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1. Introduction
It has been proven (see, for example, [12]) that there exist essentially three possible ways to
generalize real numbers into real algebras of dimension 2. In fact, each possible system can be
reduced to one of the following:

• numbers a+bi with i2 =−1 (complex numbers);

• numbers a+bh with h2 = 1, (hyperbolic numbers);

• numbers a+bε with ε2 = 0, (dual numbers).

There are also other generalizations (extensions) of real numbers into real algebras of
higher dimension. The hypercomplex numbers systems [12], are extensions of real numbers.
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Some commutative examples of hypercomplex number systems are complex numbers, hyperbolic
numbers [18], and dual numbers [8]. Some non-commutative examples of hypercomplex number
systems are quaternions [9], octonions [3] and sedenions [20]. The algebras C (complex numbers),
HQ (quaternions), O (octonions) and S (sedenions) are real algebras obtained from the real
numbers R by a doubling procedure called the Cayley-Dickson Process. This doubling process
can be extended beyond the sedenions to form what are known as the 2n-ions (see for example
[4], [10], [15]).

Quaternions were invented by Irish mathematician W. R. Hamilton (1805-1865) [9] as an
extension to the complex numbers. Hyperbolic numbers with complex coefficients are introduced
by J. Cockle in 1848, [6]. H. H. Cheng and S. Thompson [5] introduced dual numbers with
complex coefficients and called complex dual numbers. Akar et al. [2] introduced dual hyperbolic
numbers.

Here we use the set of hyperbolic numbers. The set of hyperbolic numbers H can be
described as

H= {z = x+hy | h ∉R, h2 = 1, x, y ∈R}.

The hyperbolic ring H is a bidimensional Clifford algebra (see [13] for details). Hyperbolic
numbers has been called in the mathematical literature with different names: Lorentz numbers,
double numbers, duplex numbers, split complex numbers and perplex numbers. Hyperbolic
numbers are useful for measuring distances in the Lorentz space-time plane (see Sobczyk [18]).
For more information on hyperbolic numbers (see also [11], [14], [16], [19]).

Addition, substraction and multiplication of any two hyperbolic numbers z1 and z2 are
defined by

z1 ± z2 = (x1 +hy1)± (x2 +hy2)= (x1 ± x2)+h (y1 ± y2) ,

z1 × z2 = (x1 +hy1)× (x2 +hy2)= x1x2 + y1 y2 +h (x1 y2 + y1x2) .

and the division of two hyperbolic numbers are given by
z1

z2
= x1 +hy1

x2 +hy2
= (x1 +hy1) (x2 −hy2)

(x2 +hy2) (x2 −hy2)
= x1x2 + y1 y2

x2
2 − y2

2
+h

x1 y2 + y1x2

x2
2 − y2

2
.

It is easy to see that this algebra of hyperbolic numbers is commutative and contains zero
divisors. The hyperbolic conjugation of z = x+hy is defined by

z = z† = x−hy .

Note that z = z. Note also that for any hyperbolic numbers z1, z2, z we have

z1 + z2 = z1 + z2,

z1 × z2 = z1 × z2,

‖z‖2 = z× z = x2 − y2.

Now let us recall the definition of generalized Fibonacci numbers.
A generalized Fibonacci sequence {Vn}n≥0 = {Vn(V0,V1)}n≥0 is defined by the second-order

recurrence relations

Vn =Vn−1 +Vn−2; V0 = a, V1 = b, (n ≥ 2) (1.1)

with the initial values V0,V1 not all being zero.
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The sequence {Vn}n≥0 can be extended to negative subscripts by defining

V−n =−V−(n−1) +V−(n−2)

for n = 1,2,3, . . . . Therefore, recurrence (1.1) holds for all integer n.
The first few generalized Fibonacci numbers with positive subscript and negative subscript

are given in Table 1.

