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Inclusion of Loops into Lie Groups:

Infinitesimal Characteristics

L. Sbitneva

Abstract. The infinitesimal characteristics for some class of smooth loops

generalizing Bruck loops to be embedded into a Lie group are given.

The interest to the problem of inclusion of loops into Lie groups has been

shown by various recent publications dedicated to representations of loops as

transversals on homogeneous spaces.

There is presented an example of a smooth left Bol loop, satisfying the

generalized Bruck identity, realized as a section on some reductive homogeneous

space.

1. Introduction

1.1. Inclusion of loops into groups

The inclusion of loops into groups has been considered by many authors.

M. Kikkawa considered the construction suggested by Yamaguty in order to

obtain a loop (homogeneous Lie loop) [4].

The book [15] is dedicated to the theory of loops presented from the point

of view of the Group Theory, i.e., loops are represented as “sharply" transitive

sections in Lie groups. The general theory developed there and examples are

mostly concern the class of Bol loops [1], Bruck loops (see [2, p. 262]) and

Moufang loops [8].

We consider so called Generalized Bruck loops, i.e., left Bol loops satisfying the

generalized Bruck identity [14, p. 351 (7)]. The class of smooth Generalized Bruck

loops originated in the theory of generalized symmetric spaces (see [10, (1.7)

p. 340]) treated in the frames of non associative algebra [9, (A.2.21), p. 192].

The interest to study Generalized Bruck loops is also motivated by applications

to Special Relativity, due to the non-associative algebraic system describing

the gyrocommutative gyrogroups introduced by A. Ungar [16], the former turns

out to be a Bruck loop (see [11]).
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Some examples of non-gyrocommutative gyrogroups by A. Ungar (see also [2,

p. 266]) correspond to the case when the gyrocommutative property is not valid. In

order to construct an example of non-Bruck loop, T. Fogel ([2, p. 263]) applied the

algebraic construction of inclusion of loops into groups which is due to L. Sabinin

[9].

Following this construction for the case of smooth loops we present an example

of a Generalized Bruck loop realized as a cross-section (transversal) on some

reductive homogeneous space, thus it may be related to a non-gyrocommutative

gyrogroup.

In Subsection 1.2 we give a brief description of the Baer-Sabinin construction

([9, Ch. 2]) in terms corresponding to our consideration.

Section 2 is dedicated to the conditions, necessary and sufficient, for a cross-

section on a homogeneous space G/H to be a loop with given properties.

In Section 3 we construct a transversal (cross-section) Q on a reductive homo-

geneous space G/H ([5, p. 184]), and verify the necessary and sufficient conditions

for the loop Q to be a Generalized Bruck loop.

1.2. General construction: loops as transversals on homogeneous spaces

Let us give the necessary preliminaries.

A left loop 〈Q, ·,ǫ〉 can be defined as a set Q with a binary operation · such that

the equation

a · x = b

has a unique solution ∀a, b ∈ Q, and there exist a fixed element ǫ (right identity),

so that x · ǫ = x .

Thus the equation

(a · b) · x = a · (b · c)

possesses the unique solution

x = la,b c = L−1
a·b
◦ La ◦ Lb c ,

where La x = a · x .

The group asl(Q) generated by la,b is a subgroup in Lmult(Q) = 〈Lq〉q∈Q, and it

is called the left associant of the left loop Q.

By means of the construction of the semidirect product Q ⊠ H of a left loop

Q by its transassociant H ([9, Proposition 2.10, p. 40]) a left homogeneous space

Q⊠H/i(H)may be obtained in a unique way ([9, Proposition 2.13, p. 41]). (A left

tranassociant of a left loop Q is a group H ⊂ SQ which contains the associant

asl (Q), H{ǫ}= {ǫ}, and mQ H ⊂ H, where mq(h) = L−1
hq
◦h◦ Lq ◦h

−1, q ∈Q, h ∈ H,

describes the ‘deviation’ of h from being an automorphism).

Furthermore, there may be constructed its cross-section endowed with a binary

operation, by projecting along the left cosets ([9, Proposition 2.12, p. 41]). Then
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the Proposition 2.13 in [9, p. 41] shows that Q⊠H/i(H) can be identified with the

loop Q̃ = (Q, idQ)
∼= Q, that is, the homogeneous space thus obtained is canonically

equipped with the structure of loop, isomorphic to the initial one.

