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Some Varieties of Quasigroups, Loops and

their Parastrophes

P. Plaumann, L. Sabinina, and L. Sbitneva

Abstract. The role of the parastrophes in the theory of quasigroups and loops

is well known. It is our approach to investigate remarkable classes of loops and

quasigroups and to relate them to their parastrophes. Some consequences for code

loops are presented.

1. Introduction

Denote by Ql the variety of all quasigroups which have a left identity element

1l and by QLF
l

its subvariety consisting of all quasigroups Q ∈ Ql satisfying the

identity

(LF) x(yz) = (x y)(e(x)z),

where xe(x) = x for all x ∈Q.

In the variety Ql one has a convenient homomorphism theory, so it is not

necessary to consider the general theory of congruence relations which is inevitable

in the variety of all quasigroups (see [10], [1, Chapter IV.9], [3, p. 55f.]). More

precisely, for Q,R ∈Ql and a homomorphism η : Q→ R one defines the left kernel

by

kerl η= {x ∈Q | η(x) = 1l}.

It follows from [10, Section 3, p. 104] that kerl η is a normal subquasigroup of

Q and that η(Q) is isomorphic to the factor quasigroup Q/kerl η, consisting of the

cosets (kerl η)x , x ∈ Q with the multiplication (kerl η)x · (kerl η)y = (kerl η)(x y).

In our note we make use of the well known fact that in an arbitrary LF -

quasigroup Q the mapping e : Q → Q arising from the identity (LF) is an

endomorphism of Q (see [2, p. 108], [23], [20, Proposition 1.1]). If in addition Q
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belongs to Ql we use the existence of the left kernel kerl e to study the structure

of Q. Note that kerl e coincides with the left nucleus

Nucl(Q) = {u ∈Q | u(x y) = (ux)y for all ∈ Q}.

Having shown in [20, Proposition 1.3] that every LF -quasigroup is isotopic to an

LF -quasigroup with a left identity element our interest is directed mostly to the

variety QLF
l

. By [2, p. 108] every LF -quasigroup is isotopic to an LM -loop (see

also [20, Proposition 1.4]). There are various answers to the question what LF -

quasigroups are isotopic to Moufang loops ([8], [28], [9]). We would like to add

that for a Moufang loop M the (left) parastrophe is isotopic to M .

Our approach gives another way to establish the relation between LF -

quasigroups and Moufang loops. In recent publications (see [6]) one can find the

parastrophe approach applied to Moufang loops in general.

A smooth LF -quasigroup Q is an LF -quasigroup defined on a connected

manifold Q such that the algebraic operations are smooth mappings. Smooth

LF -quasigroups define the transsymmetric spaces, a class of reductive spaces

(see [22], [21, (A.4.3), p. 206]) which contains the Lie groups, the symmetric

spaces (see [16]) and the generalized symmetric spaces (see [27], [15], [13]).

A comprehensive list of references on this theme can be found in [24].

In Section 3 we give examples showing what smooth LF -quasigroups can be

obtained as parastrophes of smooth loops (Theorem 4.5).

In the closing section we describe properties of parastrophes of Code loops.

Similar results hold for Chein loops (see [5]).

2. Parastrophes and isotopisms

Given a quasigroup Q◦ = (Q,◦,\◦,/
◦) we consider on the set Q the multi-

plication defined by

a ∗ b = a\◦b. (2.1)

It is easy to see that in the magma Q(∗) = (Q,∗) all equations

a ∗ x(a, b) = b, y(a, b) ∗ a = b (2.2)

have unique solutions x(a, b) , y(a, b). Defining for a, b ∈ Q operations

a\∗b = x(a, b), b/∗a = y(a, b) (2.3)

one obtains a quasigroup Q∗ = (Q,∗,\∗,/
∗). This quasigroup is called the left

parastrophe of Q◦ and is denoted by P(Q◦) (see [19, p. 43]). In what follows

we will call it briefly a parastrophe. Directly from the definitions one obtains the

Proposition 2.1. For every quasigroup Q◦ the following statements are true:

(i) P(P(Q◦)) =Q◦.

(ii) If Q◦ has a left neutral element 1l , then 1l is a left neutral element in P(Q◦),

too.



