
Communications in Mathematics and Applications
Vol. 12, No. 2, pp. 359–366, 2021
ISSN 0975-8607 (online); 0976-5905 (print)
Published by RGN Publications http://www.rgnpublications.com

DOI: 10.26713/cma.v12i2.1494

Research Article

Fair Distribution Heuristics for Parallel Processors
Mohammad Mahmood Otoom*

Department of Computer Science and Information, College of Science at Zulfi, Majmaah University,
Al-Majmaah 11952, Saudi Arabia

Received: December 13, 2020 Accepted: March 18, 2021

Abstract. This paper studies the machine covering problem to satisfy the fair distribution of several
tasks with different execution times to be run on several parallel processors. My work deals with
process scheduling on identical parallel processors and how to find the best solution to this problem.
The goal is to maximize the finishing time for the processor with the least time regarding all other
system processors. Some algorithms were proposed that can approximately solve the studied problem
by minimizing the difference between the finishing time of all processors in the system.

Keywords. Heuristics; Fair distribution, Parallel processors; Process scheduling

Mathematics Subject Classification (2020). 68M20; 90B35

Copyright © 2021 Mohammad Mahmood Otoom. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

1. Introduction
The research of this paper is essentially inspired by the work developed in [17]. Indeed, the
authors in the latter work presented several heuristics and algorithms to solve approximately
the studied problem. In fact, there are five heuristics applied on identical and parallel machines
to maximize the load of the one that has the minimum finishing time. The first one is called
the Longest Processing Time (LPT) that orders tasks by their processing time in ascending
order to be assigned to the available machine after that. The second one is called a Simple
Probabilistic Algorithm (SPA) that works by choosing the job which has the largest processing
time or the job which has the second-largest processing time in a fixed way. The third one is
Multi-star SPA (MSPA) that implements the second heuristic (SPA) iteratively. The fourth one

*Email: m.otoom@mu.edu.sa

http://doi.org/10.26713/cma.v12i2.1494
https://orcid.org/0000-0002-5818-9868

360 Fair Distribution Heuristics for Parallel Processors: M. M. Otoom

is the k-probabilistic algorithm (PAk) that adds some modification on the second heuristic (SPA)
to give some flexibility in choosing the job with the largest processing time or the job with the
second-largest processing time. The fifth one is Multi-star PAk (MPAk) that implements the
fourth heuristic (PAk) iteratively.

The processing power is needed to be increased in a large number of applications today.
The solution to this issue has been done through the development of parallel processing which
overcomes the speed limit in sequential computers. Therefore, the need for fair distribution
heuristics has been emerged to maximize the utility of multiprocessors systems. These heuristics
work depending on the execution time of each process to give the correct decision for job
scheduling. This paper gives some improved methods that can decide efficiently the best
scheduling of the processes taking into account to reduce the scheduling time.

Process scheduling on parallel processors was studied in different ways that present many
models of fair distribution to parallel processors. These models are mathematical formulations
that were designed to achieve a balancing of jobs between processors in the shortest time. In
this paper, The machine covering problem were investigated to distribute the load to identical
parallel machines by maximizing the minimum load of some machines. Authors in [6] proposed
a solution for scheduling in multiprocessor systems by maximizing processing time for the
processor which has the minimum time. Furthermore, in [8], authors Investigate online machine
covering problem on parallel machines which are identical and it has to be assigned by jobs
that arrive in sequence. These jobs must be relative to their processing time depending on a
migration factor of O(1/ε). On other hand, authors in [5], [19] studied different semi-online
machine covering problem with only two identical machines to balance a load of machines
based on their jobs that are sorted by non-increasing time slots where the machine time slot
represents the job size dividing by the speed of this machine.

The studies in [11], [4] and [21] proposed algorithms with the optimal solutions in case the
total processing time of all applying jobs is previously known and the longest processing time of
these jobs as well. Authors in [11] proposed the competitive ratio m−2 if the number of the
machines m is larger than 3 and these machines are identical but their available times are
not simultaneous. However, in [4], the authors applied the proposed algorithm on more than 2
machines with a competitive ratio of 1/(m−1) which is proved that it is the optimal one that
can be obtained. On other hand, the authors in [21] proposed the optimal algorithm that can be
applied on 3 to 5 identical parallel machines and it has a competitive ratio of 4/3.

