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Abstract. For a finite undirected graph G(V ,E) and a non empty subset σ⊆ V , the switching of G
by σ is defined as the graph Gσ(V ,E′) which is obtained from G by removing all edges between σ

and its complement V -σ and adding as edges all non-edges between σ and V -σ. For σ= {v}, we write
Gv instead of G{v} and the corresponding switching is called as vertex switching. We also call it as
|σ|-vertex switching. When |σ| = 2, we call it as 2-vertex switching. A subgraph B of G which contains
G[σ] is called a joint at σ in G if B-σ is connected and maximal. If B is connected, then we call B as
c-joint otherwise d-joint. In this paper, we give a necessary and sufficient condition for a c-joint B at
σ= {u,v} in G to be a c-joint and a d-joint at σ in Gσ and also a necessary and sufficient condition
for a d-joint B at σ= {u,v} in G to be a c-joint and a d-joint at σ in Gσ when uv ∈ E(G) and when
uv ∉ E(G).
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1. Introduction
For a finite undirected simple graph G(V ,E) with |V (G)| = p and a non-empty set σ⊆ V , the
switching of G by σ is defined as the graph Gσ(V ,E′) which is obtained from G by removing all
edges between σ and its complement, V -σ and adding as edges all non-edges between σ and
V -σ. Switching has been defined by Seidel ([7], [3]) and is also referred to as Seidel switching.
We also call it as |σ|-vertex switching. When |σ| = 1, we call it as 1-vertex switching [4]. When
|σ| = 2, we call it as 2-vertex switching. A subgraph B of G which contains G[σ] is called a joint
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at σ in G if B-σ is connected and maximal. If B is connected, then we call B as c-joint otherwise
d-joint. B is called a total joint if B is the join of σ and B-σ, that is B =σ+ (B−σ) [5,6]. When
σ= {v} ⊂ V , the corresponding switching Gv is called as the vertex switching. We also call it
|σ|-vertex switching. A connected graph G is said to be highly irregular, if each of its vertices
is adjacent only to vertices with distinct degrees [1]. In [2], it is proved that there is no highly
irregular graph with a self vertex switching.

For the graph G given in Figure 1.1, Gσ is given in Figure 1.2, G[σ] is given in Figure 1.3 at
σ= {u,v}. The c-joint, d-joint and the total joint is given in Figures 1.4, 1.5 and 1.6, respectively.
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Figure 1.1. G
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Figure 1.2. Gσ
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Figure 1.3. G[σ]
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  Figure 1.4. c-joint
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  Figure 1.5. d-joint
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  Figure 1.6. total joint

2. 2-Vertex Switching of Connected Joints
In this section,we give necessary and sufficient conditions for a c-joint B at σ in a graph G,
Bσ to be a c-joint and a d-joint at σ in Gσ, when uv is an edge and a non-edge. Further the
conditions for the graph G itself to be a c-joint are discussed with examples.

Theorem 2.1. Let G be a graph of order p and let σ = {u,v} be a subset of V (G) such that
uv ∉ E(G). If B and Bσ are c-joints at σ in G and Gσ respectively, then |V (B)| ≥ 4.

Proof. Suppose |V (B)| < 4. Then |V (B)| = 3 and hence B = P3 with dB(u) = dB(v) = 1. This
implies that, Bσ = 3K1 which is a d-joint and gives a contradiction to Bσ is a c-joint. Therefore,
|V (B)| ≥ 4.

Theorem 2.2. Let G be a graph of order p and let σ = {u,v} be a subset of V (G) such that
uv ∉ E(G). Let B be a c-joint at σ in G. Then Bσ is a c-joint at σ in Gσ if and only if B-σ is
connected, |V (B)| ≥ 4, 0< dB(u)≤ |V (B)|−3 and 0< dB(v)≤ |V (B)|−3.
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Proof. Let B be c-joint at σ in G such that Bσ is a c-joint. By Theorem 2.1, |V (B)| ≥ 4. Since
uv ∉ E(G) and B is a c-joint, we have 0< dB(u)≤ |V (B)|−2. Suppose dB(u)= |V (B)|−2. Then all
the vertices of V (B)−σ are adjacent to u in B, and hence all vertices in V (B)−σ are non-adjacent
to u in Bσ. Therefore, u is an isolated vertex in Bσ which is a contradiction to Bσ is connected
and hence 0 < dB(u) ≤ |V (B)| −3. Similarly, we can prove that 0 < dB(v) ≤ |V (B)| −3. By the
definition of joints, B−σ is connected. Thus, B−σ is connected, |V (B)| ≥ 4, 0< dB(u)≤ |V (B)|−3
and 0< dB(u)≤ |V (B)|−3.

