solutions
into equivalence classes. A set consisting of exactly one generator from each class of generators
is called an optimal system of generators, i.e. a list of group invariant solutions from which
every other solution can be derived [19].

In literature, there are many techniques available for obtaining optimal systems and a lot of
excellent work has been done by experts e.g. [3,5–11,13,18,20–23]. Here, we use Peter J. Olver’s
technique [19] to derive optimal system for different cases of Monge-Ampere equation by
assuming different particular values of the non-homogeneous part f (x, y). This system helps
us to reduce the semi-linear non-homogeneous Monge-Ampere equation (1.1) into ordinary
differential equations. Solutions of these reduced equations give new set of group invariant
solutions. Then, by using set of transformations obtained from optimal system we get exact
solutions of nonlinear partial differential equation.

In the following sections we find (a) the optimal system by (i) calculating the commutator
table for symmetry generators of given differential equation; (ii) constructing adjoint
representation table, by conjunction of adjoint map with already calculated commutator relation
table; and (iii) construct the conjugacy classes. (b) Using these optimal algebras, equation
(1.1) is reduced to ordinary differential equation whose solutions then lead to the solutions of
equation (1.1).
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2. Lie symmetries and Commutator Relation Table
In equation (1.1) we have two independent variables x and y while u the dependent variable.
For such situations we consider following one parameter, ε, group of transformations

x∗ = x+εξ1(x, y,u)+ o(ε2),

y∗ = y+εξ2(x, y,u)+ o(ε2),

u∗ = u+εη(x, y,u)+ o(ε2).

The corresponding second order prolonged symmetry generator is

V= ξ1 ∂

∂x
+ξ2 ∂

∂y
+η ∂

∂u
+ηx

∂

∂u ,x
+ηy

∂

∂u ,y
+ηxx

∂

∂u ,xx
+ηxy

∂

∂u ,xy
+ηyy

∂

∂u ,yy
. (2.1)

By applying generator (2.1) to the equation (1.1), we obtain a system of over determined linear
partial differential equations in ξ1, ξ2 and η. Solution of these give symmetry generators of
equation (1.1). In this paper we are considering two different cases of the non-homogeneous
part of equation (1.1), Case I: f (x, y)= ex and Case II: f (x, y)= exφ(y).

2.1 Case I: f (x, y)= ex

First consider particular value for non-homogeneous part of non-homogeneous Monge-Ampere
equation (1.1) to be ex. For this case symmetry generators are:

V1 = ∂

∂u
, V2 = ∂

∂y
, V3 = x

∂

∂y
, V4 = x

∂

∂u
, V5 = y

∂

∂u
, V6 = ∂

∂x
+ 1

2
u
∂

∂u
, V7 = y

∂

∂y
+u

∂

∂u
.

Symmetry generators V1 and V2 represent translations, V4 and V5 represent Galilean
transformations whereas V6 represents Galilean transformation translation in x direction and
scaling in u direction and V7 represents scaling in x and u directions. Commutator relations of
these generators are given in Table 1.

Table 1

, V1 V2 V3 V4 V5 V6 V7

V1 0 0 0 0 0 V1 V7

V2 0 0 0 0 V1 0 V2

V3 0 0 0 0 V4 −V2 V3

V4 0 0 0 0 0 V4 −V1 V4

V5 0 0 −V4 0 0 V5 0

V6 −V4 0 V2 V1 −V4 −V5 0 0

V7 −V1 −V2 −V3 −V4 0 0 0

2.1.1 Construction of Adjoint Representation Table
To compute adjoint representation, we use the Lie series in conjunction with commutator
relation Table 1. The adjoint action is given by the Lie series as

Ad(exp(εVi))V j =V j −ε[Vi,V j]+ ε2

2!
[Vi, [Vi,V j]]−·· · ,
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where [Vi,V j] is the Lie bracket for the generators Vi and V j . Using this definition of adjoint
action one can construct an adjoint representation Table 2:

