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Abstract. In the present paper we consider the nonlinear superposition operator F in Banach spaces
of sequences lp (1≤ p ≤∞), generated by the function f (s,u)= d(s)+aku−1, with a > 1 and k ∈R\{0}.
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1. Introduction and Preliminaries
In this paper we consider the class of nonlinear superposition operators generated by an
exponential function in Banach spaces of sequences lp (1≤ p ≤∞). These spaces of sequences
are equipped with the standard norm:

‖x‖ =


(∑

s∈N
|x(s)|p

) 1
p

if 1≤ p <∞ ,

sup
s∈N

|x(s)| if p =∞ .
(1)

The exponential function arises in various mathematical models and dynamical systems where
we have rapid growth or decay, such as model of population growth, growth of investment
assets and various epidemic models (as well the models of rapidly spreading the coronavirus
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disease 2019 (COVID-19)). The superposition operator, also known as Nemytskii operator or
composition operator, is generated by the function f = f (s,u) defined on N×R with the values in
R. For x = x(s) ∈ lp , by applying f we get the function f (s, x(s)) and the superposition operator F :

Fx(s)= f (s, x(s)). (2)

There are several different ways of defining the term spectrum for nonlinear operators and
corresponding nonlinear spectral theories ([1], [3], [8], [9]). We consider the Rhodius and
Neuberger spectrum of nonlinear operators and they both contain the set of all eigenvalues of
the operator (point spectrum). For the class C(lp) of all continuous operators F on Banach space
lp over R, the Rhodius resolvent set ([9]) is given by:

ρR(F)= {λ ∈R :λI −F is bijective and (λI −F)−1 ∈C(lp)}

and the Rhodius spectrum is the set

σR(F)=R\ρR(F).

If F is Fréchet differentiable at each point x ∈ X and the map x 7→ F ′(x) is continuous, we
write F ∈C1(X ,Y ) and call F continuously Fréchet differentiable ([1], [2]).

The Neuberger resolvent set for the class of continuously Fréchet differentiable operators
F : X → X is defined by

ρN(F)= {λ ∈R :λI −F is bijective and (λI −F)−1 ∈C1(lp)}

and the set

σN(F)=R\ρN(F)

is called Neuberger spectrum of F ([8]).

These spectra may be useful in solvability of certain operator equations and eigenvalue
problems ([8]). The Rhodius and Neuberger spectrum of some nonlinear superposition operators
may be found in [1], [5], [6], [7]. The conditions of acting, continuity and differentiability of the
superposition operator defined in the spaces of sequences lp are given in the following theorems.

Theorem 1 ([4]). Let 1≤ p, q <∞. Then the following properties are equivalent:

• the operator F acts from lp to lq;

• there are functions a(s) ∈ lq and constants δ> 0, n ∈N, b ≥ 0, for which

| f (s,u)| ≤ a(s)+b|u|
p
q (s ≥ n, |u| < δ);

• for any ε> 0 there exists a function aε ∈ lq and constants δε > 0, nε ∈N, bε ≥ 0, for which
‖aε(s)‖q < ε and

| f (s,u)| ≤ aε(s)+bε|u|
p
q (s ≥ nε, |u| ≤ δε).

Theorem 2 ([4]). Let 1 ≤ p, q < ∞ and let the superposition operator (1), generated by the
function f (s,u), acts from lp to lq. Then this operator is continuous if and only if each of the
functions is continuous for every s ∈N.
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Theorem 3 ([4]). Let 1≤ p, q <∞ and the operator F generated by the function f (s,u) acts from
lp into lq . The operator F is differentiable at x0 ∈ lp if and only if f ′u(s, ·) is continuous at x0 for
almost all s ∈N.

Theorem 4 ([4]). Let f (s,u) be a Carathéodory function and operator F generated by the function
f (s,u) acts from lp to lq. If operator F is differentiable in x0 ∈ lp , then its (Fréchet) derivative in
x0 has the form

F ′(x0)h(s)= a(s)h(s), (3)

where a ∈ lq/lp is given by

a(s)= lim
u→0

f (s, x0(s)+u)− f (s, x0(s))
u

. (4)

If superposition operator G, generated by the function

g(s,u)=
{

1
u [ f (s, x(s)+u)− f (s, x(s))]; u 6= 0,
a(s); u = 0,

acts from lp to lq/lp , and it is continuous in 0, then F is differentiable in x0 and it values (3).

The space lq/lp is the set of all multipliers (a(s)) from lp to lq. It is a Banach space of
sequences, defined by

lq/lp =
{

lpq(p−q)−1 for p > q,
l∞ for p ≤ q.