Conversely, let B be a c-joint at σ in G such that B−σ is connected, |V (B)| ≥ 4, 0< dB(u)≤
|V (B)|−3 and 0< dB(v)≤ |V (B)|−3. Now dB(v)≤ |V (B)|−3 implies that there is a vertex, say
a, in V (B)−σ such that a is non-adjacent to u in B and hence a is adjacent to u in Bσ. Also,
0< dB(v)≤ |V (B)|−3 implies that there is a vertex, say b, in V (B)−σ such that b is non-adjacent
to v in B and hence adjacent to v in Bσ. Thus ua and vb are edges in Bσ. Now to prove Bσ is
connected, we consider the following two cases a 6= b and a = b.

Case 1. a 6= b

Let x and y be any two vertices in Bσ.

Subcase 1.a. {x, y} 6= {u,v}.

Then x, y ∈V (B)−σ. Since B−σ is connected, there exists a x–y path in B−σ, and hence in Bσ.

Subcase 1.b. {x, y}= {u,v}

Since uv ∉ E(G), xy is not an edge in B and Bσ. Since au and bv are edges in Bσ, ax and by are
edges in Bσ. Also, B−σ is connected and a,b ∈V (B)−σ, implies that there is an a–b path in
B−σ and hence in Bσ. Now, the edge xa, the path a−b and the edge by form a x–y path in Bσ.

Subcase 1.c. x = u and y 6= v

y 6= v implies that y ∈V (B)−σ. Since B−σ is connected and a, y ∈V (B)−σ, there exists an a–y
path in B−σ and hence an a–y path in Bσ. Now the edge xa and the path a–y form a x–y path
in Bσ.

Hence there is a x–y path in all the cases. Therefore, Bσ is connected in Gσ and hence Bσ is
a c-joint at σ in Gσ.

Case 2. a = b

We have au and bv are edges in Bσ. Let x and y be any two vertices in Bσ. We consider the
following subcases.

Subcase 2.a. {x, y} 6= {u,v}

By subcase 1.a, there is a x–y path in Gσ.

Subcase 2.b. {x, y}= {u,v}

Since au and av are edges in Bσ, uav is a u–v path in Gσ and hence a x–y path in Gσ.

Subcase 2.c. x = u and y 6= v

y 6= v implies that y ∈V (B)−σ. Since B−σ is connected and a, y ∈V (B)−σ, there exists an a–y
path in B−σ and hence an a–y path in Bσ. Now the edge xa and the path a–y form a x− y
path in Bσ.
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Hence in all cases, there exists a x–y path in Bσ. This implies that Bσ is connected and hence
Bσ is a c-joint at σ in Gσ. Hence the theorem is proved.

Corollary 2.3. Let G be a graph of order p and let σ = {u,v} be a subset of V (G) such that
uv ∉ E(G). If G itself is a c-joint at σ, then Gσ is a c-joint at σ if and only if G−σ is connected,
p ≥ 4, 0< dG(u)≤ p−3 and 0< dG(v)≤ p−3.

Example 2.4. Consider the graph G of order 9 given in Figure 2.1. Here G is a c-joint at
σ= {u,v} in G and satisfy 0< dG(u)= 5≤ p−3 and 0< dG(v)= 4≤ p−3. The graph Gσ is given
in Figure 2.2 and is a c-joint at σ.
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Figure 2.2. Gσ

Theorem 2.5. Let G be a graph of order p ≥ 3 and let σ= {u,v} be a subset of V (G) such that
uv ∉ E(G). Let B be a c-joint at σ in G. Then Bσ is a d-joint at σ in Gσ if and only if B−σ
is connected and either dB(u) = |V (B)|−2 and 0 < dB(v) ≤ |V (B)|−2 or dB(v) = |V (B)|−2 and
0< dB(u)≤ |V (B)|−2.

