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1. Introduction and Preliminaries
Let N be the set of natural numbers, R be the set of real numbers, C be the set of complex
numbers and N0 =N∪ {0}. Let A (p,n) denote the family of functions of the form

f (z)= zp +
∞∑

j=p+n
a j z j, p, n ∈N,

which are holomorphic in the open unit disc U = {z : z ∈ C, |z| < 1}. In particular, we set
A (p,1)=Ap, A (1,n)=A (n) and A (1,1)=A , which are well-known families of holomorphic
functions in U.
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Many operators have been used from the beginning of the study of holomorphic functions.
Introducing new families of holomorphic functions was the most common trend that involves
operators. An integral operator was one such operator which has attracted many researchers.
Historically investigations of integral operators begun five decades ago, around the year 1965,
which can be seen from the papers of Libera [12] and Bernardi [5]. Later Sălăgean [18], Kumar
and Shukla [11], Bhoosnurmath and Swamy [6] and Noor and Noor [15] have studied certain
types of integral operators. Generally interest was shown to find the properties of an integral
operator that maps certain subfamily of A into (or onto) itself. For more details about the
properties of integral operators, one can refer [1], [4], [2], [7], [8] and [22].

Inspired by the recent trends on integral operators, we define the following new generalized
integral operator.

Definition 1.1. Let f ∈A (p,n). The new generalized integral operator

Jm
p,α,β : A (p,n)→A (p,n)

is defined by the following infinite series

Jm
p,α,β f (z)= zp +

∞∑
j=p+n

(
α+ pβ
α+ jβ

)m
a j z j, (1.1)

where p,n ∈N, m ∈N0, β> 0, α ∈R such that α+ pβ> 0.

It follows from (1.1) that (see [20])

J0
p,α,β = f (z), J1

p,0,1 f (z)= p
∫ z

0

f (t)
t

dt (1.2)

and

(α+ pβ)Jm
p,α,β f (z)=αJm+1

p,α,β f (z)+βz(Jm+1
p,α,β f (z))′. (1.3)

The operator Jm
p,α,β on f ∈ A (p,1) = Ap was introduced by Swamy in [20], the operator

Jm
1,α,β = Jα,β(α) on f ∈ A (1,1) = A , α > −p was considered by Swamy in [21], Jm

p,α,1 = Jm
p (α)

on f ∈ Ap, α > −p was considered by Aouf et al. in [3] the operator Jm
p, l+p−pβ,β = Lm

p (l, β) on
f ∈Ap, l >−p, β> 0 was due to Aouf et al. in [3]. Also, we have Jm

p,p−pβ,β =A Mm
p,β on f ∈Ap

was mentioned by Aouf et al. in [3] and Jp,0,β = Jm
p on f ∈Ap was due to Aouf et al. in [3], the

operator Jm
p,1−β,β = Pm(β) was investigated by Patel in [17], the operator Jm

p,1,1 = Lm
p on f ∈Ap

was due to Patel and Sahoo in [16] and also by Shams et al. in [19] and the operator Jm
1,1,1 = Lm

on f ∈A was introduced in [9] and [10]. We note that the operator Jm
p (α) was studied for α≥ 0

and the operator Lm
p (l,β) for l ≥ 0.

The main object of this paper is to define a function Jp,α,β(m+1,δ,γ; z) by

Jp,α,β(m+1,δ,γ; z)= δJm+1
p,α,β f (z)+γJm

p,α,β f (z), z ∈U, (1.4)

where f ∈ A (p,n), p,n ∈ N, m ∈ N0, δ ∈ C, γ ∈ C such that δ+γ ∈ R,ℜ(γ) ≥ 0, β > 0 and α ∈ R
such that α+ pβ> 0 and to present some interesting properties of function Jp,α,β(m+1,δ,γ; z).
We note that:

1. If δ= 1−γ, γ ∈C, ℜ(γ)≥ 0 in (1.4), then for f ∈A (p,n), we obtain

Mp,α,β(m+1,γ; z)= (1−γ)Jm+1
p,α,β f (z)+γJm

p,α,β f (z), z ∈U, (1.5)
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where p,n ∈N, m ∈N0, β> 0 and α ∈R such that α+ pβ> 0.