(5)

2. Main Results
Let the superposition operator F : lp → lp, be generated by the function f (s,u)= d(s)+aku −1,
with a > 0, k ∈R\{0}, where d = (d(s))s∈N is a sequence from the space lq (1≤ q ≤ p ≤∞). We
show that this operator acts from the space lp to the space lp.

(a) Case 1≤ p <∞
| f (s,u)| = |d(s)+aku −1| ≤ |d(s)|+ |aku −1|. (6)

For |u| < 1 it is not hard to see that

|aku −1| ≤ a|k| · |u|. (7)

Hence, from (6) and (7), we get

| f (s,u)| ≤ |d(s)|+a|k| · |u|. (8)

Since d ∈ lq and lq ⊆ lp we have that (|d(s)|)s∈N ∈ lp . Now, we can see there exists constants
δ= 1, n = 1, b = a|k| from the Theorem 1 such that ∀ s ≥ n, |u| < δ, inequality (8) holds. Hence,
it follows that F : lp → lp .

In Figure 1 we illustrate the inequality (7) with the functions g(u) = |eku − 1| and
h(u)= e|k| · |u| for k = 2> 0 (on the left side) and k =−2< 0 (on the right side). In both cases the
graph of g(u) is under the graph of h(u) for |u| < 1.
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(b) Case p = l∞
d ∈ lq ⊆ l∞ ⇒∃ sup

s∈N
|d(s)| = A <∞

and

x ∈ l∞ ⇒∃ sup
s∈N

|x(s)| = B <∞.

For arbitrary x = (x(1), x(2), · · · ) ∈ l∞ we have

sup
s∈N

|Fx(s)| = sup
s∈N

|d(s)+akx(s) −1| ≤ sup
s∈N

|d(s)|+sup
s∈N

akx(s) +1.

Since supakx(s) ≤ asup |kx(s)| = a|k|sup |x(s)|, it follows

sup
s∈N

|Fx(s)| ≤ A+a|k|B +1<∞.

We see that for every x ∈ l∞ it holds Fx ∈ l∞ and hence, the operator F acts from l∞ to l∞.

For every s ∈N the function f (s,u)= d(s)+aku −1 is continuous, so from the Theorem 2 we
have that the operator F is continuous.

Theorem 5. Let the superposition operator F : lp → lp, be generated by the function f (s,u) =
d(s)+aku −1, with a > 1, k ∈R\{0}, where (d(s))s is a sequence from the space lq (1≤ q ≤ p ≤∞).
Then the Rhodius spectrum of F is σR(F)= [0,+∞) for k > 0 and σR(F)= (−∞,0] for k < 0.

Proof. For given d = (d(1),d(2), . . .) ∈ lq and arbitrary x = (x(1), x(2), . . .) ∈ lp, we have Fx =
F(x(1), x(2), . . .)= (d(1)+akx(1) −1,d(2)+akx(2) −1, . . .).

The operator λI −F for λ= 0 becomes −F and

−Fx = (−d(1)−akx(1) +1,−d(2)−akx(2) +1, . . .). (9)

From −Fx =−F y (x, y ∈ lp), we have

(−d(1)−akx(1) +1,−d(2)−akx(2) +1, . . .)= (−d(1)−aky(1) +1,−d(2)−aky(2) +1, . . .)

−d(s)−akx(s) +1=−d(s)−aky(s) +1, ∀ s ∈N
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akx(s) = aky(s), ∀ s ∈N. (10)

The function f (x) = akx, x ∈ R, k ∈ R\ {0}, a > 1 is strictly monotonous and injective, so from
(10) we get x(s)= y(s), ∀ s ∈N, i.e. x = y. That is why this operator (9) is injective. This is not a
surjective operator since −d(s)−akx(s)+1 ∈ (−∞,−d(s)+1), (s ∈N) and d is a bounded sequence.
Hence, the operator (9) is not bijection and

0 ∈σR(F). (11)

For λ 6= 0 we have the operator

(λI −F)x = (λx(1)−d(1)−akx(1) +1,λx(2)−d(2)−akx(2) +1, . . .). (12)

From (λI −F)x = (λI −F)y (x, y ∈ lp), we get

(λx(1)−d(1)−akx(1) +1,λx(2)−d(2)−akx(2) +1, . . .)

= (λy(1)−d(1)−aky(1) +1,λy(2)−d(2)−aky(2) +1, . . .)

λx(s)−d(s)−akx(s) +1=λy(s)−d(s)−aky(s) +1, ∀/s ∈N
⇔ λx(s)−akx(s) =λy(s)−aky(s), ∀/s ∈N.

Now, we need to find is the function

f (x)=λx−akx (13)

injective or not.

(1) Let k > 0. From f (x)= f (y) it follows:

λx−akx =λy−aky ⇒λ(x− y)= akx −aky .