Proof. Let B be a c-joint at σ in G such that Bσ is a d-joint at σ in Gσ. Then B−σ is connected.
Since uv ∉ E(G) and B is a c-joint at σ in G, dB(u) and dB(v) cannot be equal to zero and
each is at most |V (B)| − 2 in B. Hence 0 < dB(u) ≤ |V (B)| − 2 and 0 < dB(v) ≤ |V (B)| − 2. If
dB(u)= |V (B)|−2, then the proof is over. Otherwise, let 0< dB(u)< |V (B)|−2. Then there exists
at least one vertex, say x, in V (B)−σ such that x is non-adjacent to u in B. This implies that x
is adjacent to u in Bσ and hence xu is an edge in Bσ. We have 0< dB(v)≤ |V (B)|−2. Suppose
dB(v) < |V (B)|−2. Then there exists a vertex, say y, in V (B)−σ such that y is non-adjacent
to v in B and hence adjacent to v in Bσ. This implies that yv is an edge in Bσ. Since B−σ is
connected, there exists a x–y path in B−σ and hence in Bσ. Let a and b be any two vertices in
V (Bσ). We consider the following three cases.

Case 1. {a,b} 6= {u,v}

Clearly a,b ∈V (B)−σ. Since B−σ is connected, there is an a–b path in Bσ.

Case 2. {a,b}= {u,v}

Since ux and vy are edges in Bσ and there is a x–y path in Bσ the edge ux, the path x–y and
the edge yv form a u–v path in Bσ and hence an a–b path in Bσ.
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Case 3. a = u and b 6= v

If b = x, then ux = ab is an edge in Bσ.

If b 6= x, then there exists a x–b path in B−σ and hence in Bσ. Now the edge ux and the path
x–b form a u–b path in Bσ and hence an a–b path in Bσ.

Thus in all the cases, there is an a–b path in Bσ and hence Bσ is connected. This is a
contradiction to Bσ is disconnected. Hence, dB(v)= |V (B)|−2.

Conversely, assume that B is a c-joint at σ in G such that B −σ is connected and either
dB(u) = |V (B)|−2 and 0 < dB(v) ≤ |V (B)|−2 or dB(v) = |V (B)|−2 and 0 < dB(u) ≤ |V (B)|−2. If
dB(u)= |V (B)|−2, then u is adjacent to all the vertices of V (B)−σ in B. Since uv ∉ E(G), u is
non-adjacent to all the vertices of V (B)−σ in Bσ. This implies that u is an isolated vertex in
Bσ and hence Bσ is disconnected in Gσ. By a similar argument if dB(u)= |V (B)|−2, then v is
an isolated vertex in Bσ and hence Bσ is disconnected. Thus, Bσ is a d-joint and hence the
theorem is proved.

Corollary 2.6. Let G be a graph of order p ≥ 3 and let σ= {u,v} be a subset of V (G) such that
uv ∉ E(G). If G itself is a c-joint at σ, then Gσ is a d-joint at σ if and only if G−σ is connected
and either dG(u)= p−2 and 0< dG(v)≤ p−2 or dG(v)= p−2 and 0< dG(u)≤ p−2.

Example 2.7. Consider the graph G of order 8 given in Figure 2.3. Here G is a c-joint at
σ= {u,v} in G and satisfy dG(u) = 6 = p−2 and 0 < dG(v) = 3 ≤ p−2. The graph Gσ given in
Figure 2.4 is a d-joint.
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Theorem 2.8. Let G be a graph of order p ≥ 3 and let σ= {u,v} be a subset of V (G) such that
uv ∈ E(G). Let B be a c-joint at σ in G. Then Bσ is a c-joint if and only B−σ is connected and
either 0< dB(u)≤ |V (B)|−2 or 0< dB(v)≤ |V (B)|−2.