2. If α= l+ p− pβ, l >−p, β> 0 in (1.4), then for f ∈A (p,n), we have

Np,l,β(m+1,δ,γ; z)= δLm+1
p (l,β) f (z)+γLm

p (l,β) f (z), z ∈U, (1.6)

where p,n ∈N, m ∈N0 and δ ∈C, γ ∈C such that δ+γ ∈R, ℜ(γ)≥ 0.

3. If α= p− pβ, β> 0 in (1.4), then for f ∈A (p,n) we have

Tp,β(m+1,δ,γ; z)= δA Dm+1
p,β f (z)+γA Dm

p,β f (z), z ∈U, (1.7)

where p,n ∈N, m ∈N0 and δ ∈C, γ ∈C such that δ+γ ∈R, ℜ(γ)≥ 0.

4. If α= 0 in (1.4), then for f ∈A (p,n) we have

Qp(m+1,δ,γ; z)= δDm+1
p f (z)+γDm

p f (z), z ∈U, (1.8)

where p,n ∈N, m ∈N0 and δ ∈C, γ ∈C such that δ+γ ∈R, ℜ(γ)≥ 0.

5. If α= m = 0 in (1.4), then for f ∈A (p,n) we have from (1.2)

S(p,γ; z)= δp
∫ z

0

(
f (t)

t

)
dt+γ f (z), z ∈U, (1.9)

where p,n ∈N, m ∈N0 and δ ∈C, γ ∈C such that δ+γ ∈R, ℜ(γ)≥ 0.

In order to prove our main results, we will make use of the following lemma.

Lemma 1.1 ([14], [13]). Let Ψ(x, y) be a complex function defined by

Ψ :Θ→C, Θ⊂C×C
and let x = x1 + ix2, y= y1 + i y2. Suppose that Ψ(x, y) satisfies

1. Ψ(x, y) is continuous in Θ,

2. (1,0) ∈Θ and ℜ{Ψ(1,0)}> 0,

3. ℜ{Ψ(ix2, y1)}≤ 0 for all (ix2, y1) ∈Θ such that y1 ≤−1
2

n(1+ x2
2), n ∈N.

Let p(z) = 1+ cnzn + ·· · is holomorphic in U such that (p(z), zp′(z)) ∈ Θ for all z ∈ U. If
ℜ{Ψ(p(z), zp′(z))}> 0, z ∈U. Then ℜ(p(z))> 0 in U.

2. A Set of Main results
Theorem 2.1. Let f ∈ A (p,n), p,n ∈ N, m ∈ N0, δ,γ ∈ C with δ+γ ∈ R, ℜ(γ) ≥ 0, β > 0, α ∈ R
such that α+ pβ> 0, ρ < (δ+γ) and Jp,α,β(m+1,δ,γ; z) be as defined by (1.4). If

ℜ
{
Jp,α,β(m+1,δ,γ; z)

zp

}
> ρ, z ∈U, (2.1)

then

ℜ
{

Jm+1
p,α,β f (z)

zp

}
> 2(α+ pβ)ρ+nβℜ(γ)

2(δ+γ)(α+ pβ)+nβℜ(γ)
, z ∈U. (2.2)

Proof. Let τ= 2(α+ pβ)ρ+nβℜ(γ)
2(δ+γ)(α+ pβ)+nβℜ(γ)

. Define the function p(z) by

Jm+1
p,α,β f (z)

zp = τ+ (1−τ)p(z). (2.3)
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We see that p(z)= 1+ cnzn+ cn+1zn+1+·· · is holomorphic in U. Making use of the identity (1.3),
we find from (2.3) that