Then, for x 6= y we have λ = akx−aky

x−y > 0. It means for λ > 0 the function f (x) is not injection.
(Because from f (x)= f (y) it does not follow x = y when λ> 0).

We find

(0,+∞)⊂σR(F). (14)

If λ < 0 then from λ(x− y) = akx − aky it does follow x = y, so f (x) is injective and operator
(λI −F) is injective. The superposition operator (λI −F) is generated by the function

f (s,u)=λu−d(s)−aku +1. (15)

We can consider the function (15) as the function of one variable u, where d(s) is a real constant
for fixed s ∈N. The first derivative of the function (15) with the respect of u is

f ′u(s,u)=λ−kaku lna. (16)

For λ < 0 we see that f ′u(s,u) < 0, so f is a strictly decreasing function, also u →±∞⇒
f (s,u) → ∓∞ holds. Hence f is bijective function for every s ∈ N, so the operator λI −F is
bijective for λ< 0.

Now, we have to find out if (λI −F)−1 is a continuous operator for λ< 0.

The function (15) is a bijective, decreasing and continuous function for λ< 0, so there exists
its inverse f −1(s,u) which is also bijective, decreasing and continuous function (for every s ∈N)
([10]). Then, from the Theorem 2 follows that operator (λI −F)−1, generated by f −1(s,u) is a
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continuous operator and thus

(−∞,0)⊂ ρR(F). (17)

From (11), (14) and (17) we have

[0,+∞)=σR(F). (18)

(2) Let k < 0. Now, we have an opposite situation.

f (x)= f (y)⇒λx−akx =λy−aky ⇒λ(x− y)= akx −aky.

For x 6= y we have λ= akx−aky

x−y < 0 (because akx, with k < 0, is a decreasing function). Hence, for
λ< 0 the function f (x) is not injection and

(−∞,0)⊂σR(F). (19)

If λ> 0 then f ′(x)=λ−kax lna > 0, hence f (x) is a strictly increasing function and it is injective,
so the operator (λI −F) is injective.

For λ > 0 we see that the first derivative of the (15) is positive, i.e. f ′u(s,u) > 0, so f is a
strictly increasing function. Further, u → ±∞ ⇒ f (s,u) → ±∞ holds. Hence f is a bijective
function for every s ∈N, so the operator λI −F is bijective for λ> 0.

Now, we have to find out if (λI −F)−1 is a continuous operator for λ> 0.

The function (15) is a bijective, increasing and continuous function for λ> 0, so there exists
its inverse f −1(s,u) which is also bijective, increasing and continuous function(for every s ∈N)
([10]). Then, from the Theorem 2 follows that operator (λI −F)−1, generated by f −1(s,u) is a
continuous operator and thus

(0,+∞)⊂ ρR(F). (20)

From (11), (19) and (20) we have

(−∞,0]=σR(F). (21)

The generating function of our superposition operator F : lp → lp is f (s,u)= d(s)+aku −1
and its first derivative with respect to u is

f ′u(s,u)= kaku lna. (22)

This function (22) is continuous for all s ∈N and at all x0 ∈ lp, so according to the Theorem 3,
the corresponding operator F is Fréchet differentiable at each point x0 ∈ lp . From (3) and (4) we
see that the Fréchet derivative of our operator F at x0 = (x(1), x(2), . . .) along h = (h(1),h(2), . . .)
is a linear multiplication operator given with

F ′(x0)h =
(
kakx(1) lna ·h(1),kakx(2) lna ·h(2),kakx(3) lna ·h(3), . . .

)
. (23)

The multiplier is m = (
kakx(1) lna,kakx(2) lna,kakx(3) lna, . . .

)
and since x ∈ lp ⊂ l∞, we have

m ∈ l∞ = lp/lp. The map x 7→ F ′ (x) is continuous, so the operator F is a continuously
differentiable operator, i.e. F ∈C1 (

lp
)
.
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Theorem 6. Let the superposition operator F : lp → lp, be generated by the function f (s,u) =
d(s)+aku −1, with a > 0 and k ∈ R\{0}, where (d(s))s is a sequence from the space lq (1 ≤ q ≤
p ≤∞). Then the Neuberger spectrum of F is σN(F)= [0,+∞) for k > 0 and σN(F)= (−∞,0] for
k < 0.

Proof. (1) Case k > 0.

From the previous proof of the Theorem 5 we know that the operator λI −F is not bijective for
λ ∈ [0,+∞), so

[0,+∞)⊆σN(F). (24)

For λ ∈ (−∞,0) the operator λI − F is bijective and we need to find out if (λI − F)−1 is a
continuously differentiable operator (for λ< 0). The superposition operator (λI−F) is generated
by the function (15) and its first derivative (with respect to u) is (16). For λ< 0 the function (16)
is a continuous and negative function, so there exists ( f −1)′(u)

( f −1)′(u)= 1
f ′(u)

= 1
λ−kaku lna

. (25)

The function (25) is a continuous function for every s ∈N, λ< 0 and hence the operator (λI−F)−1

is a continuously differentiable operator: (λI −F)−1 ∈C1(lp). That is why

(−∞,0)⊆ ρN(F). (26)

Finally, from (24) and (26) it follows

σN(F)= [0,+∞).