Proof. Let B be a c-joint such that Bσ is a c-joint. By the definition of joints, B−σ is connected.
Since uv ∈ E(G) and B is connected, we have 0< dB(u)≤ |V (B)|−1 and 0< dB(v)≤ |V (B)|−1. If
dB(u)≤ |V (B)|−2, then the proof is over. So let dB(u)= |V (B)|−1. This implies that u is adjacent
to all the vertices of V (B)−σ in B and hence non-adjacent to all the vertices of V (B)−σ in Bσ.
Now, we have 0< dB(v)≤ |V (B)|−1.

If dB(v) = |V (B)|−1, then v is adjacent to all the vertices of V (B)−σ in B and hence non-
adjacent to all the vertices of V (B)−σ in Bσ. This implies that B−σ is a component of Bσ.
Hence Bσ is the union of two components, namely K2 and B−σ, where K2 is the edge uv.
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This is a contradiction to Bσ is connected. Hence 0< dB(v)≤ |V (B)|−2. Thus, B−σ is connected
and either 0< dB(u)≤ |V (B)|−2 or 0< dB(v)≤ |V (B)|−2.

Conversely, assume that B is a c-joint such that B−σ is connected and either 0< dB(u)≤
|V (B)|−2 or 0< dB(v)≤ |V (B)|−2. To prove Bσ is a c-joint at σinGσ. Without loss of generality,
we assume that 0< dB(u)≤ |V (B)|−2. Then there exists at least one vertex, say a, in V (B)−σ
which is non-adjacent to u in B. Hence u is adjacent to a in Bσ. Let x and y be any two vertices
in Bσ. We consider the following three possible cases.

Case 1. {x, y} 6= {u,v}
Then x, y ∈V (B)−σ. Since B−σ is a connected, there is a x–y path in B−σ and hence in Bσ.

Case 2. {x, y}= {u,v}
Since uv is an edge in Bσ, uv = xy is an edge in Bσ and hence there is a x–y path in Bσ.

Case 3. x 6= u and y= v
If x = a, then xu = au is an edge in Bσ. Now xuv = xuy is a x–y path in Gσ.
If x 6= a, then there exists a x–a path in B−σ. Now the path x–a, the edges au and uv = uy
form a x–y path in Bσ.
Thus in all the cases, there is a x–y path in Bσ. This implies that Bσ is connected and therefore,
a c-joint. Hence the theorem is proved.

Corollary 2.9. Let G be a graph of order p ≥ 3 and let σ= {u,v} be a subset of V (G) such that
uv ∈ E(G). If G itself is a c-joint at σ, then Gσ is a c-joint at σ if and only G−σ is connected
and either 0< dG(u)≤ p−2 or 0< dG(v)≤ p−2.

Example 2.10. Consider the graph G of order 9 given in Figure 2.5. Here G is a c-joint at
σ= {u,v} in G and satisfy 0< dG(u)= 6≤ p−2 and 0< dG(v)= 5≤ p−2. The graph Gσ given in
Figure 2.6 is a c-joint.

Figure 2.5. G Figure 2.6. Gσ

Theorem 2.11. Let G be a graph of order p ≥ 3 and let σ= {u,v} be a subset of V (G) such that
uv ∈ E(G). Let B be a c-joint at σ in G. Then Bσ is a d-joint at σ in Gσ if and only if B−σ is
connected and dB(u)= dB(v)= |V (B)|−1.

Proof. Let B be a c-joint at σ in G such that Bσ is d-joint at σ in Gσ. Clearly, B−σ is connected.
Since uv ∈ E(G), dB(u) and dB(v) cannot be equal to zero and each is at most |V (B)|−1 in G.
Hence 0< dB(u)≤ |V (B)|−1 and 0< dB(v)≤ |V (B)|−1.
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Case 1. dB(u)= |V (B)|−1 and dB(v)< |V (B)|−1.
dB(u)= |V (B)|−1 and uv ∈ E(G) implies that u is adjacent to all the vertices of V (B)−σ in B.
Hence u is non-adjacent to all the vertices of V (B)−σ in Bσ. uv ∈ E(G) and dB(v)< |V (B)|−1
implies that there exists at least one vertex in V (B)−σ which is non-adjacent to v in B. This
implies that there exists at least one vertex adjacent to v in Bσ, say a. Hence av is an edge in
Bσ. Let x and y be any two vertices in Bσ.

