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1. Introduction

Dirichlet series was introduced by L. Dirichlet in 19th century and it has the form [2,6,7]:

f (s) :=
∞∑

n=1
an eλns, (1.1)

where {an} ∈C, 0<λn ↑ +∞ and s =σ+ it (σ, t are real variables). It is well known that Dirichlet

series are the generalization of Taylor series, because (1.1) can be Taylor series, provided es = z
and λn = n. In this paper, we do not require λn must be integers.

We will study in this paper, some classes of Dirichlet series while binding with the arithmetic

functions. Then to give some arithmetic applications.

Indeed, the theory of the Dirichlet series and its generalizations represent an important

part in the old and recent mathematical developments. It played a fundamental role for the

interest of the prime number theory and arithmetic functions.

http://doi.org/10.26713/cma.v13i3.1449
https://orcid.org/0000-0002-5043-1971


1222 About Dirichlet Series and Applications: N. Daili

2. Definition

Definition 2.1. Let f :N∗ →C be an arithmetic function.

We call a Dirichlet series a formal series D = D( f ; s) of the form

D = D( f ; s) := ∑
n≥1

f (n)
ns , s ∈C.

Generally, a Dirichlet series is a formal series D = D(an; s) of the form

D = D(an; s) := ∑
n≥1

an
1
ns ,

with coefficients an ∈C and variable s in some region of C, or C.

Remark 2.1. We have

(a) the most famous Dirichlet series is ζ(s) := ∑
n≥1

1
ns ;

(b) Dirichlet series and power series are very much related through the theory of general

Dirichlet series, of which both are particular cases (see ([2,4,5]).

3. Abscissas of Convergence

Theorem 3.1 (Fundamental). Let D be a Dirichlet series

D = D( f ; s) := ∑
n≥1

f (n)
ns , s ∈C.

(a) There exists a λ ∈ [−∞,+∞] called abscissa of convergence of the series D( f ; s) such that

• if ℜe(s)>λ, the series converges;

• if ℜe(s)<λ, the series diverges;

• if λ=−∞, the series always converges;

• if λ=+∞, the series always diverges.

Figure 1

Let us be in the case where λ is finite (λ<+∞).
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If λ∗ is such that λ < λ∗ < +∞, then the series is uniformly convergent in any closed disc
contained in the closed half-plane ℜe(s)≥λ∗.

The sum of the series D( f ; s) thus represents a holomorphic function in any disc of this type thus
in any open half-plane ℜe(s)>λ.

Figure 2

(b) There exists a number ℓ ∈ [−∞,+∞] called abscissa of absolute convergence of the series such
that

• if ℜe(s)> ℓ, the series is absolutely convergent;

• if ℜe(s)< ℓ, the series is not absolutely convergent.

Naturally, one has λ≤ ℓ.

Remark 3.1. It was seen that λ≤ ℓ, in made:

• if λ=−∞, then ℓ=−∞;

• if λ=+∞, then ℓ=+∞;

• if λ ∈ ]−∞,+∞[, then ℓ ∈ ]−∞,+∞[ and ℓ−λ≤ 1.

Proof. See ([4]).

Example 3.1. The series
∑

n≥1

n!
ns does not converge no share for any s, then λ=+∞.

Example 3.2. The series
∑

n≥1

1
n! ns converges everywhere for any s, then λ=−∞.

Example 3.3. The series
∑

n≥1

1
ns converges for all s such that ℜe(s)> 1; it diverges for all s such

that ℜe(s)< 1.

The sum of this series thus represents in the half-plane ℜe(s)> 1 a holomorphic function, this

function is called ζ(s).
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Example 3.4. The series
∑

n≥1

nα−1

ns , α ∈R, converges and λ=α.

Remark 3.2. A Dirichlet series does not admit necessarily a singularity on the line of

convergence.

Figure 3

4. Main Theorems

Theorem 4.1 (Term by term differentiation). Let
∑

n≥1

f (n)
ns , s ∈C, be a Dirichlet series of abscissa

of convergence λ<+∞.

(a) The formal series
∑

n≥1
− f (n) logn

ns obtained by derivation term by term is again a Dirichlet

series which has even the same abscissa of convergence that the initial series.