Moreover, an arbitrary homogeneous space G/R can be equipped with a left

loop structure Q such that Q⊠H/i(H) ∼= G/R for some choice of the transassociant

H.

In general, in Chapter 2 of [9] the equivalence of the categories of left loops

and left homogeneous spaces is established.

As a result, an arbitrary left loop 〈Q, ·,ǫ〉 with two-sided neutral element ǫ can

be included into some group.

Namely, there exists a group 〈G,⊡,ǫ〉, a subgroup H ⊂ G and the inclusion

map i : Q → G such that Q, being identified with i(Q), turns out to be a section

of the set of left cosets G/H (i.e., for any element g ∈ G there exist the unique

elements q ∈ Q and h ∈ H such that g = q⊡ h) and the operations are related by

a · b = πQ(a⊡ b), where πQ : G→Q ∼= G/H is a projection on Q along H.

A cross-section (transversal) Q̃ is called a reductant if

hQ̃ h−1 ⊂ Q̃, ∀ h ∈ H, (1.1)

which is called reductivity condition.

In the case of a smooth left A-loop the corresponding left homogeneous space

turns out to be reductive.

A left loop 〈Q, ·,ǫ〉 is said to be a left A-loop if asl(Q)⊂ Aut(Q), i.e.,

la,b(x · y) = (la,b x · la,b y). (1.2)

Let us note that in the case of a smooth A-loop the group H = asl(Q) generated

by la,b is always a Lie group.

Based on Definition 2.14 and Propositions 2.16–2.19 in [9] we formulate

Proposition 1.1. If Q is a left A-loop and H = asl(Q) is its transassociant, then the

homogeneous space Q ⊠ H/i(H) (i : H → Q ⊠ H) is reductive and the cross-section

Q̃ = (Q, IdQ) of the space of left cosets is its reductant.

Conversely, if G/R is a left reductive homogeneous space with a reductant Q,

then Q is a left A-loop with respect to the operation induced on Q, and a suitable

transassociant R̃ is a subgroup of Aut(Q).

Proof. See ([9, Proposition 2.20, p. 44]). �

Remark 1.2. Passing to the corresponding Lie algebras we obtain in this case the

reductive decomposition, this explains the terminology.

Remark 1.3. If a left A-loop is a left loop 〈Q, ·,ǫ〉 with two-sided neutral element

ǫ, then the corresponding reductant is homogeneous, i.e., it contains ǫH, and vice

versa. This is the case of homogeneous Lie loops considered by M. Kikkawa [4].
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Remark 1.4. In [2] the author refers to the reductivity condition (1.1) as the

normality condition because for the case when Q is a group it leads to a normal

subgroup H ⊂ Aut(Q).

If Q is a group then Q⊠ H turns to be a classic semidirect product of Q and the

subgroup H of the group of its automorphisms.

2. Generalized smooth Bruck Loops as transversals on reductive

homogeneous spaces

2.1. Identities in loops: Conditions in terms of the group operation

Since an arbitrary homogeneous space G/R can be equipped with a left loop

structure Q the problem arises to find necessary and sufficient conditions in terms

of the group operation so that a cross-section on G/H appears to be a loop with

certain identities.

For example, the necessary and sufficient conditions for a local analytic left Bol

loop to be embedded into a local Lie group are well known.

We shall describe the corresponding construction following [6, p. 63, p. 64],

(see [7, p. 427, p. 416]).

Let 〈G,△,ǫ〉 be a local Lie group with the Lie algebra g, and let H be a connected

Lie subgroup with the Lie algebra h ⊂ g. Consider a vector subspace h such that

g =m∔ h.

Let π : G → G/H be the canonical projection on the local space of left cosets,

and let ψ be the restriction of the mapping composition π ◦ exp to h. Then ψ

is a diffeomorphism of a suitable neighborhood U of the point O in h with a

neighborhood of the coset π(e) in G/H (see [3, Chapter II]).