Subcase 1.a. {x, y} 6= {u,v}
Then x, y ∈V (B)−σ. Since B−σ is connected, there exists a x–y path in B−σ and hence in Bσ.

Subcase 1.b. {x, y}= {u,v}
Since uv ∈ E(G), uv = xy is an edge in Bσ.

Subcase 1.c. x = u and y 6= v
Then y ∈V (B)−σ. If a = y, then the edges uv = xv and av = yv in Bσ form a x–y path in Bσ. If
a 6= y, then there exists an a–y path in B−σ and hence in Bσ. Now, the edges uv = xv, va and
the path a–y form a x–y path in Bσ.

Thus in all cases, there is a x–y path in Bσ and hence Bσ is connected which is a contradiction
to Bσ is disconnected.

Case 2. dB(u)< |V (B)|−1 and dB(v)< |V (B)|−1
Since uv ∈ E(G) and dB(u)< |V (B)|−1, there exists at least one vertex, say a, in V (B)−σ such
that a is non-adjacent to u in B and hence adjacent to u in Bσ. This implies that au is an edge
in Bσ. Also dB(v) < |V (B)|−1 implies that there exists at least one vertex, say b, in V (B)−σ
such that b is non-adjacent to v in Bσ and hence adjacent to v in Bσ. This implies that bv is an
edge in Bσ. Since B−σ is connected, there exists an a–b path in B−σ and hence in Bσ. Let x
and y be any two vertices in Bσ.

Subcase 2.a. {x, y}= {u,v}
Clearly, uv = xy is an edge in Bσ.

Subcase 2.b. {x, y} 6= {u,v}
Then x, y ∈V (B)−σ. Since B−σ is connected, there exists a x–y path in B−σ and hence in Bσ.

Subcase 2.c. x = u and y 6= v
Then y ∉V (B)−σ. If y= a, then ua = xy is an edge in Bσ.
If y= b, then uv = xv and vb = vy are edges in Bσ, and hence xvy is a x–y path in Bσ.
If y 6= {a,b}, then uv = xv and vb are edges in Bσ and b, y ∈V (B)−σ implies that there is a b–y
path in B−σ and hence in Bσ. Now, the edges xv, vb and the b–y path in Bσ form a x−–y path
in Bσ.

Thus in all the above subcases, we get a x–y path in Bσ and hence Bσ is connected, which is a
contradiction to Bσ is disconnected.

From Case 1 and Case 2, we conclude that dB(u)= dB(v)= |V (B)|−1.
Conversely, let B be a c-joint at σ in G such that B−σ is connected and dB(u) = dB(v) =

|V (B)|−1. Since B is a c-joint at σ in G, any two vertices in V (B) are connected by a path in B
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and hence in G. Now, uv ∈ E(G) and dB(u)= dB(v)= |V (B)|−1 implies that u and v are adjacent
to all the vertices of V (B)−σ in B. This implies that u and v are non-adjacent to all the vertices
of V (B)−σ in Bσ and hence Bσ is the union of two components namely, B−σ and K2. Therefore,
Bσ is disconnected and hence a d-joint.

Corollary 2.12. Let G be a graph of order p ≥ 3 and let σ= {u,v} be a subset of V (G) such that
uv ∈ E(G). If G itself is a c-joint at σ, then Gσ is a d-joint at σ if and only if G−σ is connected
and dG(u)= dG(v)= p−1.

Example 2.13. Consider the graph G of order 6 given in Figure 2.7. Here G is a c-joint at
σ = {u,v} in G and satisfy dG(u) = dG(v) = 5 = p−1. The graph Gσ given in Figure 2.8 is a
d-joint.

Figure 2.7. G Figure 2.8. Gσ

3. 2-Vertex Switching of Disconnected Joints
In this section, we give necessary and sufficient conditions for a d-joint B at σ = {u,v} in a
graph G, Bσ to be a c-joint or a d-joint or a total joint at σ in Gσ, when uv is either an edge or
a non-edge. Further, the conditions when the graph G itself is a d-joint are also discussed with
suitable examples.

