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1. Introduction
Fractional calculus whose origin dates back to seventeenth century has gained much momentum
during the past three decades among mathematicians and researchers as fractional derivatives
have greater ability to consider hereditary and memory properties of various processes and
materials in relation to integer order derivatives. Derivatives of fractional order, with their non-
local property can be applied both in technical and applied sciences. Mathematical modelling
has entered an exciting phase primarily due to fractional calculus which is effective in modelling
various phenomena often arising in physics, engineering, biology and scientific fields namely
synchronization of chaotic systems [19, 36], anomalous diffusion [33], models to analyse the
spread and control of diseases [10,30,31], models to study the interaction of species in ecology
[27], control theory [17], non-linear oscillation of earthquake [29], blood flow problems [34], etc.
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Fractional difference equations (FDEs) with fractional order difference and sum operators
as primary notions are the discrete counter part of fractional differential equations. Ever
since, Kuttner [25] mentioned the fractional order differences in 1956, the theory of difference
equations of fractional order has systematically evolved over the years (see [14–16, 23, 26])
and the references therein. The investigation of the qualitative properties of these equations
has hit bull’s eye recently with scores of publications analyzing the behavior of their solutions
(see [7–9,18,22]). The research on FDEs extends from the theoretical features of uniqueness
and existence of solutions to the analytical and numerical procedures of obtaining solutions.
Nevertheless, the area of boundary value problems (BVPs) for nonlinear FDEs is open to be
explored. The area of interest for researchers in BVP is the existence and uniqueness of solutions.
By employing different fixed-point theorems, many interesting results have been developed for
the existence of solution to boundary value problems for FDEs (see [3,6,24,28,32]).

In recent times, researchers have focused their attention on BVPs with anti-periodic
boundary conditions which makes up a significant category of BVP. The anti-periodic boundary
conditions are quite common in mathematical models of various physical processes namely anti-
periodic trigonometric polynomials in the study of interpolation problems, anti-periodic wavelets,
ordinary, abstract, partial, and impulsive differential equations and difference equations (see
[1,4,5,14]).

In [35], Wang considered an anti-periodic fractional BVP with the Caputo fractional
derivative of order δ ∈ (1,2]. The study was carried on with the aid of fixed point theorem
due to Schauder and contraction mapping principle.

In [11], Cernea investigated an anti-periodic fractional BVP with the Caputo fractional
derivative of order δ ∈ (2,3]. New results were obtained by applying suitable fixed point
theorems.

Motivated by [11,20,35], existence and uniqueness criteria are established for the discrete
fractional BVP given below

C∆δx(`)=Ψ (`+δ−1, x(`+δ−1)) , ` ∈ [0, e+3]N0 ,
x(δ−4)=−x(δ+ e), ∆x(δ−4)=−∆x(δ+ e),
∆2x(δ−4)=−∆2x(δ+ e), ∆3x(δ−4)=−∆3x(δ+ e),

(1.1)

where Ψ : [δ−3,δ+ e]Nδ−3 ×R→ R is a function which is continuous and C∆δ is the Caputo
fractional difference operator of order 3< δ≤ 4.

2. Preliminaries
The subsequent definitions, notations and properties of fractional order sum and difference
operators are essential to prove the main results.

The falling factorial for any `≥ 0 is

r(`) = Γ(r+1)
Γ(r+1−`)

. (2.1)

Definition 2.1 (See [13,21]). The δth fractional sum of a function Ψ is defined by

∆−δΨ(`)= 1
Γ(δ)

`−δ∑
r=a

(`− r−1)(δ−1)Ψ(r), (2.2)

for ` ∈ {a+δ,a+δ+1, · · · } :=Na+δ.
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Definition 2.2 (Ssee [13,20]). Let δ> 0 and n−1< δ≤ n. Set σ= n−δ. The δth Caputo fractional
difference operator is defined as

C∆δΦ(`)=∆−σ (
∆nΦ(`)

)= 1
Γ(σ)

`−σ∑
r=a

(`− r−1)(σ−1)∆nΦ(r), (2.3)

for ` ∈Na+σ, where n = dδe, d.e ceiling of number.