Table 2

Ad V1 V2 V3 V4 V5 V6 V7

V1 V1 V2 V3 V4 V5 V6 −εV1 V7 −εV1

V2 V1 V2 V3 V4 V5 −εV1 V6 V7 −εV2

V3 V1 V2 V3 V4 V5 −εV4 V6 +εV2 V7 −εV3

V4 V1 V2 V3 V4 V5 V6 −ε(V4 −V1) V7 −εV4

V5 V1 V2 −V4 V3 +εV4 V5 V6 −εV5 V7

V6 eεV1 e−εV2 V3 −εV2 eε(V4 −εV1) eεV5 V6 V7

V7 eεV1 eεV2 eεV3 eεV4 V5 V6 V7

2.1.2 Formation of Optimal System
Optimal system constitutes the set of conjugacy classes of group of transformations. Adjoint
action gives the conjugacy classes of group of transformations which are written in columns
of adjoint representation Table 2. Our aim is to find the set of one dimensional sub algebras,
that cover all conjugacy classes. Following Olver’s technique we assume a general vector
V as the combination of all symmetry generators. Then by observing columns of adjoint
representation Table 2, we try to vanish coefficients of as much symmetry generators as
possible by using appropriate adjoint action on general vector V. In this case there are seven
symmetry generators. So, non zero general vector is

V= a1V1 +a2V2 +a3V3 +a4V4 +a5V5 +a6V6 +a7V7 . (2.2)

Use judicious application of adjoint map to make maximum possible constants a’s to vanish.
Assume that a7 6= 0 and also for convenience a7 = 1. Then the general non zero vector (2.2)
becomes

V= a1V1 +a2V2 +a3V3 +a4V4 +a5V5 +a6V6 +V7 .

Referring adjoint representation Table 2, if we act on V by Ad(exp(a4V4)), then coefficient of
V4 vanishes. Name the resulting vector as V′

V′ = a1V1 +a2V2 +a3V3 +a5V5 +a6V6 +V7 .

Similarly, if we act on V′ by adjoint map Ad(exp(a3V3)), then the coefficient of V3 vanishes.
Call the resulting vector as V′′

V′′ = a1V1 +a2V2 +a5V5 +a6V6 +V7 .

Working on same lines we find that, if we act on V′′ by Ad(exp(a2V2)), then the coefficient of
V2 vanishes from the general vector V′′, which is represented in V′′′

V′′′ = a1V1 +a5V5 +a6V6 +V7.
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Also, if we act on V′′′ by Ad(exp(a1V1)), then coefficient of V1 vanishes and we get the vector
free from the coefficients a4,a3,a2 and a1, that is

Viv = a5V5 +a6V6 +V7 .

Referring adjoint representation Table 2, coefficient of symmetry generator V5 can be eliminated
from above vector if we act on above general non-zero vector by Ad(exp(a5)V5). After that,
we cannot eliminate any other coefficient of symmetry generators. Therefore, two symmetry
generators which can be included in optimal algebra of non-homogeneous Monge-Ampere
equation are:

(i) a6V6 +V7.

(ii) V7.

Continuing in the same way, we find the optimal system of one-dimensional sub algebras of
non-homogeneous Monge-Ampere equation (1.1) with f (x, y)= ex as

V7 +a6V6, V5 +a3V3 +a2V2, V4 +a2V2, V6 +a3V3, V3 +a1V1,
V2 +a1V1, V7, V6, V5, V4, V3, V1 .

2.1.3 Reduction
It is not very easy to reduce Monge-Ampere equation (1.1) into ordinary differential equation
as it is semi-linear partial differential equation and admits translations and Galilean
transformations. Here we are going to show reduction by those optimal sub algebras which
reduces equation (1.1) into ordinary differential equations and give solutions. Remaining sub
algebras yield either the trivial solution or reduces the order of semi-linear non-homogeneous
Monge-Ampere equation.

(i) For symmetry generator V7, we have x = ξ, u = yU(ξ). Substituting these transformations in
equation (1.1), one gets the following ordinary differential equation

U ′2 − eξ = 0, where U ′ = dU
dξ

. (2.3)

Therefore,

U(ξ)= c± e
ξ
2

or

u(x, y)= y(c± e
x
2 ), (2.4)

is a solution of semi-linear non-homogeneous Monge-Ampere equation (1.1).