Some Varieties of Quasigroups, Loops and their Parastrophes 77

(iii) If Q◦ has a left neutral element and P(Q◦) is commutative, then P(Q◦) is a

loop.

In the usual way one defines the multiplication groups of the quasigroup Q◦.

Define left and right translations of Q◦ as

L◦
a

: Q◦→Q◦, x 7→ a ◦ x , R◦
b

: Q◦→Q◦, x 7→ x ◦ b. (2.4)

Then one obtains the groups of left, right and two sided multiplications of Q◦
as the subgroups of the symmetric group of the set Q generated by the respective

sets of translations:

LMult(Q◦) = 〈La | a ∈Q〉, RMult(Q◦) = 〈R
◦
b
| b ∈ Q〉, (2.5)

Mult(Q◦) = 〈LMult(Q◦),RMult(Q◦)〉. (2.6)

Proposition 2.2. For every quasigroup Q◦ the equality LMult(Q◦) = LMult(P(Q◦))

holds.

Proof. Denoting the multiplication in P(Q◦) by ∗ one has L∗
a
= (L◦

a
)−1. Hence the

permutation group LMult(P(Q◦)) is generated by the mappings (L◦
a
)−1, a ∈Q. �

Proposition 2.3. If Q is a quasigroup satisfying the left Bol identity, then P(Q)

satisfies this identity, too.

Proof. The Bol identity is equivalent to Lx L y Lx = Lc where c = x(y x). Hence the

propositon follows from (Lx L y Lx)
−1 = L−1

x
L−1

y
L−1

x
. �

Proposition 2.4. Let Q◦ be a quasigroup with a left neutral element 1l and let N◦ be

a normal subquasigroup of Q◦. Then

(i) P(N◦) ⊳P(Q◦),

(ii) P(Q◦/N◦)
∼=P(Q◦)/P(N◦).

Proof. Let ϕ be an epimorphism from Q◦ onto some quasigroup X with a left

neutral element 1l . Then the mapping q 7→ ϕ(q) gives us a homomorpism ϕ∗

from the parastrophe Q∗ = P(Q◦) onto P(X ). By construction the quasigroups

Q◦ and Q∗ have the same left neutral element 1l , and the left kernel of ϕ∗ is the

parastrophe of the left kernel of ϕ. Putting X = Q◦/N◦ the assertion follows from

our remark on the left kernels in the introduction. �

Let Q◦ be a quasigroup and let T = ( f , g,h) be a triplet of bijectons on the set

Q. With the definition

a◦T b = h−1( f (a) ◦ g(b)) (2.7)

one obtains a quasigroup Q◦T . This quasigroup is called an isotope of Q◦ and T an

isotopism (see [3, Chapter III]).

One says that a loop Q has the left inverse property if there is a mapping

I : Q→Q such that I(x)(x y) = y for all x , y ∈ Q. Then one has for all a, b ∈Q

a ∗ b = a\◦b = I(a) ◦ b. (2.8)
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Consider the isotopism T (I) = (I , idQ, idQ). Hence we have the following

Proposition 2.5. For a loop Q◦ with the inverse property the quasigroups P(Q◦) and

Q◦T (I) coincide.

Proposition 2.6. A quasigroup Q∗ with left neutral element 1l is a parastrophe

P(Q◦) of a loop Q◦ if and only if x ∗ x = 1l for all x ∈ Q. In this case 1l is

also the neutral element of Q◦.

Proof. Assume that Q∗ =P(Q◦) for some loop Q◦. Then by Proposition 2.1 (ii) for

all x ∈Q one has

x ∗ x = x\◦x = 1Q◦
= 1l . (2.9)

Conversely, if x ∗ x = 1l for all x ∈ Q, then 1l is left neutral element of the

quasigroup P(Q∗), again by Proposition 2.1(ii). Denoting the multiplication in

P(Q∗) by ◦ one obtains

x ◦ 1l = x\∗(x ∗ x) = x (2.10)

for all x ∈Q. Hence 1l is the two-sided neutral element of P(Q∗). �

3. LF -quasigroups

Definition 3.1. For a quasigroup Q∗ the mapping

e∗ : Q→Q, x → x\∗x

is called the deviation of Q∗ [17]. The quasigroup Q∗ is called an LF -quasigroup if

the identity

x ∗ (y ∗ z) = (x ∗ y) ∗ (e∗(x) ∗ z)

holds in Q∗.