Lemma 2.3 ([13,20]). Suppose that δ> 0 and Φ is defined on Na. Then

∆−δ C∆δΦ(`)=Φ(`)−
n−1∑
j=0

(`−a)( j)

j!
∆ jΦ(a)

=Φ(`)+C0 +C1`+·· ·+Cn−1`
(n−1), (2.4)

for all Ci ∈R, where 0≤ i ≤ n−1.

Lemma 2.4. Let δ> 0. Then the following identities hold [20].

(1)
`−δ∑
r=0

(`− r−1)(δ−1) = 1
δ

Γ(`+1)
Γ(`−δ+1)

.

(2)
e∑

r=0
(δ+ e− r−1)(δ−1) = 1

δ

Γ(δ+ e+1)
Γ(e+1)

.

(3)
e+1∑
r=0

(δ+ e− r−1)(δ−2) = 1
(δ−1)

Γ(δ+ e+1)
Γ(e+2)

.

(4)
e+2∑
r=0

(δ+ e− r−1)(δ−3) = 1
(δ−2)

Γ(δ+ e+1)
Γ(e+3)

.

(5)
e+3∑
r=0

(δ+ e− r−1)(δ−4) = 1
(δ−3)

Γ(δ+ e+1)
Γ(e+4)

.

3. Existence and Uniqueness of Solutions
The criteria for the existence and uniqueness of solutions of a discrete fractional anti-periodic
boundary value problem (FABVP) (1.1) is established in this section, with the condition that
the solution exists.

Theorem 3.1. Let Ψ : [δ−3,δ+ e]Nδ−3 →R and 3< δ≤ 4 be given. A function x(`) is a solution of
the discrete FABVP of the form

C∆δx(`)=Ψ (`+δ−1) , ` ∈ [0, e+3]N0 ,
x(δ−4)=−x(δ+ e), ∆x(δ−4)=−∆x(δ+ e),
∆2x(δ−4)=−∆2x(δ+ e), ∆3x(δ−4)=−∆3x(δ+ e),

(3.1)

if and only if x(`), for ` ∈ [δ−4,δ+ e]Nδ−4 has the form

x(`)= 1
Γ(δ)

`−δ∑
r=0

(`− r−1)(δ−1)Ψ (r+δ−1)− 1
2Γ(δ)

e∑
r=0

(δ+ e− r−1)(δ−1)Ψ (r+δ−1)

+ P(`)
4Γ(δ−1)

e+1∑
r=0

(δ+e−r−1)(δ−2)Ψ (r+δ−1)− Q(`)
8Γ(δ−2)

e+2∑
r=0

(δ+e−r−1)(δ−3)Ψ (r+δ−1)

− R(`)
48Γ(δ−3)

e+3∑
r=0

(δ+ e− r−1)(δ−4)Ψ (r+δ−1) , (3.2)
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where
P(`)= 2(δ−`)+ e−4,

Q(`)= [
2(δ2 +`2)+δ(2e−6−4`)− e(2`+7)+ (6`−4)

]
,

R(`)= δ2[12(1+`)−6e]+δ[12e(`+3)−12`(`+2)+40]

− e[6`2 +4(1+9`)]+ e2(e+12)+4(`3 −δ3)+`(12`−40)−48.

(3.3)

Proof. Suppose that x(`) defined on [δ−4,δ+ e]Nδ−4 is a solution of (3.1). In line with Lemma
2.3, a general solution for (3.1) is as given below

x(`)=∆−δΨ(`+δ−1)−C0 −C1`−C2`
(2) −C3`

(3), ` ∈ [δ−4,δ+ e]Nδ−4

where Ci ∈R for 0≤ i ≤ 3. Then by Definition 2.1, we obtain

x(`)= 1
Γ(δ)

`−δ∑
r=0

(`− r−1)(δ−1)Ψ (r+δ−1)−C0 −C1`−C2`
(2) −C3`

(3). (3.4)