(b) Moreover, in the half-plane of convergence ℜe(s)>λ, its sum represents the derivative of
the sum of the initial series.

We thus have the following theorem:

Theorem 4.2. In the half-plane ℜe(s)>λ of convergence, a Dirichlet series can be derived term
by term.

Proof. See ([4]).

For the proof of the uniqueness theorem, we need the following lemma:

Lemma 4.1. Let f :N∗ → C be an arithmetic function, λ be the abscissa of convergence of its
Dirichlet series and ℓ be its abscissa of absolute convergence. Let us suppose λ<+∞. Let us put

f̂ (s) := ∑
n≥1

f (n)
ns , for ℜe(s)>λ.

If for all real s >λ one has f̂ (s)= 0, then for all n ≥ 1, f (n)= 0.

Communications in Mathematics and Applications, Vol. 13, No. 3, pp. 1221–1235, 2022



About Dirichlet Series and Applications: N. Daili 1225

Proof. See ([4]).

Theorem 4.3 (Uniqueness Theorem). Let f and g :N∗ →C be two arithmetical functions. Let
λ( f ) and λ(g) theirs abscissas of convergence which are <+∞. Let us put

f̂ (s) := ∑
n≥1

f (n)
ns and ĝ(s) := ∑

n≥1

g(n)
ns .

If for all real s >max(λ( f ),λ(g)), one has f̂ (s)= ĝ(s) (namely, D( f ; s)= D(g; s)), then f (n)= g(n)

for all n ≥ 1.

Proof. See ([3]).

Corollary 4.1. Let D( f ; s)= ∑
n≥1

f (n)
ns be a Dirichlet series with abscissa of absolute convergence

σac . Suppose that for some s with ℜe(s)>σac we have D( f ; s)= 0. Then there exists a half-plane
in which D( f ; s) is absolutely convergent and never zero.

Proof. By the absurdity, let us suppose that if is not, we have an infinite sequence {sk} of

complex numbers, with real parts tending to infinity, such that D( f ; sk) = 0 for all k. By the

Uniqueness Theorem this implies that f (n)= 0 for all n and thus D( f ; s) is identically zero in

its half-plane of absolute convergence, contrary to our assumption.

5. Dirichlet Algebra A and Convolution Product

5.1 Dirichlet Algebra

Let us indicate by A the set of arithmetical functions f :N∗ →C.

We have the following proposition:

Proposition 5.1. A is a vector space, where the addition and the multiplication by a scalar are
defined as follows:

• Let f , g be two elements of A, then f + g is an element of A defined by

( f + g)(n)= f (n)+ g(n), ∀ n ∈N∗;

• Let f be an element of A, α be an element of C, then α f is the element of A defined by

(α f )(n)=α f (n), ∀ n ∈N∗.

5.2 Convolution Product

Definition 5.1 (Convolution Product). Let f and g be two elements of A. We call convolution

product or Dirichlet product of f by g and we note it f ∗ g, the element F = f ∗ g of A defined

as follows:

F(n) := ( f ∗ g)(n)= ∑
k|n

f (k)g
(n

k

)
= ∑

kd=n
f (k)g(d),
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where the last sum is extended to all the couples (k,d) of strictly positive integers such that

kd = n.

Remark 5.1. If g = 1, one obtains the Möbius transform.

It results the following properties in the form of propositions:

Proposition 5.2. The operation ∗ is an internal law of composition on A, which is associative

and commutative.

Proof. • Associativity of ∗:
Associativeness results owing to the fact that each of these expressions

( f ∗ g)∗h and f ∗ (g∗h)

has as a value,

( f ∗ g∗h)(n)= ∑
k1k2k3=n

f (k1)g(k2)h(k3).

• Commutativity of ∗:
A commutativity results owing to the fact that if k runs the set of divisors of n, it is the same

of n
k .

Proposition 5.3 (Identity element). The law ∗ admits an identity element and only one, it is
the element u of A defined by

u(n)=
{

1, if n = 1,
0, if n > 1.

For all element f ∈A, one has then

u∗ f = f ∗u = f .

Proposition 5.4 (Inverse element). An element f of A is invertible for the law ∗ if there exists
an element g of A such that

f ∗ g = g∗ f = u

(it is said, also, that f is then a “unit” or a divisor of the identity element u).