In [20], the authors gave a solution for the semi-online machine covering problem that
applied to two machines that have two classes of jobs that are hierarchically classified. This
solution took into account that the job with the largest size and class are known in advance and
based on that, an optimal algorithm is proposed of the competitive ratio (1+p

2/2).
However, in [7], the authors introduced an algorithm for semi-online machine covering

problem which is deterministic and has a competitive ratio of 11/6≤ 1.834 with an undetermined
number of machines. Besides, the authors in [3] proposed an algorithm with a deterministic
equation that is 2− (1/m) and it obtains the best performance when the number of machines
equals 2, 3, or 4.

Communications in Mathematics and Applications, Vol. 12, No. 2, pp. 359–366, 2021

Fair Distribution Heuristics for Parallel Processors: M. M. Otoom 361

Recently, several studies investigated many algorithms that ensure load balancing or fair
distribution between different entities, and they are applied to several real-life applications. For
example, authors in [15] and [16] applied the same solution on the functioning time of aircraft
turbine spare parts to be maximized before these parts have to be replaced by scheduling the
maintenance actions. Authors in [12] introduced an approximate solution that ensures a fair
distribution of assigning revenues between many projects. However, another study proposed
many randomized and probabilistic methods that can reformulate the packages of big data to be
distributed between several routers [14]. Authors in [10] investigate this problem on identical
parallel machines by proposing an algorithm that uses tight upper and lower bounds as well as
an efficient branching strategy for symmetry-breaking. In [1], the Authors investigate several
new heuristics to apply fair distribution of investment projects through many industrial regions.
On other hand, authors in [2] proposed several new algorithms to distribute a large number of
files fairly between many storage supports based on their free spaces. However, another study
developed a system that can reduce the time and space of the dynamic programming algorithms
that are applied to solve the optimization problems [18].

The fair distribution algorithms are developed also and applied to several real-life situations.
Indeed, in [13] author proposed solutions for the fair distribution of the project that has budgets
to be assigned to several regions. In this research work, the goal is to find a way of scheduling
that ensures the fair distribution of budgets.

This paper consists of three sections as follows. Section 1 is an introduction. Section 2
explains the problem and gives a detailed example. Section 3 proposed three algorithms that
solve the studied problem.

2. Problem Description
The representation of the studied problem is given in this section. The definition of the problem
is described as following: Let a number nts of independent tasks that must be distributed on
npr identical parallel processors. The set of tasks is denoted by Ts. The set of processors is
{Pr1,Pr2, . . . ,Prnpr }. Each task j is characterized by its processing time pt j which is a positive
value. Denoted by L i the load on the processor i. A load or the finishing time on a processor
is determined by the total sum of all tasks processing times distributed on the corresponding
processor. Let f j the finishing time of task j. After calculation of all finishing time for each
processor, the minimum finishing time is denoted by Lmin. The maximum finishing time is
denoted by Lmax.

Proposition 2.1. The objective function in this paper is to Minimize
npr∑
i=1

[Lmax −L i].

Proof. When Lmax ≥ L i , ∀ i ∈ {1, . . . ,npr}. So, Lmax−L i ≥ 0. Thus, the objective function can be

Minimize
npr∑
i=1

[Lmax −L i].

Communications in Mathematics and Applications, Vol. 12, No. 2, pp. 359–366, 2021

362 Fair Distribution Heuristics for Parallel Processors: M. M. Otoom

In this paper, searches to find a schedule that minimizes
npr∑
i=1

[Lmax −L i].

I denoted by fmax =
npr∑
i=1

[Lmax − L i] which represents the gap between all processors.

The problem is known as P‖ fmax [9]. This kind of problem motivates researchers because
it has very real-life applications.

Example 2.1. Assume that nts = 6 and npr = 2 and the processing time for each processor in
Table 1 is given as follows:

Table 1. Processing time of Example 2.1

j 1 2 3 4 5 6

pt j 13 6 2 7 8 5

The following assignment illustrated in Figure 1 represents a schedule for the studied
problem which is applied to a given algorithm.