Now taking ∆, ∆2 and ∆3 operator on either sides of (3.4), leads to

∆x(`)= 1
Γ(δ−1)

`−δ+1∑
r=0

(`− r−1)(δ−2)Ψ (r+δ−1)−C1 −2C2`−3C3`(`−1),

∆2x(`)= 1
Γ(δ−2)

`−δ+2∑
r=0

(`− r−1)(δ−3)Ψ (r+δ−1)−2C2 −6C3`,

∆3x(`)= 1
Γ(δ−3)

`−δ+3∑
r=0

(`− r−1)(δ−4)Ψ (r+δ−1)−6C3.

The values of Ci for 0 ≤ i ≤ 3 are obtained by considering the boundary conditions as
given in (1.1). So in view of boundary conditions x(δ−4) = −x(δ+ e), ∆x(δ−4) = −∆x(δ+ e),
∆2x(δ−4)=−∆2x(δ+ e) and ∆3x(δ−4)=−∆3x(δ+ e), we obtain

C0 = 1
2Γ(δ)

e∑
r=0

(δ+ e− r−1)(δ−1)Ψ(r+δ−1)− U
4Γ(δ−1)

e+1∑
r=0

(δ+ e− r−1)(δ−2)Ψ (r+δ−1)

+ V
8Γ(δ−2)

e+2∑
r=0

(δ+ e− r−1)(δ−3)Ψ (r+δ−1)+ W
48Γ(δ−3)

e+3∑
r=0

(δ+ e− r−1)(δ−4)Ψ (r+δ−1) ,

C1 = 1
2Γ(δ−1)

e+1∑
r=0

(δ+ e− r−1)(δ−2)Ψ (r+δ−1)− [2δ−4+ e]
4Γ(δ−2)

e+2∑
r=0

(δ+ e− r−1)(δ−3)Ψ (r+δ−1)

− [2δ(3− e−δ)+7e+4]
8Γ(δ−3)

e+3∑
r=0

(δ+ e− r−1)(δ−4)Ψ (r+δ−1) ,

C2 = 1
4Γ(δ−2)

e+2∑
r=0

(δ+ e− r−1)(δ−3)Ψ (r+δ−1)− [2δ−4+ e]
8Γ(δ−3)

e+3∑
r=0

(δ+ e− r−1)(δ−4)Ψ (r+δ−1) ,

C3 = 1
12Γ(δ−3)

e+3∑
r=0

(δ+ e− r−1)(δ−4)Ψ (r+δ−1) ,

where U = [2δ+ e−4],V = [2δ(δ+ e−3)− (7e+4)] and W = [6δ2(2− e)+4δ(10+9e)−4δ3 + e(e2 +
12e−4)−48]. Now considering Ci for 0≤ i ≤ 3 in x(`) brings us to,

x(`)= 1
Γ(δ)

`−δ∑
r=0

(`− r−1)(δ−1)Ψ (r+δ−1)− 1
2Γ(δ)

e∑
r=0

(δ+ e− r−1)(δ−1)Ψ (r+δ−1)
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+ P(`)
4Γ(δ−1)

e+1∑
r=0

(δ+ e− r−1)(δ−2)Ψ (r+δ−1)− Q(`)
8Γ(δ−2)

e+2∑
r=0

(δ+ e− r−1)(δ−3)Ψ (r+δ−1)

− R(`)
48Γ(δ−3)

e+3∑
r=0

(δ+ e− r−1)(δ−4)Ψ (r+δ−1) ,

where P(`), Q(`) and R(`) are defined in (3.3). Conversely, if (3.2) is a solution, it is clear that
the solution satisfies the discrete FABVP (3.1). The proof is completed. Let E be the set of all real
sequences x = {x(`)}δ+e

`=δ−4 with norm ‖x‖ = sup |x(`)| for ` ∈ [δ−4,δ+ e]Nδ−4 . Then E is a Banach
space.