Jm
p,α,β f (z)

zp = τ+ (1−τ)p(z)+ β(1−τ)
(α+ pβ)

zp′(z) (2.4)

It follows from that (1.4), (2.3) and (2.4) that
Jp,α,β(m+1,δ,γ; z)

zp = (δ+γ)τ−ρ+ (δ+γ)(1−τ)p(z)+ βγ(1−τ)
(α+ pβ)

zp′(z). (2.5)

From (2.1) and (2.5), we obtain

ℜ
{
Jp,α,β(m+1,δ,γ; z)

zp −ρ

}
=ℜ

{
(δ+γ)τ−ρ+ (δ+γ)(1−τ)p(z)+ βγ(1−τ)

(α+ pβ)
zp′(z)

}
> 0.

If we define Ψ(x, y) by

Ψ(x, y)= (δ+γ)τ−ρ+ (δ+γ)(1−τ)x+ βγ(1−τ)
(α+ pβ)

y

with p(z)= x = x1 + ix2 and zp′(z)= y= y1 + i y2, then we have

(i) Ψ(x, y) is continuous in Θ,

(ii) (1,0) ∈Θ and ℜ{Ψ(1,0)}= (δ+γ)−ρ > 0,

(iii) for all (ix2, y1) ∈Θ such that y1 ≤−1
2 n(1+ x2

2),

ℜ{Ψ(ix2, y1)}= (δ+γ)τ−ρ+ β(1−τ)ℜ(γ)
α+ pβ

y1 ≤ (δ+γ)τ−ρ− β(1−τ)ℜ(γ)
2(α+ pβ)

n(1+ x2
2)≤ 0.

Therefore, the function Ψ(x, y) satisfies all the conditions of Lemma 1.1. Thus we have
ℜ{p(z)}> 0 (z ∈U) which yields (2.2). This proves our theorem.

Theorem 2.2. Let f ∈ A (p,n), p,n ∈ N, m ∈ N0, δ,γ ∈ C with δ+γ ∈ R, ℜ(γ) ≥ 0, β > 0, α ∈ R
such that α+ pβ> 0, ρ > (δ+γ) and Jp,α,β(m+1,δ,γ; z) be as defined by (1.4). If

ℜ
{
Jp,α,β(m+1,δ,γ; z)

zp

}
< ρ, z ∈U,

then

ℜ
{

Jm+1
p,α,β f (z)

zp

}
< 2(α+ pβ)ρ+βnℜ(γ)

2(δ+γ)(α+ pβ)+βnℜ(γ)
, z ∈U. (2.6)

Proof. Let τ= 2(α+pβ)ρ+nβℜ(γ)
2(δ+γ)(α+pβ)+nβℜ(γ) > 1. Define the function p(z) by

Jm+1
p,α,β f (z)

zp = τ+ (1−τ)p(z).

We observe that p(z)= 1+cnzn+cn+1zn+1+·· · is analytic in U. Following the proof of Theorem 2.1,
we get

ℜ
{
ρ− Jp,α,β(m+1,δ,γ; z)

zp

}
=ℜ

{
ρ− (δ+γ)τ− (δ+γ)(1−τ)p(z)− βγ(1−τ)

α+ pβ
zp′(z)

}
>0.
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Let

Ψ(x, y)= ρ− (δ+γ)τ− (δ+γ)(1−τ)x− βγ(1−τ)
α+ pβ

y (2.7)

with p(z)= x = x1 + ix2 and zp′(z)= y= y1 + i y2. Then it follows from (2.7) that

(i) Ψ(x, y) is continuous in Θ,

(ii) (1,0) ∈Θ and ℜ{Ψ(1,0)}= ρ− (δ+γ)> 0,

(iii) for all (ix2, y1) ∈Θ such that y1 ≤−1
2

n(1+ x2
2),

ℜ{Ψ(ix2, y1)}= ρ− (δ+γ)τ− β(1−τ)ℜ(γ)
α+ pβ

y1 ≤ ρ− (δ+γ)τ+ β(1−τ)ℜ(γ)
2(α+ pβ)

n(1+ x2
2)≤ 0.