Definition 3.2. A quasigroup in which the deviation is an endomorphism will be

called a quasigroup with endomorphic deviation [17]. Note that every loop is a

quasigroup with endomorphic deviation.

The following proposition is well known ([2, p. 108]).

Proposition 3.3. An LF-quasigroup is a quasigroup with endomorphic deviation.

A quasigroup Q∗ is called left square-distributive (see [26]) if the identity

(x ∗ x) ∗ (t ∗ u) = (x ∗ t) ∗ (x ∗ u) (3.1)

holds. One has the following well known result (see [2, p. 67]).

Proposition 3.4. A loop satisfies the left square distributive identity if and only if it

is a commutative Moufang loop.
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The validity of the following theorem was noted in [26]. Later square distributive

quasigroups played a great role as parastrophes of LF -quasigroups in [12] – where

they are called left semimedial – and in [28].

Theorem 3.5. A quasigroup (Q, ·,\,/) is an LF-quasigroup if and only if the

parastrophe P(Q) satisfies the left square distributive identity.

Proof. In order to show that P(Q) satisfies identity (3.1) we denote the multi-

plication in P(Q) by ∗. One has

x(yz) = (x y)(e(x)z), e(x) = x\x (3.2)

and

a\b = a ∗ b. (3.3)

Setting t = x y and w = (x\x)z gives us

y = x\t = x ∗ t, z = (x ∗ x) ∗ w. (3.4)

From (3.2) we obtain

yz = x\((x y)((x\x)z) (3.5)

which implies

(x ∗ t)((x ∗ x) ∗ w) = x ∗ (tw) (3.6)

We substitute u = tw. Then w = t\u= t ∗ u. Inserting this in (3.6) yields

(x ∗ x) ∗ (t ∗ u) = (x ∗ t) ∗ (x ∗ u). (3.7)

Thus we have shown that the quasigroup P(Q) is left square distributive. To prove

the converse it is sufficient to observe that by Proposition 2.1 (i) the quasigroups

P(P(Q)) and Q coincide. �

Using Propostion 2.6, Lemma 3.5 and Proposition 3.4 one immediately obtains

the following

Theorem 3.6. The parastrophe P(Q) of an LF-quasigroups Q is a loop if and only

if P(Q) is a commutative Moufang loop.

Corollary 3.7. The left parastrophe Q∗ = P(Q) of a commutative Moufang loop Q

is an LF-quasigroups with left neutral element 1l such that the identity x ∗ x = 1l

holds. Moreover, in this case the left Bol identity holds in Q∗.

Let G be a group which is not of exponent 2. Since G is an LF -quasigroup, it

follows from Theorem 3.5 that the parastrophe P(G) is a quasigroup, satisying the

left square distributive identity, but P(G) is not a loop by Propositon 2.6. So we

have shown the

Corollary 3.8. There are square distributive quasigroups which are not loops.
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In contrast to this corollary it was shown in [14] that the validity of one of the

Moufang identities in a quasigroup H implies that H is a Moufang loop.

We now use the fact that according to Proposition 3.3 in an LF -quasigroup Q

the deviation e, given by e(x) = x\x is an endomorphism.

Remark 3.9. We would like to emphasize that a quasigroup (not a loop) with the

endomorphic deviation is not necessarily an LF -quasigroup.

This is because that the property of e(x) being an endomorphism in a

quasigroup is equivalent to the fact that x 7→ x2 is the endomorphism in its left

parastrophe. Such a situation happens in a commutative diassociative loop, which

is not necessarily a Moufang loop (see [11]).

We define

Ni(Q) = kerl ei , Ci(Q) = ei(Q).

Furthermore we call

N∞(Q) =

∞⋃

i=1

Ni(Q)

the hypernucleus of Q and

C∞(Q) =

∞⋂

i=1

Ci(Q)

the hyperimage of e.