Now we define the following operator,

(Tx)(`)= 1
Γ(δ)

`−δ∑
r=0

(`− r−1)(δ−1)Ψ(r+δ−1, x(r+δ−1))

− 1
2Γ(δ)

e∑
r=0

(δ+ e− r−1)(δ−1)Ψ(r+δ−1, x(r+δ−1))

+ P(`)
4Γ(δ−1)

e+1∑
r=0

(δ+ e− r−1)(δ−2)Ψ(r+δ−1, x(r+δ−1))

− Q(`)
8Γ(δ−2)

e+2∑
r=0

(δ+ e− r−1)(δ−3)Ψ(r+δ−1, x(r+δ−1))

− R(`)
48Γ(δ−3)

e+3∑
r=0

(δ+ e− r−1)(δ−4)Ψ(r+δ−1, x(r+δ−1)), (3.5)

for ` ∈ [δ−4,δ+ e]Nδ−4 . Obviously, x(`) is a solution of (1.1) if it is a fixed point of the operator T .
We consider the following hypotheses:

(H1) There exists a constant Ω> 0 such that |Ψ(`, x)−Ψ(`, y)| ≤Ω |x− y| for each ` ∈ [δ−4,δ+
e]Nδ−4 and all x, y ∈ E.

(H2) There exists a bounded function Φ : [δ−4,δ+ e]Nδ−4 → R such that |Ψ(`, x)| ≤Φ(`) |x| for
all x ∈ E.

(H3) For a non decreasing function ϕ ∈ [δ−4,δ+ e]Nδ−4 →R, there exists a constant λ> 0 such
that

ε

Γ(δ)

`−δ∑
r=0

(`− r−1)δ−1ϕ(r+δ−1)≤λεϕ(`+δ−1), ` ∈ [0, e+3]N0 .

Theorem 3.2. If the hypothesis (H1) holds, then the discrete FABVP (1.1) has a unique solution
in E provided that

Ωβ
Γ(δ+ e+1)

2Γ(δ−2)Γ(e+1)
< 1, (3.6)

where β=
[

3
δ(3) +

e+4
2(δ−1)(2)(e+1)

+ e+4
4(δ−2)(e+1)(e+2)

+ ξ

24(e+1)(e+2)(e+3)

]
such that ξ= e

(
e2 +12e+44

)+48.
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Proof. Let x, y ∈ E; then for each ` ∈ [δ−4,δ+ e]Nδ−4 , we have

|(Tx)(`)− (T y)(`)|

≤ 1
Γ(δ)

`−δ∑
r=0

(`− r−1)(δ−1) |Ψ(r+δ−1, x(r+δ−1))−Ψ(r+δ−1, y(r+δ−1))|

+ 1
2Γ(δ)

e∑
r=0

(δ+ e− r−1)(δ−1) |Ψ(r+δ−1, x(r+δ−1))−Ψ(r+δ−1, y(r+δ−1))|

+ |P(`)|
4Γ(δ−1)

e+1∑
r=0

(δ+ e− r−1)(δ−2) |Ψ(r+δ−1, x(r+δ−1))−Ψ(r+δ−1, y(r+δ−1))|

+ |Q(`)|
8Γ(δ−2)

e+2∑
r=0

(δ+ e− r−1)(δ−3) |Ψ(r+δ−1, x(r+δ−1))−Ψ(r+δ−1, y(r+δ−1))|

+ |R(`)|
48Γ(δ−3)

e+3∑
r=0

(δ+ e− r−1)(δ−4) |Ψ(r+δ−1, x(r+δ−1))−Ψ(r+δ−1, y(r+δ−1))| .