Then on the points of the local cross-section Q = exp U of left cosets G/H there

can be introduced a local law of composition

a× b = πQ(a△b),

where πQ = exp◦(ψ)−1 ◦ π : G → Q is the local projection on Q parallel to H,

which establishes a correspondence between each element g ∈ G and a unique

element a ∈Q so that g = a△p , where p ∈ H.

Then the corresponding cross-section 〈Q,×,ǫ〉 is a local analytic loop with the

left monoalternative property [7, p. 417]:

ak × (al × b) = ak+l × b. (2.1)

Proposition 2.1. Suppose that

a△b△a ∈ Q, Q = exp U , (2.2)

for all a, b ∈ Q sufficiently close to the point ǫ.

Then the local analytic loop 〈Q,×,ǫ〉 satisfies the left Bol identity

a× (b× (a× c)) = (a× (b× a))× c . (2.3)
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Moreover, if the subgroup H does not contain any nontrivial subgroup normal in

G then the following stronger version holds:

Let Q = exp U be a local cross-section for the left cosets G/H. Then the local

analytic loop 〈Q,×,ǫ〉 satisfies the left Bol identity if and only if a△b△a ∈Q, for any

a, b ∈ Q sufficiently close to ǫ.

Definition 2.2. A smooth local left loop 〈Q, ·,ǫ〉 with a local automorphism

s ∈ Aut(Q) is called a Generalized Bruck Loop if the following two identities are

satisfied:

x · (y · (x · z)) = (x · (y · x)) · z (Left Bol Identity), (2.4)

(x · y) · I s(x · y) = x · ((y · I s y) · I s x) (Generalized Bruck Identity), (2.5)

where (x · I x) = ǫ, or, equivalently, I w = w−1.

Smooth local left loops 〈Q, ·,ǫ〉 with a local automorphism s ∈ Aut(Q) satisfying

the above conditions admit inclusion into local Lie groups 〈G,△,ǫ〉.

We need the following Theorem (see [6, p. 68], [13])

Theorem 2.3. Let us consider a smooth left loop 〈Q, ·,ǫ〉 with the identity:

x · (y · (sx−1 · z)) = (x · (y · (sx−1)) · z, (2.6)

where s(x · y) = (sx) · (s y), s : Q→Q, such that s∗,ǫ − id∗,ǫ is invertible, and the left

monoalternative identity (2.1) is satisfied.

Then there exists a local Lie group 〈G,△,ǫ〉 and an automorphism s̃ ∈ Aut(G)

such that in Q, being identified with a local cross-section of the left cosets G/H,

H = {x ∈ G | s̃(x) = x}, the following relations are satisfied:

(i) s̃|Q = s has no fixed points on Q except for the point ǫ,

(ii) h△Q△h−1 ⊂Q, ∀ h ∈ H,

(iii) x△y△sx−1 ∈ Q, ∀ x , y ∈Q, (2.7)

where

x · y = πQ(a△b), ∀ x , y ∈Q,

as in the construction which has been described above in 1.2.

The conditions (i), (ii) and (iii) are necessary and sufficient.

Proof. First, we shall give the proof for (iii).

Following the General Construction one can take G/H as L(Q)/asl(Q), (see 1.2)

Let us take the set LQ = {La}a∈Q of all left translations of the left loop Q. Then

it can be considered as a reductant (after the identification (see 1.2)). For every

element T of the group L(Q) there is the unique decomposition T = L ◦ h, where

L = LTe ∈Q, (see 1.2), h ∈ asl(Q) .
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Let us introduce the operation

Lq ⊙ Lp = πLQ
(Lq ◦ Lp) = Lq·p, (2.8)

where Lq ◦ Lp = Lq·p ◦ l(q, p), so that πLQ
(Lq ◦ Lp) = Lq·p is the projection on LQ

along H.

Furthermore l(a, b) ◦ Lx ◦ l(a, b)−1 = Ll(a,b) x , ∀ a, b ∈ Q, so that asl(Q)

transforms the section LQ in LQ (which means that LQ is a reductant in

L(Q)/asl(Q)).

The operation (2.8) defines on the set LQ a loop, which is isomorphic to the

loop 〈Q, ·,ǫ〉 with respect to the bijection L : q→ Lq.