Proposition 5.5. Let f be an element of A. Then, the two following properties are equivalent:

(p1): f is invertible;

(p2): f (1) ̸= 0.

Proof. (p1)→ (p2) :

Let us suppose f invertible, hence there exists g ∈A such that f ∗ g = u. Then

( f ∗ g)(1)= u(1)= 1⇐⇒ f (1)g(1)= 1,
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what implies f (1) ̸= 0.

(p2)→ (p1) :

Let us suppose that f (1) ̸= 0, show that f is invertible, i.e, it exists an g ∈A such that

f ∗ g = u.

Indeed, looking at g as an unknown function, the relation

( f ∗ g)(n)= u(n), n ≥ 1

makes it possible to determine by recurrence the numbers: g(1), g(2), . . .{
( f ∗ g)(1)= u(1)= 1, if n = 1,
( f ∗ g)(n)= u(n)= 0, if n > 1.

Namely, f (1)g(1)= 1
f (1)g(n)+ ∑

k|n, k ̸=n
f (k)g( n

k )= 0, for n > 1,

impliesg(1)= 1
f (1)

g(n)=− 1
f (1)

∑
k|n, k ̸=n

f (k)g( n
k ), for n > 1.

Theorem 5.1. The set A provided with the three following laws:

• Addition:( f + g)(n)= f (n)+ g(n), ∀ n ∈N∗, ∀ f , g ∈A.

• Multiplication by a scalar:(λ f )(n)=λ f (n), for λ scalar, f ∈A and n ∈N∗.

• Multiplication Dirichlet product:( f ∗ g)(n), f , g ∈A and n ∈N∗, is a commutative algebra

with identity element, and this algebra is called Dirichlet Algebra.

Proof. Immediate checking of the three operations.

6. Norm on A and Ultrametric Norm on A

6.1 Norm on A

Definition 6.1. Let f :N∗ →C be an arithmetical function.

(a) We call order of f the number 〈 f 〉 ∈ [0,+∞] defined by

〈 f 〉 :=
{

inf{n : f (n) ̸= 0}, if f ̸= 0,
+∞, if f = 0.

(b) We call norm of f the number ∥ f ∥ ∈ [0,+∞] defined by

∥ f ∥ := 1
〈 f 〉

and naturally one puts 1
∞ = 0.
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6.2 Space A as Ultrametric Space Applications

Theorem 6.1. We have the following properties:

(p1): ∥ f ∥ ≥ 0;

(p2): ∥ f ∥ = 0⇐⇒ f = 0;

(p3): ∥ f + g∥ ≤ sup(∥ f ∥,∥g∥);

(p4): ∥ f ∗ g∥ = ∥ f ∥ ·∥g∥.

Proof. We have

(p3): Let us show that ∥ f + g∥ ≤ sup(∥ f ∥,∥g∥).

Let us put

k0 = 〈 f 〉, ℓ0 = 〈g〉, n0 = 〈 f + g〉.
It is enough to show that

〈 f + g〉 ≥ inf(〈 f 〉,〈g〉).
Let us reason by the absurdity, i.e., let us suppose that

〈 f + g〉 < inf(〈 f 〉,〈g〉) is equivalent to n0 <
∣∣∣k0

ℓ0
.

Then one will have

0 ̸= ( f + g)(n0)= f (n0)+ g(n0)= 0,

(because f (n0)= 0, g(n0)= 0), from where a contradiction and one has the inequality.

(p4) : Let us show that ∥ f ∗ g∥ = ∥ f ∥ ·∥g∥
Let us put

k0 = 〈 f 〉, ℓ0 = 〈g〉, n0 = 〈 f ∗ g〉.
(a) Let us show that we have 〈 f ∗ g〉 ≥ 〈 f 〉〈g〉
By the absurdity, let us suppose that this does not take place, i.e.,

〈 f ∗ g〉 < 〈 f 〉〈g〉 is equivalent to n0 < k0ℓ0.

Then one has

0 ̸= ( f ∗ g)(n0)= ∑
kℓ=n0

f (k)g(ℓ)= 0

(n0 the small value where ∗ of f and g is not cancelled) (had with the fact that k | n0, ℓ= n0
k so

that n0
ℓ0

< k0) what is contradictory.