By assumption (H1) and with the help of Lemma 2.4, the above inequality becomes

‖Tx−T y‖ ≤Ω
[

Γ(`+1)
Γ(δ+1)Γ(`+1−δ)

+ Γ(δ+ e+1)
2Γ(δ+1)Γ(e+1)

+ |P(`)|Γ(δ+ e+1)
4Γ(δ)Γ(e+2)

+|Q(`)|Γ(δ+ e+1)
8Γ(δ−1)Γ(e+3)

+ |R(`)|Γ(δ+ e+1)
48Γ(δ−2)Γ(e+4)

]
‖x− y‖

≤Ω
[

3Γ(δ+ e+1)
2Γ(δ+1)Γ(e+1)

+ (e+4)Γ(δ+ e+1)
4Γ(δ)Γ(e+2)

+ (e+4)Γ(δ+ e+1)
8Γ(δ−1)Γ(e+3)

+ ξΓ(δ+ e+1)
48Γ(δ−2)Γ(e+4)

]
‖x− y‖

‖Tx−T y‖ ≤Ω
[
β

Γ(δ+ e+1)
2Γ(δ−2)Γ(e+1)

]
‖x− y‖ ,

which implies that T is a contraction. Hence from Banach fixed point theorem T has a unique
fixed point which is the unique solution of the discrete FABVP (1.1).

Theorem 3.3. The discrete FABVP (1.1) has at least one solution under the hypothesis (H2) and
the inequality

Γ(δ+ e+1)≤ 2
ωΦ∗ , (3.7)

where ω=
[

3
Γ(δ+1)Γ(e+1)

+ e+4
2Γ(δ)Γ(e+2)

+ e+4
4Γ(δ−1)Γ(e+3)

+ ξ

24Γ(δ−2)Γ(e+4)

]
such that ξ= e

(
e2 +12e+44

)+48 and Φ∗ =max
{
Φ(`) : ` ∈ [δ−4,δ+ e]Nδ−4

}
.

Proof. Let M > 0 and define the set S = {
x(`) : [δ−4,δ+ e]Nδ−4 →R, ‖x‖ ≤ M

}
. To prove this

theorem, we only need to show that T maps S into S. For x(`) ∈ S, we have

|(Tx)(`)| ≤ 1
Γ(δ)

`−δ∑
r=0

(`− r−1)(δ−1) |Ψ(r+δ−1, x(r+δ−1))|

+ 1
2Γ(δ)

e∑
r=0

(δ+ e− r−1)(δ−1) |Ψ(r+δ−1, x(r+δ−1))|
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+ |P(`)|
4Γ(δ−1)

e+1∑
r=0

(δ+ e− r−1)(δ−2) |Ψ(r+δ−1, x(r+δ−1))|

+ |Q(`)|
8Γ(δ−2)

e+2∑
r=0

(δ+ e− r−1)(δ−3) |Ψ(r+δ−1, x(r+δ−1))|

+ |R(`)|
48Γ(δ−3)

e+3∑
r=0

(δ+ e− r−1)(δ−4) |Ψ(r+δ−1, x(r+δ−1))|

|(Tx)(`)| ≤ Φ(r)
Γ(δ)

`−δ∑
r=0

(`− r−1)(δ−1) |x(r+δ−1)|

+ Φ(r)
2Γ(δ)

e∑
r=0

(δ+ e− r−1)(δ−1) |x(r+δ−1)|

+ Φ(r) |P(`)|
4Γ(δ−1)

e+1∑
r=0

(δ+ e− r−1)(δ−2) |x(r+δ−1)|

+ Φ(r) |Q(`)|
8Γ(δ−2)

e+2∑
r=0

(δ+ e− r−1)(δ−3) |x(r+δ−1)|

+ Φ(r) |R(`)|
48Γ(δ−3)

e+3∑
r=0

(δ+ e− r−1)(δ−4) |x(r+δ−1)| . (3.8)

From Lemma 2.4, the inequality (3.8) becomes

‖Tx‖ ≤ Φ(r)‖x‖
Γ(δ)

Γ(`+1)
δΓ(`+1−δ)

+ Φ(r)‖x‖
2Γ(δ)

Γ(δ+ e+1)
δΓ(e+1)

+ |P(`)|Φ(r)‖x‖
4Γ(δ−1)

Γ(δ+ e+1)
(δ−1)Γ(e+2)

+ |Q(`)|Φ(r)‖x‖
8Γ(δ−2)

Γ(δ+ e+1)
(δ−2)Γ(e+3)

+ |R(`)|Φ(r)‖x‖
48Γ(δ−3)