Theorem 3.1. Let G be a graph of order p ≥ 3 and let σ= {u,v} be a subset of V (G) such that
uv ∉ E(G). Let B be a d-joint at σ in G. Then Bσ is a c-joint at σ in Gσ if and only if B−σ is
connected and either dB(u)= 0 and 0≤ dB(v)≤ |V (B)|−3 or dB(v)= 0 and 0≤ dB(u)≤ |V (B)|−3.

Proof. Let B be a d-joint at σ in G such that Bσ is a c-joint at σ in Gσ. By the definition of joints
at σ in G, B−σ is connected. Since uv ∉ E(G) and B−σ is connected, we have either u or v or
both is/are an isolated vertex in B. Without loss of generality, let us assume that u is an isolated
vertex in B. Hence dB(u)= 0. Now 0≤ dB(v)≤ |V (B)|−2. If dB(v)= |V (B)|−2, then v is adjacent
to all the vertices of V (B)−σ in B and hence v is non-adjacent to all the vertices of V (B)−σ
in Bσ. This implies that v is an isolated vertex in Bσ and hence Bσ is disconnected which is a
contradiction to Bσ is connected. Hence 0≤ dB(v)< |V (B)|−2. If v is an isolated vertex, then
by a similar argument, we can prove that dB(v) = 0 and 0 ≤ dB(u) < |V (B)|−2. Thus B−σ is
connected and either dB(u)= 0 and 0≤ dB(v)≤ |V (B)|−3 or dB(v)= 0 and 0≤ dB(u)≤ |V (B)|−3.

Conversely, let B be a d-joint at σ in G such that B−σ is connected and either dB(u) = 0
and 0≤ dB(v)≤ |V (B)|−3 or dB(v)= 0 and 0≤ dB(u)≤ |V (B)|−3. Without loss of generality, let
us assume that dB(u) = 0 and 0 ≤ dB(v) ≤ |V (B)|−3. Since dB(u) = 0, u is non-adjacent to all
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the vertices of V (B)−σ in B. This implies that u is adjacent to all the vertices of V (B)−σ in
Bσ. Now 0≤ dB(v)≤ |V (B)|−3 implies that v is non-adjacent to at least one of the vertices of
V (B)−σ in B and hence adjacent to at least one vertex, say b, of V (B)−σ in Bσ. Therefore, bv
is an edge in Bσ. Since u is adjacent to all the vertices of V (B)−σ in Bσ, B−σ is connected
and bv is an edge in Bσ, we have Bσ is connected and hence a c-joint. Hence the theorem is
proved.

Corollary 3.2. Let G be a graph of order p ≥ 3 and let σ= {u,v} be a subset of V (G) such that
uv ∉ E(G). If G itself is a d-joint at σ, then Gσ is a c-joint at σ if and only if G−σ is connected
and either dG(u)= 0 and 0≤ dG(v)≤ p−3 or dG(v)= 0 and 0≤ dG(u)≤ p−3.

Example 3.3. Consider the graph G of order 6 given in Figure 3.1. Here G is a d-joint at
σ= {u,v} in G satisfying dG(u)= 0 and 0< dG(v)= 2≤ p−3. The graph Gσ given in Figure 3.2
is a c-joint.

Figure 3.1. G Figure 3.2. Gσ

Theorem 3.4. Let G be a graph of order p ≥ 3 and let σ= {u,v} be a subset of V (G) such that
uv ∉ E(G). Let B be a d-joint at σ in G. Then Bσ is a d-joint at σ in Gσ if and only if B−σ is
connected and {dB(u),dB(v)}= {0, |V (B)|−2}.