Since the operation of multiplication in the loop Q is related with the law of

composition in the group G by La ◦ Lb = La·b ◦ l(a, b), we have

Lx ◦ L y ◦ Lsx−1 = Lx ◦ L y ·sx−1 ◦ l(y, sx−1)

= Lx ·(y ·sx−1) ◦ [l(x , y · sx−1) ◦ l(y, sx−1)]

= Lx ·(y ·sx−1) ◦ h.

Acting by both sides on z, we obtain

x · (y · (sx−1 · z)) = [x · (y · sx−1)] · hz .

If the (2.6) holds then h= id, and we have

Lx ◦ L y ◦ Lsx−1 = Lx ·(y ·sx−1) .

This means that

x△ y△ sx−1 = x · (y · sx−1) ∀ x , y ∈Q,

due to the identifying isomorphism L : x 7→ Lx .

That is

x△ y△ sx−1 ∈Q, ∀ x , y ∈Q,

where x−1 is the right inverse element, i.e., x · x−1 = ǫ in the left loop Q, but

because of (2.1) we have L−1
x
= Lx−1 , thus it can be considered as the inverse

element in the group G.

Conversely, if

x△ y△ sx−1 ∈Q, ∀ x , y ∈Q,

then, taking into account the identifying isomorphism L : x 7→ Lx , we have

Lx ◦ L y ◦ Lsx−1 ∈ {Lq}q∈Q,

where x−1 is the right inverse element in the loop as well as in the group. Then

Lx ◦ L y ◦ Lsx−1 = Lx ·(y ·sx−1),

which, after acting on z, gives (2.6).
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Let us note, that the automorphism s : Q → Q may be extended up to the

isomorphism of L(Q), and therefore of G, due to identifying isomorphism, if we

put by definition s(La ◦ h) = Lsa ◦ h.

Now, (ii) is the reductivity condition (1.1) and, as is mentioned in the proof of

(iii), for the initial left loop the (1.2) is valid, thus the Proposition 1.1 is applied.

The condition (i) is just the invertibility of s∗,ǫ − id∗,ǫ, which provides the right

division in the given left loop. �

These criteria may be applied to the case of a smooth left loop in Definition 2.2.

In fact, a left Bol loop, i.e., a left loop with two-sided identity element and

with the Bol identity (2.4), possesses the right division, and the monoalternativity

identity (2.1) is verified. This implies that the conditions (i) and (ii) of Theorem 2.3

hold true (see [7, p. 385], [6, p. 10]).

As well, one may refer to the equivalent characteristics of a smooth loop in

Definition 2.2, [14, p. 351, p. 353] (see ([12], [9, p. 192]), wherefrom it follows

that a Generalized Bruck loop is a left A-loop, and also the (2.6) holds for the

particular case when ϕ = s ([9, p. 215]).

The latter is because the equivalent characteristic identities, so called ϕM -

identity:

La ◦ Lx ◦ L−1
ϕa
= La·(x ·ϕa−1) , (2.9)

where ϕ : Q→Q is an endomorphism and f : x 7→ ϕx · x−1 is bijective, and

x−1 · (x · y) = y ,

imply

La ◦ Lx ◦ L(ϕa)−1 = La·(x ·(ϕa)−1) , (2.10)

being the left Iq-half Bol identity ([9, Ap. 5]) of the form

La ◦ Lx ◦ LIq a = La·(x ·Iq a), Iw= w−1 . (2.11)

We should restrict our consideration for the case when ϕ = s ∈ Aut(Q), thus we

have (2.6) (see [9, p. 173]).

Let us note, that if Jq= id we get the left Bol identity.

2.2. Infinitesimal characteristics

The construction of the infinitesimal object which describes the structure of

smooth local loops is one of the principal problems in the study of different classes

of loops.

For some classes of smooth loops (local analytic Moufang loops, Bol loops

and homogeneous Lie loops) the adequate infinitesimal object is a binary-ternary

algebra.

In a general case, to any local smooth loop there corresponds only one algebra,

endowed with a set of multilinear operations [9, 0.17, p.70 ].
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For the case of a loop in Theorem 2.3 we have the reductive decomposition,

namely,

g= m∔ h, (adh)m⊂m,

where h is the subalgebra in g corresponding to the subgroup H ⊂ G, m is a tangent

subspace to Q at ǫ ∈ G and Q
⋂

H = {ǫ}, locally.