Γ(δ+ e+1)
(δ−3)Γ(e+4)

‖Tx‖ ≤
[

3Γ(δ+ e+1)
2Γ(δ+1)Γ(e+1)

+ (e+4)Γ(δ+ e+1)
4Γ(δ)Γ(e+2)

+ (e+4)Γ(δ+ e+1)
8Γ(δ−1)Γ(e+3)

+ ξΓ(δ+ e+1)
48Γ(δ−2)Γ(e+4)

]
Φ∗ ‖x‖ ,

‖Tx‖ ≤
[
ω
Γ(δ+ e+1)

2

]
Φ∗ ‖x‖ .

From (3.7), we have ‖Tx‖ ≤ M implying that T maps S in S. Thus T has at least one fixed
point, which is a solution of the FABVP (1.1) according to Brouwer fixed-point theorem [2] which
completes the proof.

4. The Ulam Stability
Stability analysis is discussed for the discrete FABVP (1.1) in this section. The following
definitions for FDE are given on the basis of ([13,20]).

Definition 4.1 ([13,20]). The nonlinear discrete FABVP (1.1) is Hyers-Ulam stable if for every
ε> 0, there is a constant K> 0 and for every solution y ∈ E of∣∣∣C∆δy(`)−Ψ(`+δ−1, y(`+δ−1))

∣∣∣≤ ε, ` ∈ [0, e+3]N0 , (4.1)

there exists a solution x ∈ E of (1.1) such that

|y(`)− x(`)| ≤Kε, ` ∈ [δ−4,δ+ e]Nδ−4 . (4.2)
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Definition 4.2 ([13,20]). The nonlinear discrete FABVP (1.1) is Hyers-Ulam Rasias stable if
for every ε> 0, there is a constant K1 > 0 and for every solution y ∈ E of∣∣∣C∆δy(`)−Ψ(`+δ−1, y(`+δ−1))

∣∣∣≤ϕ(`+δ−1)ε, ` ∈ [0, e+3]N0 , (4.3)

there exists a solution x ∈ E of (1.1) such that

|y(`)− x(`)| ≤K1εϕ(`+δ−1), ` ∈ [δ−4,δ+ e]Nδ−4 . (4.4)

Remark 4.3. A function y ∈ E is a solution of (4.1) if and only if there exists a function
g : [δ−4,δ+ e]Nδ−4 →R such that

(i) |g(`+δ−1)| ≤ ε, for ` ∈ [0, e+3]N0 ,

(ii) C∆δy(`)=Ψ(`+δ−1, y(`+δ−1))+ g(`+δ−1), for ` ∈ [0, e+3]N0 .

A similar remark is true for inequality (4.3).

Theorem 4.4. Assume that (H1) holds. Let y ∈ E be a solution of inequality (4.1) and let x ∈ E be
a solution of the discrete FABVP (1.1). Then, BVP (1.1) is the Ulam-Hyers stable provided that

Ω< 2Γ(δ−2)Γ(e+1)
βΓ(δ+ e+1)

, (4.5)

where β is defined in Theorem 3.2.

Proof. From inequality (4.1) and Remark 4.3, for ` ∈ [δ−4,δ+ e]Nδ−4 , it follows that∣∣∣∣y(`)− 1
Γ(δ)

`−δ∑
r=0

(`− r−1)(δ−1)Ψ(r+δ−1, y(r+δ−1))

+ 1
2Γ(δ)

e∑
r=0

(δ+ e− r−1)(δ−1)Ψ(r+δ−1, y(r+δ−1))

− P(`)
4Γ(δ−1)

e+1∑
r=0

(δ+ e− r−1)(δ−2)Ψ(r+δ−1, y(r+δ−1))

+ Q(`)
8Γ(δ−2)

e+2∑
r=0

(δ+ e− r−1)(δ−3)Ψ(r+δ−1, y(r+δ−1))