Therefore, the function Ψ(x, y) satisfies all the conditions of Lemma 1.1. Thus we have
ℜ{p(z)}> 0 (z ∈U) which yields (2.6). This completes the proof of Theorem 2.2.

Using the techniques of Theorem 2.1 and Theorem 2.2, we have the following results.

Theorem 2.3. Let f ∈ A (p,n), p,n,∈ N, m ∈ N0, β > 0, α ∈ R such that α+ pβ > 0 and
Jp,α,β(m+1,δ,γ; z) be as given by (1.4). Then for δ,γ ∈C with δ+γ ∈R, ℜ(γ)≥ 0 and ρ < (δ+γ),
we have

ℜ
{

(Jm+1
p,α,β f (z))′

zp

}
> 2(α+ pβ)ρ+nβℜ(γ)

2(δ+γ)(α+ pβ)+nβℜ(γ)
, z ∈U,

whenever

ℜ
{
J′p,α,β(m+1,δ,γ; z)

pzp−1

}
> ρ, z ∈U.

Theorem 2.4. Let f ∈ A (p,n), p,n,∈ N, m ∈ N0, β > 0,α ∈ R such that α+ pβ > 0 and
Jp,α,β(m+1,δ,γ; z) be given by (1.4). Then for δ,γ ∈C with δ+γ ∈R, ℜ(γ)≥ 0 and ρ > (δ+γ), we
have

ℜ
{

(Jm+1
p,α,β f (z))′

zp

}
< 2(α+ pβ)ρ+βnℜ(γ)

2(δ+γ)(α+ pβ)+βnℜ(γ)
, z ∈U,

whenever

ℜ
{
J′p,α,β(m+1,δ,γ; z)

pzp−1

}
< ρ, z ∈U.

Remark 1. Putting (i) α = l + p − pβ, l > −p, β > 0, (ii) α = p− pβ, β > 0 and (iii) α =
0, in Theorems 2.1, 2.2, 2.3 and 2.4, we obtain corresponding results for the functions
Np,l,β(m+1,δ,γ; z), Tp,β(m+1,δ,γ; z), Qp(m+1,δ,γ; z) which are defined by (1.6), (1.7) and
(1.8), respectively.

3. Corollaries and Consequences
Theorem 2.1 would yield the following corollary when δ= 1−γ in Theorem 2.1.
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Corollary 3.1. Let f ∈ A (p,n), p,n,∈ N, m ∈ N0, γ ∈ C with ℜ(γ) ≥ 0, β > 0, α ∈ R such that
α+ pβ> 0, ρ < 1 and Mp,α,β(m+1,γ; z) be as in (1.5). If

ℜ
{Mp,α,β(m+1,γ; z)

zp

}
> ρ, z ∈U,

then

ℜ
{

Jm+1
p,α,β f (z)

zp

}
> 2(α+ pβ)ρ+nβℜ(γ)

2(α+ pβ)+nβℜ(γ)
, z ∈U.

We conclude the below result by taking δ= γ̄ in Theorem 2.1.

Corollary 3.2. Let f ∈A (p,n), p,n,∈N, m ∈N0, γ ∈C such that ℜ(γ)≥ 0, β> 0, α ∈R such that
α+ pβ> 0, ρ < 2ℜ(γ) and Jp,α,β(m+1, γ̄,γ; z) be as given by (1.4). If

ℜ
{
Jp,α,β(m+1, γ̄,γ; z)

zp

}
> ρ, z ∈U,

then

ℜ
{

Jm+1
p,α,β f (z)

zp

}
> 2(α+ pβ)ρ+nβℜ(γ)

4[(α+ pβ)+nβ]ℜ(γ)
, z ∈U.