The tangent space at the point ǫ of the group G will be identified with its Lie

algebra g as usual.

The condition (adh)m ⊂m is satisfied because of the definition of the reductant

hQh−1 ⊂Q, ∀h ∈ H (see reductivity condition (1.1)).

Thus we have the definition of the reductive homogeneous space in the Lie

algebras language.

Furthermore, some additional conditions on the reductive decomposition have

to hold true [13].

[ξ, (s̃+ id)η] ∈m, [ξ, [η,ζ]] ∈m, ∀ ξ,η,ζ ∈ m,

where s̃ = s∗,ǫ , the tangent map of the automorphism s of the group G, is an

automorphism of the Lie algebra g.

The latter inclusion represents the necessary and sufficient infinitesimal

condition for a loop to satisfy the Bol identity [6, p. 64 ].

These conditions and the Theorem 2.3 allow us to construct an example of a

Bol loop with the generalized Bruck identity of the Definition 2.2.

3. Example of a generalized Bruck loop included into a Lie group

Let G be the group of matrices















cosh t sinh t 0 0 a

sinh t cosh t 0 0 b

0 0 cosh t − sinh t c

0 0 − sinh t cosh t d

0 0 0 0 1















,

where a, b, c, d, t ∈ R, and let H be a subgroup of G whose elements are of the

form














1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 d

0 0 0 0 1















.

The map s given by s : t →−t, a→−b, b→ a, c→−c, d → d is an automorphism

of the group G, and s : H → H. Moreover, sA= A if and only if A∈ H.
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Let us consider the set Q of matrices of the form














cosh t sinh t 0 0 a

sinh t cosh t 0 0 b

0 0 cosh t − sinh t c

0 0 − sinh t cosh t [− tanh(t/2)]c

0 0 0 0 1















.

It is obvious that sQ ⊂Q.

It is easy to verify that Q is a reductant, i.e., h−1Qh ⊂ Q, ∀ h ∈ H. In fact, it is

possible to represent the matrices from Q by means of a new parametrization:












cosh t sinh t 0 0 [(sinh(t/2))/(t/2)]([cosh(t/2)]α+ [sinh(t/2)]β)

sinh t cosh t 0 0 [(sinh(t/2))/(t/2)]([sinh(t/2)]α+ [cosh(t/2)]β)

0 0 cosh t − sinh t [(sinh(t/2))/(t/2)](cosh(t/2))γ

0 0 − sinh t cosh t [(sinh(t/2))/(t/2)](− sinh(t/2))γ

0 0 0 0 1













= exp















0 t 0 0 α

t 0 0 0 β

0 0 0 −t γ

0 0 −t 0 0

0 0 0 0 0















= eq .

It follows, that the one parametric subgroups of the form eλq (λ ∈ R) belong to

Q if q ∈ Te(Q) =m, where the elements of m are of the form














0 t 0 0 α

t 0 0 0 β

0 0 0 −t γ

0 0 −t 0 0

0 0 0 0 0















.

Let us note, that in our case h consists of matrices














0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 d

0 0 0 0 0















,

and g =m∔ h is a reductive decomposition, i.e., [h,m] ⊂m.

It is a routine calculation to verify that [m, [m,m]]⊂m.

Let us find now the set (S+ id)m, where S = (s)∗,e.

S















0 t 0 0 α

t 0 0 0 β

0 0 0 −t γ

0 0 −t 0 0

0 0 0 0 0















+















0 t 0 0 α

t 0 0 0 β

0 0 0 −t γ

0 0 −t 0 0

0 0 0 0 0














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=















0 −t 0 0 −β

−t 0 0 0 α

0 0 0 t −γ

0 0 t 0 0

0 0 0 0 0















+















0 t 0 0 α

t 0 0 0 β

0 0 0 −t γ

0 0 −t 0 0

0 0 0 0 0















=















0 0 0 0 α− β

0 0 0 0 α+ β

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0















=















0 0 0 0 a

0 0 0 0 b

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0















.

Finally we verify that [m, (S+ id)m]⊂m.

Thus we have constructed an example of the generalized Bruck loop realized as

a section on the homogeneous space G/H.
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