Proposition 3.10. In an LF -quasigroup Q with a left neutral element 1l the

following statements are true:

(i) C1(Q) ≥ C2(Q) ≥ · · · ≥ Ci(Q) ≥ Ci+1(Q) ≥ · · · ≥ C∞(Q) is a chain of

subquasigroups.

(ii) N1(Q) ≤ N2(Q) ≤ · · · ≤ Ni(Q) ≤ Ni+1(Q) ≤ · · · ≤ N∞(Q) is a chain of normal

subquasigroups of Q.

(iii) Ni+1(Q)/Ni(Q) = Nucl (Q/Ni(Q)).

Proof. Statement (i) and the inclusions in statement (ii) are obvious. The

remainder of the Proposition follows from remarks made in the introduction. �

Remark 3.11. In [20, Corrolary 3.4] we have shown that in a finite LF -quasigroup

Q with the left neutral element 1l one has a Fitting decomposition where N∞(Q) is

normal, Q = N∞(Q)C∞(Q) and N∞(Q)∩ C∞(Q) = 1l .

4. Decompositions of parastrophes of abelian groups, in particular abelian

Lie groups

In this section we describe some peculiarities of parastrophes of connected

abelian Lie groups.



Some Varieties of Quasigroups, Loops and their Parastrophes 81

Example 4.1. In the parastrophe Q = P(Z) one has e(x) = x + x . It follows that

the mapping e is injective but not surjective. One has

Ni(Q) = 0 forall i, C∞(Q) =

∞⋂

i=1

ei(Q) = 0.

The same is true for every torsionfree abelian group which is not divisible by 2.

Example 4.2. We consider the Prüfer group C2∞ which, additively written, is given

by a sequence x1, . . . , x i , x i+1, . . . of generators and the relations 2x1 = 0, 2x i =

x i−1, i > 1. Put µ= (x 7→ 2x) : C2∞ → C2∞ . Then µ is surjective and kerl µ= 〈x1〉+.

By Theorem 3.6 the parastrophe Q∗ =P(C2∞) is an LF -quasigroup. For a subset

S of the set Q we denote by 〈S〉+ the subgroup generated by S in the abelian group

C2∞ . By what we have shown before, in the quasigroup Q∗ the following statements

are hold:

(a) e∗(x) = 2x = x + x .

(b) N1(Q) = kerl e∗ = 〈x1〉+.

(c) e∗(Q) = 2Q =Q.

For the series (Ni)
∞
i=1

and (Ci)
∞
i=1

described in Proposition 3.3 one obtains

(d) Ni(Q) = 〈x i〉+.

(e) N∞(Q) =
⋃∞

i=1
Ni(Q) =Q.

(f) C∞(Q) =Q.

Example 4.3. Example 4.2 shows that for a compact connected abelian Lie groups

T the hypernucleus N∞(P(T )) is a dense countable subquasigroup of P(T ). To see

this it is enough to consider the 1-dimensional torus R/Z. But this group contains

a dense subgroup isomorphic to C2∞ .

Example 4.4. For the additive group R+ and Q∗ =P(R+) one easily sees that the

following statements are true

(a) N1(Q∗) = kerl e∗ = 0, hence N∞(Q∗) = 0.

(b) e∗ is an automorphism of Q∗, hence C∞(Q∗) =Q∗.

The statements under (a) and (b) hold as well for any vector group R
n.

Using the examples above we obtain

Theorem 4.5. Let G be a connected analytic commutative Moufang loop. Then the

following propositions hold

(a) G = (R/Z)m ×R
n is an abelian Lie group.

(b) P(G) =P((R/Z)m)×P(Rn).

(c) The closure of the hypernucleus of P(G) coincides with P((R/Z)m).

(d) e∗ is surjective but for m> 0 it is not an automorphism.