Figure 1. Dispatching instances in example 1 on 2-processors

For the instance related to Example 2.1 after applying the dispatching rule used in Figure 1,
it is clear that the minimum finishing time is 13. Our objective in this paper is to seek another
solution that gives a minimum finishing gap fmax. For this example fmax = L1−L2 = 28−13= 15.
So, another schedule with fmax value less than 15 has to be found.

In industrial case and computer science case it is important that when there is a workstation
contains multiprocessors to guarantee a fair distribution of executed tasks on the different
processors. Our study focuses on choosing an indicator that can measure the fair distribution,
this indicator as mentioned above is fmax.

Communications in Mathematics and Applications, Vol. 12, No. 2, pp. 359–366, 2021

Fair Distribution Heuristics for Parallel Processors: M. M. Otoom 363

3. Heuristics
In this section, several heuristics were developed based on mathematical modeling and inspired
by the research work cited in [12]. Firstly, mathematical modeling was proposed for the studied
problem based on mixed-integer modeling. The first heuristic is based on a randomized method
applying the variant with probability α. However, the second one is based on a randomized
method with probability β. For the third heuristic, a new algorithm based on a mixed dispatching
rule was proposed.

3.1 Mixed linear modeling

yi j =
{

1 if j is sceduled on the processor i
0 otherwise

npr∑
i=1

[Lmax −L i] (3.1)

Subject to:

npr∑
i=1

yi j = 1, ∀ j ∈ {1, . . . ,nts} (3.2)

nts∑
j=1

pt j yi j ≤ Lmax, ∀ i ∈ {i, . . . ,npr} (3.3)

yi j ∈ {0,1}, ∀ j ∈ {1, . . . ,nts}, ∀ i ∈ {1, . . . ,npr} (3.4)

Lmax ≥ 0 (3.5)

Equation (3.1) represents the target function of the studied problem. The constraint that obliges
each task to be scheduled only on one processor is described in equation (3.2). However, equation
(3.3) is the constraint that for each processor the total finishing time not exceed Lmax. In
equation (3.4) variable yi j is specified as a binary one. Finally, equation (3.5) enforces that
Lmaxm must be positive.

3.2 Randomized algorithm with probability α (Rα)
For this heuristic, the method of randomization related to the choice of the job to be scheduled
first on the most available processor was adopted. In fact, among the largest tasks, one task
between a fixed number of these tasks was chosen to be scheduled. This choice is based on the
probability α. The latter probability can be generated randomly and uniformly.

Algorithm 1. Heuristic Rα

1. Order on the non-increasing order.

2. Fix the number of selection ns.

3. Choose among the ns largest tasks one task Ts applying α.

4. Schedule Ts on the most available processor.

Communications in Mathematics and Applications, Vol. 12, No. 2, pp. 359–366, 2021

364 Fair Distribution Heuristics for Parallel Processors: M. M. Otoom

3.3 Randomized algorithm with probability β (Rβ)
For this heuristic, the method of randomization related to the choice of the job to be scheduled
first on the most available processor was adopted. In fact, among the largest tasks, one task
between a fixed number of these tasks was chosen to be scheduled. This choice is based on the
probability β. The latter probability can be generated randomly and uniformly.

3.4 Mixed dispatching rule algorithm
For this heuristic, the mixed algorithm between LPT (Longest Processing Time) and SPT
(Smallest Processing Time) were adopted. To apply this idea, the manner that is mixture the
two latter methods was chosen. Indeed, a number ndr that is applied for the first ndr tasks was
fixed for the LPT algorithm, while for the remaining tasks SPT is applied. In the practice, more
than value of ndr can be chosen to apply the algorithm and pick up the best value.

4. Conclusion
In this paper, mathematical mixed-integer modeling was proposed and 3 algorithms that satisfy
the fair distribution of several tasks that have different execution times and they are required
to be run on several parallel processors. These algorithms are based on randomized or mixed
methods of dispatching rule. The randomized methods are based on some probabilities that can
be obtained randomly and uniformly.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] M. Alharbi and M. Jemmali, Algorithms for investment project distribution on regions, Computa-

tional Intelligence and Neuroscience 2020 (2020), Article ID 3607547, DOI: 10.1155/2020/3607547.