(ii) The combination of V3 and V6, yields ξ = y− x2

2 , U = ue−
x
2 . Using these transformations

equation (1.1) can be transformed into the following ordinary differential equation

U ′′(U −4U ′)−U ′2 +4= 0, where U ′ = dU
dξ

. (2.5)

Solution of this equation yields

u = (a±2(y− x2

2
))e

x
2 .
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(iii) One can write combination of V6 and V7 as

V= ∂

∂x
+ y

∂

∂y
+ 3u

2
∂

∂u
,

to get, ξ = ye−x, u = U y
3
2 . These transformations reduce (1.1) into the following ordinary

differential equation
3
4
ξUU ′− 13

4
ξ2U ′2 −ξ3U ′U ′′+ 3

4
ξ2UU ′′+ 1

ξ
= 0,where U ′ = dU

dξ
(2.6)

whose solution is U = 2ξ−
1
2 and the corresponding solution of Monge Ampere equation given by

eq. (1.1) is u(x, y)= ye
x
2 .

(iv) The symmetry generator V6, yields x = ξ, y = η, u = Ueξ. Hence, the reduced ordinary
differential equation and its solution are

UU ′′− (U ′)2 +4= 0, (2.7)

and U = a±2ξ. Thus, we have u = (a±2y)e
x
2 , a solution of semi-liner non-homogeneous Monge-

Ampere equation (1.1).

2.2 Case II: f (x, y)= exφ(y)
Now consider another case of family of non homogeneous Monge-Ampere equation (1.1) with
particular value of non homogeneous part as eaxφ(y).

2.2.1 Lie Symmetries, Commutator Relation and Adjoint Representation Tables
Adopting the well developed method discussed in the previous section for finding symmetry
generators of non homogeneous Monge-Ampere equation with exφ(y) as non homogeneous part,
we get

V1 = ∂

∂u
, V2 = x

∂

∂u
, V3 = y

∂

∂u
, V4 = ∂

∂x
+ u

2
∂

∂u
.

Symmetry generator V1 representing translation, V2, V3 representing Galilean
transformation while V4 representing translation in x direction and scaling in u direction.
Commutator relations of these four symmetry generators are given in Table 3. Using Table 3
one can obtain the adjoint representation Table 4.

Table 3

, V1 V2 V3 V4

V1 0 0 0 1
2V1

V2 0 0 0 1
2V2 −V1

V3 0 0 0 1
2V3

V4 −1
2V1 V1 − 1

2V2 −1
2V3 0
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Table 4

Ad V1 V2 V3 V4

V1 V1 V2 V3 V4 − ε
2V1

V2 V1 V2 V3 V4 − ε
2V2 +εV1

V3 V1 V2 V3 V4 − ε
2V3

V4 V1e
ε
2 V2e

ε
2 −εV1e

ε
2 V3e

ε
2 V4

2.2.2 Optimal System
Following the procedure of the previous case we obtain the optimal system of one dimensional
sub algebras of (1.1) as

V4, a1V1 +a2V2 +V3, a1V1 +V2, V2 −a1V1, V2, V1 .

This is same as the classification of real three and four dimensional Lie algebras done by Patera
and Winternitz in [4].

2.2.3 Reduction and Solution
For this case there is only one optimal algebra, V4, that converts Monge-Ampere equation into
the following ordinary differential equation

UU ′′−U ′2 +4φ(ξ)= 0, (2.8)

using the transformations y= ξ, U = ue−
x
2 . Here φ(ξ) is any arbitrary function, if we consider

particular value,

φ(ξ)= ξeξ−2eξ+1 ,

then the solution of this reduced equation is U = 2(eξ−ξ). This solution leads to u = 2(ey − y)e
x
2 ,

be the solution of the original partial differential equation.
By using any other optimal algebra we did not get any transformation that can reduce

equation (1.1) to ordinary differential equation. But we are able to just reduce the order of semi
linear non homogeneous Monge-Ampere equation or we get its trivial solution.

3. Conclusion
In this paper, solutions of semi-linear non-homogeneous Monge-Ampere equation (1.1) using
its optimal sub algebra are obtained. We consider two particular cases by considering ex and
exφ(y) as non-homogeneous parts in Case I and Case II, respectively. All solutions satisfies
original partial differential equation (1.1) with respective conditions. Equation (1.1) involves
three basic symmetries (symmetries depending on homogeneous part only) ∂

∂u , x ∂
∂u , and y ∂

∂u .
Symmetries of this form basically define translation and Galilean translation. Reduction to
ordinary differential equation by using such symmetries is not possible here. Because of this we
are unable to find solutions from all sub algebras of optimal system. Fortunately, we get some
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optimal sub algebra which reduces equation (1.1) to an ordinary differential equation with its
respective transformations that leads to the new solutions obtained in this paper.
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