(b) It is wanted that 〈 f ∗ g〉 ≤ 〈 f 〉〈g〉
Indeed, one has

( f ∗ g)(k0ℓ0)= ∑
kℓ=k0ℓ0

f (k)g(ℓ)= f (k0)g(ℓ0) ̸= 0,
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from where, k0ℓ0 ≥ n0.

(c) The parts (a) and (b) above imply

〈 f ∗ g〉 = 〈 f 〉〈g〉.

Remark 6.1. It holds from (p2) and (p4) that if f ̸= 0, g ̸= 0, then f ∗ g ̸= 0.

Definition 6.2. The ultrametric norm ∥ ·∥ on algebra A makes it possible to define a metric on

A, noted

ρ( f , g) := ∥ f − g∥, f , g ∈A.

Proposition 6.1. The Dirichlet algebra A is complete for the metric ρ.

Proof. See ([3]).

Proposition 6.2. Let ( fn) be a sequence of elements of A. If ∥ fn∥→ 0, as (n →+∞), then
∑

n≥1
fn

converges compared to ρ.

Proof. Let us suppose that ∥ fn∥→ 0, for all ε> 0, it exists N(ε)> 0, such that for all n ≥ N , then

∥ fn∥ < ε.

Let us put

Sn =
n∑

k=1
fk.

One has for all N , for all k > 0,

∥SN+k −SN∥ = ∥ fN+1 + . . .+ fN+k∥
≤ sup(∥ fN+1∥, . . . ,∥ fN+k∥)

ulta.≤
norm

ε .

(This inequality is not true with the ordinary norms). From where (Sn) is of Cauchy, as space A

is complete then (Sn) has a limit.

Example 6.1. One has∑
k|n
µ(k)= u(n)=

{
1, if n = 1,
0, if n > 1.

By introducing the arithmetic function “1” (the mapping (N∗ → 1)), one seen that,

1∗µ=µ∗1= u .

The arithmetic functions 1 and µ are inverse one of the other for the law ∗ in the Dirichlet

algebra.

As application we have the following proposition:
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Proposition 6.3 (Möbius reciprocity formula). Let f :N∗ →C be such that

F(n)= ∑
k|n

f (k) .

The Möbius transform of f can be written

F = 1∗ f (6.1)

and

f =µ∗F . (6.2)

Proof. To show the expression (6.2) let us multiply the expression (6.1) on the left by µ inverse

of 1 then

µ∗F =µ∗1∗ f = u∗ f = f ,

from where

f =µ∗F

and reciprocally from of deduced the expression (6.1) starting from the expression (6.2) while

multiplying on the left by 1.

It results the Möbius reciprocity formulas:{
F = 1∗ f ,
f =µ∗F

⇐⇒


F(n)= ∑

k|n
f (k),

f (n)= ∑
k|n
µ(k)F

(n
k
)
.

7. Dirichlet Transform

Let f :N∗ →C be an arithmetical function. Associate to this last a Dirichlet series∑
n≥1

f (n)
ns , s ∈C

whose we will denote the abscissa of convergence λ( f ) and the abscissa of absolute convergence

ℓ( f ).

Introduce then A a class of arithmetical functions such that λ( f ) < +∞. So for f ∈A, a

Dirichlet series∑
n≥1

f (n)
ns , s ∈C

is convergent for ℜe(s) > λ( f ), and divergent for ℜe(s) > λ( f ). It represents a holomorphic

function of a complex variable s in the a half-plane ℜe(s) > λ( f ) like that A equipped with

addition process, multiplication by a scalar and convolution product ∗, (A, +, multiplication
by a scalar, ∗) is an algebra of arithmetical functions and which is a sub-algebra of Dirichlet’s

algebra.
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Next we introduce a class denoted C of functions of complex variable s, defined on a half-

plane ℜe(s)> a where a ∈ [−∞,+∞].

C equipped with operations +, multiplication by a scalar, ordinary product, (C, +,

multiplication by a scalar, ·) is an algebra called functions algebra.

Definition 7.1 (Dirichlet Transform). We call Dirichlet transform a mapping ∧ :A→C which

to an element f ∈A associates a function f̂ ∈C defined by

f̂ (s) := ∑
n≥1

f (n)
ns , ℜe(s)>λ( f ).