(2) Case k < 0

We have shown within the proof of the Theorem 5 that the operator λI −F is not bijective for
λ ∈ (−∞,0], so

(−∞,0]⊆σN(F). (27)

For λ ∈ (0,+∞) the operator λI − F is bijective and we need to find out if (λI − F)−1 is a
continuously differentiable operator.

For λ> 0 the function (16)(the first derivative of the generating function of operator (λI−F))
is a continuous and positive function, so there exists ( f −1)′(u) (25). The function (25) is a
continuous function for every s ∈N, λ> 0 and hence the operator (λI −F)−1 is a continuously
differentiable operator: (λI −F)−1 ∈C1(lp). That is why

(0,+∞)⊆ ρN(F). (28)

Finally, from (27) and (28) it follows

σN(F)= (−∞,0].

For the superposition operators that we considered in this paper we can conclude:

Their Rhodius and Neuberger spectra are nonempty and unbounded sets and

σR(F)=σN(F)=
{

[0,+∞), if k > 0
(−∞,0], if k < 0.
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If we have the generating function in more general form: f (s,u)= d(s)+φ(u) then we find out
the following result about the spectra of its corresponding superposition operator F .

Proposition 1. Let the superposition operator F : lp → lp, be generated by the function
f (s,u) = d(s)+φ(u), where (d(s))s is a sequence from the space lq (1 ≤ q ≤ p ≤ ∞) and φ is
a continuous function. If the function φ(u) is not a bijection, then the Rhodius and Neuberger
spectra of F contain zero (0 ∈σR(F) and 0 ∈σN(F)).

Proof. The superposition operator F is continuous because φ is a continuous function and we
may consider its Rhodius and Neuberger spectrum.

(a) If φ(u) is not an injective function, then for arbitrary x = (x(1), x(2), . . .) ∈ lp and y =
(y(1), y(2), . . .), from −Fx =−F y we get

(d(1)+φ(x(1)),d(2)+φ(x(2)), . . .)= (d(1)+φ(y(1)),d(2)+φ(y(2)), . . .)

⇒ d(s)+φ(x(s))= d(s)+φ(y(s)),∀s ∈N
⇒ φ(x(s))=φ(y(s)),∀ s ∈N. (29)

Since φ is not an injective function, from (29) it does not follow x(s)= y(s), ∀ s ∈N and it means
that −F is not an injective operator. Hence −F is not a bijective operator and that is why
0 ∈σR(F) and 0 ∈σN(F).

(b) If φ(u) is not a surjective function, then for arbitrary x = (x(1), x(2), . . .) ∈ lp we have
−Fx = (−d(1)−φ(x(1)),−d(2)−φ(x(2)), . . .). The sequence (d(s))s is bounded (because d ∈ lq ⊂ l∞),
so there exists A < ∞ such that ∀ s ∈ N, |d(s)| < A < ∞ and {−d(s) : s ∈ N} ⊂ (−A, A). Since
φ is a continuous and not surjective function, the set {−φ(u) : u ∈ R} has to be bounded at
least from the one side. If it is bounded from above, then (∃ B ∈ R){−φ(u) : u ∈ R} ⊂ (−∞,B).
Now, we get {−d(s)−φ(x(s) : s ∈N}⊂ (−∞,B+ A). If {−φ(u) : u ∈R} is bounded from below, then
(∃C ∈R){−φ(u) : u ∈R}⊂ (C,+∞) and {−d(s)−φ(x(s) : s ∈N}⊂ (C− A,+∞, ). Therefore, we show
that the operator −F is not surjective and because of that, it follows that 0 belongs to these
spectra (0 ∈σR(F) and 0 ∈σN(F)).

3. Conclusion
In this paper we investigate some properties of the Rhodius and Neuberger spectra of the
superposition operator F generated by the function f (s,u)= d(s)+φ(u), where φ is a continuous
function. We find that if the function φ is not bijective, then these spectra contain zero. In
case when φ is an exponential function, i.e. φ(u) = aku −1, a > 1, we find that these spectra
are unbounded above for k > 0 or unbounded below for k < 0. This exponential function is not
surjective, so it is not bijective for any real constant k, and we see that corresponding spectra
contain zero. It means that Proposition 1 is verified on this example. In further work the scope
is to investigate some other properties and find the relations between the generating function of
the superposition operator F and its Rhodius and Neuberger spectra.
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