[2] H. Alquhayz, M. Jemmali and M. M. Otoom, Dispatching-rule variants algorithms for used spaces
of storage supports, Discrete Dynamics in Nature and Society 2020 (2020), Article ID 1072485,
DOI: 10.1155/2020/1072485.

[3] Y. Azar and L. Epstein, On-line machine covering, Journal of Scheduling 1 (1998), 67 – 77,
DOI: 10.1002/(SICI)1099-1425(199808)1:2%3C67::AID-JOS6%3E3.0.CO;2-Y.

[4] S.-Y. Cai, Semi-online machine covering, Asia-Pacific Journal of Operational Research 24 (2007),
373 – 382, DOI: 10.1142/S0217595907001255.

[5] X. Chen, L. Epstein and Z. Tan, Semi-online machine covering for two uniform machines,
Theoretical Computer Science 410 (2009), 5047 – 5062, DOI: 10.1016/j.tcs.2009.08.001.

Communications in Mathematics and Applications, Vol. 12, No. 2, pp. 359–366, 2021

http://doi.org/10.1155/2020/3607547
http://doi.org/10.1155/2020/1072485
http://doi.org/10.1002/(SICI)1099-1425(199808)1:2%3C67::AID-JOS6%3E3.0.CO;2-Y
http://doi.org/10.1142/S0217595907001255
http://doi.org/10.1016/j.tcs.2009.08.001

Fair Distribution Heuristics for Parallel Processors: M. M. Otoom 365

[6] B. L. Deuermeyer, D. K. Friesen and M. A. Langston, Scheduling to maximize the minimum
processor finish time in a multiprocessor system, SIAM Journal on Algebraic Discrete Methods 3,
190 – 196, 1982, DOI: 10.1137/0603019.

[7] T. Ebenlendr, J. Noga, J. Sgall and G. Woeginger, A note on semi-online machine covering,
in International Workshop on Approximation and Online Algorithms (2005), pp. 110 – 118,
DOI: 10.1007/11671411_9.

[8] W. Gálvez, J. A. Soto and J. Verschae, Improved online algorithms for the machine covering
problem with bounded migration, in: 12th Workshop on Models and Algorithms for Planning
and Scheduling Problems, La Roche-en-Ardenne, Belgium, June 8–12, 2015, pp. 21 – 23,
https://feb.kuleuven.be/mapsp2015/Proceedings%20MAPSP%202015.pdf.

[9] R. L. Graham, E. L. Lawler, J. K. Lenstra and A. H. G. R. Kan, Optimization and approximation in
deterministic sequencing and scheduling: a survey, Annals of Discrete Mathematics 5 (1979), 287 –
326, DOI: 10.1016/S0167-5060(08)70356-X.

[10] M. Haouari and M. Jemmali, Maximizing the minimum completion time on parallel machines,
4OR 6 (2008), 375 – 392, DOI: 10.1007/s10288-007-0053-5.

[11] Y. Huang and Y. Wu, Optimal semi-online algorithm for machine covering with nonsimultaneous
machine available times, International Mathematical Forum 5 (2010), pp. 185 – 190, http:
//www.m-hikari.com/imf-2010/1-4-2010/wuyongIMF1-4-2010.pdf.

[12] M. Jemmali, Approximate solutions for the projects revenues assignment problem, Communications
in Mathematics and Applications 10 (2019), 653 – 658, DOI: 10.26713/cma.v10i3.1238.

[13] M. Jemmali, Budgets balancing algorithms for the projects assignment, International
Journal of Advanced Computer Science and Applications 10 (2019), 574 – 578, URL:
https://thesai.org/Downloads/Volume10No11/Paper_77-Budgets_Balancing_Algorithms_
for_the_Projects_Assignment.pdf.

[14] M. Jemmali and H. Alquhayz, Equity Data Distribution Algorithms on Identical Routers, in
Advances in Intelligent Systems and Computing book series (AISC, Vol. 1059) (2020), pp. 297 – 305,
DOI: 10.1007/978-981-15-0324-5_26.