Proof. Proposition (a) follows from [18], [25], while (b) is obvious. The remain-

ing propositions are consequences of the examples in this section. �
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5. Nuclear LF-quasigroups

We call an LF -quasigroup Q with a left neutral element nuclear if its nuclear

series

N1(Q) ≤ N2(Q) ≤ · · · ≤ Ni(Q)≤ Ni+1(Q) ≤ · · · ≤ N∞(Q)

becomes stationary for some index i0 ∈ N. In this case we call the smallest

number ν = ν(Q) ∈ N such that Nν(Q) = Nν+1(Q) the nuclear length of Q. Let

C2n = Z/(2n
Z) be the cyclic group of order 2n. As in Example 4.2 of Section 3 one

sees that the LF -quasigroup P(C2n) is nuclear of length n. It is clear that P(C2n) is

isotopic to C2n In [28, Theorem 2.7, p. 219] V. Shcherbacov has shown that every

nuclear LF -quasigroup is isotopic to group. We give a simple proof of this result.

Theorem 5.1. Let Q be an LF-quasigroup with a left neutral element 1l . Then N∞(Q)

is isotopic to a group.

Proof. To shorten the notation we put Nn = Nn(Q). As mentioned already in the

introduction we know that N1 = kerl e = Nucl (Q) ⊳Q and all Ni+1/Ni are groups.

First we want to show that N2 is isotopic to a group. On Q we consider the

isotopism T = (R−1
1l

, id, id). The multiplication of QT is given by

x ◦ y = (x/1l )y. (5.1)

With the notation A= x ◦ (y ◦ z) and B = (x ◦ y) ◦ z we have to show that A= B

holds for x , y, z ∈ N2.

Choose a, b, c ∈ N2 and put w = b/c. Then

a(wc) = (aw)(e(a)c), (5.2)

hence

a(b/c) = aw = (a(wc))/(e(a)c)

= (a((b/c)c)/(e(a)c) = (ab)/(e(a)c). (5.3)

It follows that

A= x ◦ (y ◦ z) = (x/1l)((y/1l)z) = ((x/1l )(y/1l))((e(x/1l)z)

= ((x/1l)y)/(e(x/1l)1l)((e(x)/e(1l))z). (5.4)

Now use the substitution t = (x/1l)y and observe that e(1l) = 1l , e(x)/1l = e(x)

since N1 is a group with neutral element 1l and e(x) ∈ N1 to obtain

A= (t/e(x))(e(x)z) = t(e(t/e(x))z) = t(e(t)z) (5.5)

because of e(t/e(x)) = e(t)/e2(x), e2(x) = 1l and e(t)/1l = e(t). On the other

hand

B = (x ◦ y) ◦ z = (((x/1l )y)/1l)z = (t/1l)z = (t/1l)(1lz)

= t((e(t)/e(1l))z) = t(e(t)z). (5.6)

Thus the theorem is proved for n= 2.
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In the general case one obtains

A= B = t(e(t)(e2(t)(. . . (en−1(t)z) . . . ) forall t, z ∈ Nn (5.7)

in a similar way as for n= 2 using the following facts:

• The LF -identity,

• e is an endomorphism,

• en(t) = 1l for all t ∈ Nn,

• en−1(t) lies in N1 for all t ∈ Nn,

• N1 is the greatest subgroup of Q ([20, Proposition 2.1]).

Since all Nn are isotopic to groups it follows that N∞ is isotopic to a group too. �

6. Code loops

For an elementary abelian 2-group G the parastrophe P(G) has the remarkable

property that it is equal to G. This property characterizes the elementary abelian

2-groups. A class of loops which found great interest some years ago are the code

loops (see [4], [7]). A code loop is a Moufang loop M of order 2r+1 in which the

comutator subloop is a cyclic group C of order 2 such that M/C is an elementary

abelian 2-group of rank r. If a 2-group is a code loop, it called special 2-group.

Theorem 6.1. For the parastrophe P of a code loop the following statements hold:

(1) P is quasigroup with a left unit element,

(2) The commutator subloop C of P is a cyclic group order 2 and coincides with

the Frattini subquasigroup of P,

(3) P/C is an elementary abelian 2-group,

(4) P satisfies the left Bol condition,

(5) P is not an LF -quasigroup.

Proof. Statement (1) is obtained from Proposition 2.1, (ii), statements (3) and (4)

follow from Proposition 2.4. Statement (3) comes from Proposition 2.3 and (5) is

a consequence of Theorem 3.6. �
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