The function f̂ ∈C is said Dirichlet transform of f .

We have the following property:

Proposition 7.1. A mapping ∧ is injective if, and only if, f and g ∈A and if f̂ = ĝ then f = g.

Proof. The proof is a consequence of uniqueness theorem of Dirichlet series (see ([4,

Theorem 3.3])).

8. Dirichlet Transform as a Homomorphism of Algebra

We have

Theorem 8.1. The Dirichlet transform of convolution product of two elements of A is equal to
the ordinary product of Dirichlet transform of these two elements. More precisely, let f , g ∈A, let
us put h = f ∗ g, then we have

(a) ℓ(h)≤max{ℓ( f ),ℓ(g)}<+∞, hence h ∈A;

(b) ĥ(s)= f̂ (s) ĝ(s), for ℜe(s)>max{ℓ( f ),ℓ(g)}.

In short cut, one has�f ∗ g = f̂ · ĝ .

Proof. Formally, we have (one does not deal with question of convergence)

f̂ (s) · ĝ(s)=
(∑

k≥1

f (k)
ks

)( ∑
m≥1

g(m)
ms

)
= ∑

k,m≥1

f (k)g(m)
(k m)s .

Hence looking terms of same denominator, namely, in fact summing at km constant, we have

f̂ (s) · ĝ(s)= ∑
n≥1

1
ns

( ∑
km=n

f (k)g(m)

)
= ∑

n≥1

h(n)
ns = ĥ(s).
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Figure 4

If everyone of series is convergent (absolutely convergent), namely, h < +∞, hence the

theorem results.

Theorem 8.2. The Dirichlet transform ∧ :A→C is an homomorphism of algebra from algebra
(A, +, multiplication by a scalar, ∗) into algebra (C, +, multiplication by a scalar, ·). One has

(a) �f + g = f̂ + ĝ;

(b) α̂ f =α f̂ , α ∈N;

(c) �f ∗ g = f̂ · ĝ.

9. Dirichlet Transform of Möbius Transform

We have

Theorem 9.1. Let f ∈A and F be its Möbius transform F = 1∗ f . Then

F̂(s)= ζ(s) · f̂ (s), ℜe(s)>max{ℓ( f ),1}. (9.1)

Proof. Apply Theorem 8.1, then we have

1̂(s)= ∑
n≥1

1
ns = ζ(s), ℓ(1)= 1

and

F̂ = 1̂ · f̂ .

10. Probabilistic Interpretation

Interpret the expression (9.1) above in probabilistic meaning.

Let us suppose s real >max{ℓ( f ),1}, we have
1
ζ(s)

F(s)= f̂ (s),
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namely
1
ζ(s)

∑
n≥1

F(n)
ns = f̂ (s)

and the mathematical expectation Es(F) of F is

Es(F)= f̂ (s).

For the remainder of interpretation (see [1]).

11. Comments

(a) Let us take again Theorem 3.1, then one has the following comments:

(c1) Let us consider the case −∞<λ< ℓ<+∞.

Figure 5

To the half-plane of divergence ℜe(s)> 1 succeeds the band of semi-convergence λ<ℜe(s)< ℓ
whose width is with most equal to 1 and it even followed by the band of absolute convergence

ℜe(s)> 1.

(c2) The width ℓ−λ of the band of semi-convergence can take any value understood in the

interval [0,1].

(1) If f is with positive values and if λ is finite then ℓ=λ, namely, ℓ−λ= 0.

(2) Let us consider∑
n≥1

(−1)n−1

ns .
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(a)
This series converges for any s real strictly positive (alternate series)

In addition, the series diverges for any s real< 0.

}
→λ= 0;

(b)
This series is absolutely convergent for any s real > 1.

It is not absolutely convergent for s real < 1.

}
→ ℓ= 1.

The band of semi-convergence is of width 1 (thus is maximum here), ℓ−λ= 1.

(c3) λ (and ℓ) can take any value ∈ [−∞,+∞].

(c4) The (fundamental) Theorem 3.1 does not affirm anything on the behavior series on the line

of convergence ℜe(s)=λ.
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