+ R(`)
48Γ(δ−3)

e+3∑
r=0

(δ+ e− r−1)(δ−4)Ψ(r+δ−1, y(r+δ−1))
∣∣∣∣

≤ εΓ(δ+ e+1)
Γ(δ+1)Γ(e+1)

. (4.6)

Combining (3.2) and (4.6), for ` ∈ [δ−4,δ+ e]Nδ−4 , we have

|y(`)− x(`)| ≤
∣∣∣∣y(`)− 1

Γ(δ)

`−δ∑
r=0

(`− r−1)(δ−1)Ψ(r+δ−1, x(r+δ−1))

+ 1
2Γ(δ)

b∑
r=0

(δ+ e− r−1)(δ−1)Ψ(r+δ−1, x(r+δ−1))

− P(`)
4Γ(δ−1)

e+1∑
r=0

(δ+ e− r−1)(δ−2)Ψ(r+δ−1, x(r+δ−1))
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+ Q(`)
8Γ(δ−2)

e+2∑
r=0

(δ+ e− r−1)(δ−3)Ψ(r+δ−1, x(r+δ−1))

+ R(`)
48Γ(δ−3)

e+3∑
r=0

(δ+ e− r−1)(δ−4)Ψ(r+δ−1, x(r+δ−1))
∣∣∣∣

≤
∣∣∣∣y(`)− 1

Γ(δ)

`−δ∑
r=0

(`− r−1)(δ−1)Ψ(r+δ−1, y(r+δ−1))

+ 1
2Γ(δ)

e∑
r=0

(δ+ e− r−1)(δ−1)Ψ(r+δ−1, y(r+δ−1))

− P(`)
4Γ(δ−1)

e+1∑
r=0

(δ+ e− r−1)(δ−2)Ψ(r+δ−1, y(r+δ−1))

+ Q(`)
8Γ(δ−2)

e+2∑
r=0

(δ+ e− r−1)(δ−3)Ψ(r+δ−1, y(r+δ−1))

+ R(`)
48Γ(δ−3)

e+3∑
r=0

(δ+ e− r−1)(δ−4)Ψ(r+δ−1, y(r+δ−1))
∣∣∣∣

+ 1
Γ(δ)

`−δ∑
r=0

(`− r−1)(δ−1)∣∣Ψ(r+δ−1, y(r+δ−1))−Ψ(r+δ−1, x(r+δ−1))
∣∣

+ 1
2Γ(δ)

e∑
r=0

(δ+ e− r−1)(δ−1)∣∣Ψ(r+δ−1, y(r+δ−1))−Ψ(r+δ−1, x(r+δ−1))
∣∣

+ |P(`)|
4Γ(δ−1)

e+1∑
r=0

(δ+ e− r−1)(δ−2)∣∣Ψ(r+δ−1, y(r+δ−1))−Ψ(r+δ−1, x(r+δ−1))
∣∣

+ |Q(`)|
8Γ(δ−2)

e+2∑
r=0

(δ+ e− r−1)(δ−3)∣∣Ψ(r+δ−1, y(r+δ−1))−Ψ(r+δ−1, x(r+δ−1))
∣∣

+ |R(`)|
48Γ(δ−3)

e+3∑
r=0

(δ+ e− r−1)(δ−4)∣∣Ψ(r+δ−1, y(r+δ−1))−Ψ(r+δ−1, x(r+δ−1))
∣∣.

Solving the above inequality with the aid of Lemma 2.4 and assumption (H1), we obtain

‖y− x‖ ≤Kε,

where K= Γ(δ+ e+1)

δ(3)
[
Γ(δ−2)Γ(e+1)−ΩβΓ(δ+e+1)

2

] > 0. Thus, a discrete FABVP (1.1) is Ulam-Hyers

stable.

Theorem 4.5. Assume that (H1) and (H3) hold. Let y ∈ E be a solution of inequality (4.3) and let
x ∈ E be a solution of (1.1). Then a discrete FABVP (1.1) is Hyers-Ulam-Rasias stable provided
that (4.5) holds.