Further, if

ℜ
{
Jp,α,β(m+1, γ̄,γ; z)

zp

}
> 3

2
ℜ(γ), z ∈U, then ℜ

{
Jm+1

p,α,β f (z)

zp

}
> 3(α+ pβ)+nβ

4(α+ pβ)+nβ
, z ∈U.

Corollary 3.3 asserts immediate consequence of Theorem 2.2 when δ= 1−γ.

Corollary 3.3. Let f ∈A (p,n), p,n,∈N, m ∈N0, γ ∈C such that ℜ(γ)≥ 0, β> 0, α ∈R such that
α+ pβ> 0, ρ > 1 and Mp,α,β(m+1,γ; z) be as in (1.5). If

ℜ
{Mp,α,β(m+1,γ; z)

zp

}
< ρ, z ∈U,

then

ℜ
{

Jm+1
p,α,β f (z)

zp

}
< 2(α+ pβ)ρ+nβℜ(γ)

2(α+ pβ)+nβℜ(γ)
, z ∈U.

Corollary 3.4 asserts an another interesting consequence of Theorem 2.2 when we take δ= γ̄.

Corollary 3.4. Let f ∈A (p,n), p,n,∈N, m ∈N0, γ ∈C such that ℜ(γ)> 0, β> 0, α ∈R such that
α+ pβ> 0, ρ > 2ℜ(γ) and Jp,α,β(m+1, γ̄,γ; z) be as in (1.4). If

ℜ
{
Jp,α,β(m+1, γ̄,γ; z)

zp

}
< ρ, z ∈U

then

ℜ
{

Jm+1
p,α,β f (z)

zp

}
< 2(α+ pβ)ρ+nβℜ(γ)

4[(α+ pβ)+nβ]ℜ(γ)
, z ∈U.
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Further, if

ℜ
{
Jp,α,β(m+1, γ̄,γ; z)

zp

}
< 3

2
ℜ(γ), z ∈U, then ℜ

{
Jm+1

p,α,β f (z)

zp

}
< 3(α+ pβ)+nβ

4(α+ pβ)+nβ
, z ∈U.

Setting δ= 1−γ in Theorem 2.3, we have

Corollary 3.5. Let f ∈ A (p,n), p,n,∈ N, m ∈ N0, β > 0, α ∈ R such that α+ pβ > 0 and
Mp,α,β(m+1,γ; z) be as in (1.5). Then for γ ∈C, ℜ(γ)≥ 0 and ρ < 1, we have

ℜ


(
Jm+1

p,α,β f (z)
)′

zp

> 2(α+ pβ)ρ+nβℜ(γ)
2(α+ pβ)+nβℜ(γ)

, z ∈U,

whenever

ℜ
{

M′
p,α,β(m+1,γ; z)

pzp−1

}
> ρ, z ∈U.

Allowing δ= γ̄ in Theorem 2.3, we arrive the following

Corollary 3.6. Let f ∈ A (p,n), p,n,∈ N, m ∈ N0, β > 0, α ∈ R such that α+ pβ > 0 and
Jp,α,β(m+1, γ̄,γ; z) be as in (1.4). Then for γ ∈C with ℜ(γ)> 0 and ρ < 2ℜ(γ), we have

ℜ


(
Jm+1

p,α,β f (z)
)′

zp

> 2(α+ pβ)ρ+nβℜ(γ)
4[(α+ pβ)+nβ]ℜ(γ)

, z ∈U,

whenever

ℜ
{
J′p,α,β(m+1, γ̄,γ; z)

pzp−1

}
> ρ, z ∈U.

Further, if

ℜ
{
J′p,α,β(m+1, γ̄,γ; z)

zp

}
> 3

2
ℜ(γ), z ∈U, then ℜ

{
Jm+1

p,α,β f (z)

zp

}
> 3(α+ pβ)+nβ

4(α+ pβ)+nβ
, z ∈U.