[15] M. Jemmali, L. K. B. Melhim and M. Alharbi, Randomized-variants lower bounds for gas turbines
aircraft engines, in Advances in Intelligent Systems and Computing book series (AISC, Vol. 991)
(2019), pp. 949 – 956, DOI: 10.1007/978-3-030-21803-4_94.

[16] M. Jemmali, L. K. B. Melhim, S. O. B. Alharbi and A. S. Bajahzar, Lower bounds for gas
turbines aircraft engines, Communications in Mathematics and Applications 10 (2019), 637 –
642, DOI: 10.26713/cma.v10i3.1218.

[17] M. Jemmali, M. M. Otoom and F. Al Fayez, Max-min probabilistic algorithms for parallel machines,
in: Proceedings of the 2020 International Conference on Industrial Engineering and Industrial
Management, 2020, pp. 19 – 24, DOI: 10.1145/3394941.3394945.

[18] Pisinger, Dynamic programming on the word RAM, Algorithmica 35 (2003), 128 – 145, URL:
https://link.springer.com/article/10.1007/s00453-002-0989-y.

[19] Z. Tan, Y. He and L. Epstein, Optimal on-line algorithms for the uniform machine
scheduling problem with ordinal data, Information and Computation 196 (2005), 57 – 70,
DOI: 10.1016/j.ic.2004.10.002.

[20] Y. Wu, T. C. E. Cheng and M. Ji, Optimal algorithms for semi-online machine covering
on two hierarchical machines, Theoretical Computer Science 531 (2014), 37 – 46,
DOI: 10.1016/j.tcs.2014.02.015.

Communications in Mathematics and Applications, Vol. 12, No. 2, pp. 359–366, 2021

http://doi.org/10.1137/0603019
http://doi.org/10.1007/11671411_9
https://feb.kuleuven.be/mapsp2015/Proceedings%20MAPSP%202015.pdf
http://doi.org/10.1016/S0167-5060(08)70356-X
http://doi.org/10.1007/s10288-007-0053-5
http://www.m-hikari.com/imf-2010/1-4-2010/wuyongIMF1-4-2010.pdf
http://www.m-hikari.com/imf-2010/1-4-2010/wuyongIMF1-4-2010.pdf
http://doi.org/10.26713/cma.v10i3.1238
https://thesai.org/Downloads/Volume10No11/Paper_77-Budgets_Balancing_Algorithms_for_the_Projects_Assignment.pdf
https://thesai.org/Downloads/Volume10No11/Paper_77-Budgets_Balancing_Algorithms_for_the_Projects_Assignment.pdf
http://doi.org/10.1007/978-981-15-0324-5_26
http://doi.org/10.1007/978-3-030-21803-4_94
http://doi.org/10.26713/cma.v10i3.1218
http://doi.org/10.1145/3394941.3394945
https://link.springer.com/article/10.1007/s00453-002-0989-y
http://doi.org/10.1016/j.ic.2004.10.002
http://doi.org/10.1016/j.tcs.2014.02.015

366 Fair Distribution Heuristics for Parallel Processors: M. M. Otoom

[21] Y. Wu, Z. Tan and Q. Yang, Optimal semi-online scheduling algorithms on a small number
of machines, in: International Symposium on Combinatorics, Algorithms, Probabilistic and
Experimental Methodologies, Lecture Notes in Computer Science book series (LNCS, Vol. 4614)
(2007), pp. 504 – 515, DOI: 10.1007/978-3-540-74450-4_45.

Communications in Mathematics and Applications, Vol. 12, No. 2, pp. 359–366, 2021

http://doi.org/10.1007/978-3-540-74450-4_45

	Introduction
	Problem Description
	Heuristics
	Mixed linear modeling
	Randomized algorithm with probability (R)
	Randomized algorithm with probability bold0mu mumu 2005/06/28 ver: 1.3 subfig package bold0mu mumu (R)(R)2005/06/28 ver: 1.3 subfig package(R)(R)(R)(R)
	Mixed dispatching rule algorithm

	Conclusion
	References