Proof. Using the argument as in the proof of Theorem 4.4, we get

‖y− x‖ ≤K1εϕ(`+δ−1),

where K1 = λΓ(δ−2)Γ(e+1)

Γ(δ−2)Γ(e+1)−ΩβΓ(δ+e+1)
2

> 0 such that β is defined in Theorem 3.2. Thus a

discrete FABVP (1.1) is Ulam-Hyers-Rasias stable.
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5. Examples
We consider the following examples to demonstrate our theoretical findings.

Example 5.1. Suppose that δ= 7
2 and e = 3. Let Ψ(`, x) = cos(x(`))

1000+`2 and Ω= 1
1000 . Then discrete

FABVP (1.1) becomes
C∆

7
2 x(`)= cos

(
x
(
`+ 5

2
))

1000+(
`+ 5

2
)2 , ` ∈ [0,6]N0 ,

x
(−1

2

)=−x
(13

2

)
, ∆x

(−1
2

)=−∆x
(13

2

)
,

∆2x
(−1

2

)=−∆2x
(13

2

)
, ∆3x

(−1
2

)=−∆3x
(13

2

)
.

(5.1)

In this case, inequality (3.6) is

Ωβ
Γ(δ+ e+1)

2Γ(δ−2)Γ(e+1)
≤ 0.1108< 1.

Therefore, from Theorem 3.2, we conclude that boundary value problem (5.1) has a unique
solution.

Example 5.2. Suppose that δ= 18
5 , e = 2 and M = 1000 with Ψ(`, x)= 1

27`e−
x2(`)

10 . Then discrete
FABVP (1.1) takes the form

C∆
18
5 x(`)= 1

27

(
`+ 13

5

)
e−

x2(`+ 13
5 )

10 , ` ∈ [0,5]N0 ,

x
(−2

5

)=−x
(28

5

)
, ∆x

(−2
5

)=−∆x
(28

5

)
,

∆2x
(−2

5

)=−∆2x
(28

5

)
, ∆3x

(−2
5

)=−∆3x
(28

5

)
.

(5.2)

The Banach space is E :=
{

x(`)|[−2
5 , 28

5

]
N− 2

5

→R,‖x‖ ≤ 1000
}

. We note that

2M
ωΓ(δ+ e+1)

≈ 15.8987.

It is clear that |Ψ(`, x)| ≤ 28
135 < 15.8987, whenever x ∈ [−1000,1000]. Therefore by Theorem 3.3,

we conclude that the boundary value problem (1.1) has at least one solution.

Example 5.3. Suppose that δ= 16
5 , e = 1. Let Ψ(`, x)= x(`)

39+`2 and Ω= 1
39 . Then discrete FABVP

(1.1) becomes
C∆

16
5 x(`)= x

(
`+ 11

5
)

39+(
`+ 11

5
)2 , ` ∈ [0,4]N0 ,

x
(−4

5

)=−x
(21

5

)
, ∆x

(−4
5

)=−∆x
(21

5

)
,

∆2x
(−4

5

)=−∆2x
(21

5

)
, ∆3x

(−4
5

)=−∆3x
(21

5

)
.

(5.3)

Since
2Γ(δ−2)Γ(e+1)
βΓ(δ+ e+1)

≈ 0.0476.

If Ω= 0.0256< 0.0476 and the inequality∣∣∣∣C∆ 16
5 y(`)−Ψ

(
`+ 16

5
, y

(
`+ 16

5

))∣∣∣∣≤ ε, ` ∈ [0,4]N0 ,

hold, then (5.3) is the Ulam-Hyers stable by Theorem 4.4.
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6. Conclusion
The authors, in this article, considered a class of discrete fractional equations with anti-periodic
boundary conditions with fractional order 3< δ≤ 4. Models involving design and manufacturing
process in modern technology need construction and analysis of boundary value problems. By
means of contraction mapping principle and fixed-point theorem due to Brouwer [2], new criteria
for the existence and uniqueness of the solutions are established, followed by the analysis of
Hyers-Ulam stability and Hyers-Ulam Rasias stability of the problem. Appropriate examples
are chosen to authenticate the main theoretical findings.
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