We conclude the following result by taking δ= 1−γ in Theorem 2.4.

Corollary 3.7. Let f ∈ A (p,n), p,n,∈ N, m ∈ N0, β > 0, α ∈ R such that α+ pβ > 0 and
Mp,α,β(m+1,γ; z) be as in (1.5). Then for γ ∈C, ℜ(γ)≥ 0 and ρ > 1, we have

ℜ


(
Jm+1

p,α,β f (z)
)′

zp

< 2(α+ pβ)ρ+nβℜ(γ)
2(α+ pβ)+nβℜ(γ)

, z ∈U,

whenever

ℜ
{

M′
p,α,β(m+1,γ; z)

pzp−1

}
< ρ, z ∈U.

Putting δ= γ̄ in Theorem 2.4, we obtain
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Corollary 3.8. Let f ∈ A (p,n), p,n,∈ N, m ∈ N0, β > 0, α ∈ R such that α+ pβ > 0 and
J′p,α,β(m+1, γ̄,γ; z) be as in (1.4). Then for γ ∈C with ℜ(γ)> 0 and ρ > 2ℜ(γ), we have

ℜ


(
Jm+1

p,α,β f (z)
)′

zp

< 2(α+ pβ)ρ+nβℜ(γ)
4[(α+ pβ)+nβ]ℜ(γ)

, z ∈U,

whenever

ℜ
{
J′p,α,β(m+1, γ̄,γ; z)

pzp−1

}
< ρ, z ∈U.

Further, if

ℜ
{
J′p,α,β(m+1, γ̄,γ; z)

zp

}
< 3

2
ℜ(γ), z ∈U, then ℜ

{
(Jm+1

p,α,β f (z))′

zp

}
< 3(α+ pβ)+nβ

4(α+ pβ)+nβ
, z ∈U.

If we put m = 0 and α= 0 in Theorem 2.1 and Theorem 2.3, then we obtain

Corollary 3.9. Let f ∈A (p,n), p,n,∈N, δ, γ ∈ C such that δ+γ ∈ R, ℜ(γ) ≥ 0, ρ < (δ+γ), and
Sp(δ,γ; z) be as in (1.9). Then we have

ℜ
{

p
zp

∫ z

0

f (t)
t

dt
}
> 2pρ+nℜ(γ)

2(δ+γ)p+nℜ(γ)
, z ∈U, whenever ℜ

{Sp(δ,γ; z)
zp

}
> ρ, z ∈U

and

ℜ
{

f (z)
zp

}
> 2pρ+nℜ(γ)

2(δ+γ)p+nℜ(γ)
, z ∈U, whenever ℜ

{
S′

p(δ,γ; z)

zp

}
< ρ, z ∈U.

If we put m = 0 and α= 0 in Theorem 2.2 and Theorem 2.4, then we obtain

Corollary 3.10. Let f ∈A (p,n), p,n,∈N, δ,γ ∈C such that δ+γ ∈R, ℜ(γ)≥ 0, ρ > (δ+γ), and
Sp(δ,γ; z) be as in (1.9). Then we have

(i) ℜ
{

p
zp

∫ z

0

f (t)
t

dt
}
< 2pρ+nℜ(γ)

2(δ+γ)p+nℜ(γ)
, z ∈U, whenever ℜ

{Sp(δ,γ; z)
zp

}
< ρ, z ∈U

and

(ii) ℜ
{

f (z)
zp

}
< 2pρ+nℜ(γ)

2(δ+γ)p+nℜ(γ)
, z ∈U, whenever ℜ

{
S′

p(δ,γ; z)

zp

}
< ρ, z ∈U.

Conclusion
We have introduced a special holomorphic function in the unit disc defined by using a generalized
integral operator. We have then derived certain inequalities of this special holomorphic function
by using a lemma of Miller and Mocanu. Further by specializing the parameters, several
consequences of our main results are indicated.
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