Proof. Let B be a d-joint at σ in G such that Bσ is a d-joint at σ in Gσ. Since uv ∉ E(G),
dB(u)≥ 0 and dB(v)≥ 0. If dB(u)= dB(v)= 0, then B = 2K1∪(B−σ) and hence Bσ = (B−σ)+2K1

which is connected. This is a contradiction to Bσ is disconnected and hence dB(u) and dB(v)
cannot be zero simultaneously. Also, if both dB(u)> 0 and dB(v)> 0, then there exist vertices,
say a and b, in V (B)−σ such that a is adjacent to u and b is adjacent to v in B. This implies
that B is connected which is a contradiction to B is disconnected. Therefore, either dB(u)= 0
and dB(v) > 0 or dB(v) = 0 and dB(u) > 0. Without loss of generality, assume that dB(u) = 0
and dB(v) > 0. Since uv ∉ E(G), 0 < dB(v) ≤ |V (B)| −2. Suppose dB(v) < |V (B)| −2. Then v is
non-adjacent to at least one vertex of V (B)−σ in B and hence adjacent to at least one vertex in
Bσ. Let it be a. Hence av is an edge in Bσ. Let x and y be any two vertices in Bσ.

Case 1. {x, y} 6= {u,v}
Then x, y ∈V (B)−σ. Since B−σ is connected, there exists a x–y path in B−σ and hence in Bσ.

Case 2. {x, y}= {u,v}
dB(u)= 0 implies that u is adjacent to all the vertices of V (B)−σ in Bσ and hence au is an edge
in Bσ. Now, the edges au and av form a u–v path in Bσ and hence a x–y path in Bσ.
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Case 3. x 6= u and y= v
If x = a, then av = xy is an edge in Bσ.
If x 6= a, then there exists an a–x path in B−σ and hence in Bσ. Now, the edge ya and the path
a–x form a x–y path in Bσ.

Hence in all cases, there is a x–y path in Bσ, and hence Bσ is connected, which is a
contradiction to Bσ is disconnected. Therefore, dB(v) < |V (B)| −2 is not possible and hence
dB(v)= |V (B)|−2. Thus, we have dB(u)= 0 and dB(v)= |V (B)|−2. Similarly, we can prove that
dB(v) = 0 and dB(u) = |V (B)|−2 if we take dB(v) = 0 and dB(u) > 0. Thus, B−σ is connected
and {dB(u),dB(v)}= {0, |V (B)|−2}.

Conversely, let B be a d-joint at σ in G such that B−σ is connected and {dB(u),dB(v)} =
{0, |V (B)|−2}. Let dB(u)= 0 and dB(v)= |V (B)|−2. uv ∉ E(G) and dB(v)= |V (B)|−2 implies that
v is adjacent to all the vertices of V (B)−σ in B and hence non-adjacent to all the vertices of
V (B)−σ in Bσ. This implies that v is an isolated vertex in Bσ and hence Bσ is disconnected.
Therefore, Bσ is a d-joint. Hence the theorem is proved.

Corollary 3.5. Let G be a graph of order p ≥ 3 and let σ= {u,v} be a subset of V (G) such that
uv ∉ E(G). If G itself is a d-joint at σ, then Gσ is a d-joint at σ if and only if G−σ is connected
and {dG(u),dG(v)}= {0, p−2}.

Example 3.6. Consider the graph G of order 8 given in Figure 3.3. Here G is a d-joint at
σ = {u,v} in G and satisfy dG(u) = 0 and 0 < dG(v) = p − 2 = 6. The graph Gσ is given in
Figure 3.4 which is a also d-joint.

Figure 3.3. G Figure 3.4. Gσ

Theorem 3.7. Let G be a graph of order p ≥ 3 and let σ= {u,v} be a subset of V (G) such that
uv ∈ E(G). Then B is a d-joint at σ in G if and only if Bσ is a total joint at σ in Gσ.

Proof. Let B be a d-joint at σ in G. Since B − σ is connected and uv ∈ E(G) we have
B = (B−σ)∪K2. By definition Bσ = (B−σ)+K2 which is a total joint. Thus, B is a d-joint
at σ in G if and only if Bσ is a total joint at σ in Gσ.

Corollary 3.8. Let G be a graph of order p ≥ 3 and let σ= {u,v} be a subset of V (G) such that
uv ∈ E(G), then G is a d-joint at σ if and only if Gσ is a total joint at σ.

Note 3.9. Let G be a graph of order p ≥ 3 and let σ = {u,v} be a subset of V (G) such that
uv ∈ E(G). Let B be a d-joint at σ in G. Then Bσ is a total joint which implies that Gσ is always
a c-joint.
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Figure 3.5. G Figure 3.6. Gσ
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