Table 1. A few generalized Fibonacci numbers

n Vn V−n

0 V0 . . .
1 V1 −V0 +V1

2 V0 +V1 2V0 −V1

3 V0 +2V1 −3V0 +2V1

4 2V0 +3V1 5V0 −3V1

5 3V0 +5V1 −8V0 +5V1

6 5V0 +8V1 13V0 −8V1

If we set V0 = 0,V1 = 1 then {Vn} is the well-known Fibonacci sequence and if we set
V0 = 2,V1 = 1 then {Vn} is the well-known Lucas sequence. In other words, Fibonacci sequence
{Fn}n≥0 (OEIS: A000045, [17]) and Lucas sequence {Ln}n≥0 (OEIS: A000032, [17]) are defined
by the second-order recurrence relations

Fn = Fn−1 +Fn−2, F0 = 0,F1 = 1 (1.2)

and

Ln = Ln−1 +Ln−2, L0 = 2,L1 = 1. (1.3)

The sequences {Fn}n≥0 and {Ln}n≥0 can be extended to negative subscripts by defining

F−n =−F−(n−1) +F−(n−2)

and

L−n =−L−(n−1) +L−(n−2)

for n = 1,2,3, . . ., respectively. Therefore, recurrences (1.2) and (1.3) hold for all integer n.
We can list some important properties of generalized Fibonacci numbers that are needed.

• Binet formula of generalized Fibonacci sequence can be calculated using its characteristic
equation which is given as

t2 − t−1= 0.

The roots of characteristic equation are

α= 1+p
5

2
, β= 1−p

5
2

.

Using these roots and the recurrence relation, Binet formula can be given as

Vn = Aαn −Bβn

α−β (1.4)

where A =V1 −V0β and B =V1 −V0α.
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• Binet formula of Fibonacci and Lucas sequences are

Fn = αn −βn

α−β
and

Ln =αn +βn

respectively.

• The generating function for generalized Fibonacci numbers is

g(t)= V0 + (V1 −V0) t
1− t− t2 . (1.5)

• The Cassini identity for generalized Fibonacci numbers is

Vn+1Vn−1 −V 2
n = (V0V1 −V 2

1 −V 2
0 ). (1.6)

• Aαn =αVn +Vn−1, (1.7)

Bβn =βVn +Vn−1. (1.8)

In this paper, we define the hyperbolic generalized Fibonacci numbers in the next section
and give some properties of them.

2. Hyperbolic Generalized Fibonacci Numbers and their Generating
Functions and Binet’s Formulas

In this section, we define hyperbolic generalized Fibonacci numbers and present generating
functions and Binet formulas for them. In [1], the author defined hyperbolic Fibonacci numbers
and Dikmen [7] defined hyperbolic Jacobsthal numbers.

We now define hyperbolic generalized Fibonacci numbers over H. The nth hyperbolic
generalized Fibonacci number is

Ṽn =Vn +hVn+1 (2.1)

with initial conditions Ṽ0 =V0+hV1, Ṽ1 =V1+h(V1+V0), where h2 = 1. As special cases, the nth
hyperbolic Fibonacci numbers and the nth hyperbolic Lucas numbers are given as

F̃n = Fn +hFn+1

and

L̃n = Ln +hLn+1

respectively. It can be easily shown that

Ṽn = Ṽn−1 + Ṽn−2 . (2.2)

The sequence {Ṽn}n≥0 can be extended to negative subscripts by defining

Ṽ−n =−Ṽ−(n−1) + Ṽ−(n−2)

for n = 1,2,3, . . ., respectively. Therefore, recurrence (2.2) holds for all integer n. Note that

Ṽnh =Vn+1 +Vnh .

The first few hyperbolic generalized Fibonacci numbers with positive subscript and negative
subscript are given in Table 2.
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Table 2. A few hyperbolic generalized Fibonacci numbers

n Ṽn Ṽ−n

0 V0 +hV1 . . .

1 V1 +h (V0 +V1) V1 −V0 +hV0

2 V0 +V1 +h (V0 +2V1) 2V0 −V1 +h (−V0 +V1)

3 V0 +2V1+ h (2V0 +3V1) 2V1 −3V0 +h (2V0 −V1)

4 2V0 +3V1 +h (3V0 +5V1) 5V0 −3V1 +h (−3V0 +2V1)

5 3V0 +5V1 +h (5V0 +8V1) 5V1 −8V0 +h (5V0 −3V1)

6 5V0 +8V1 +h (8V0 +13V1) 13V0 −8V1+ h (−8V0 +5V1)

Note that

Ṽ0 =V0 +hV1,

Ṽ1 =V1 +hV2 =V1 +h(V0 +V1).

For hyperbolic Fibonacci numbers (taking Vn = Fn, F0 = 0,F1 = 1), we get

F̃0 = h,

F̃1 = 1+h,

and for hyperbolic Lucas numbers (taking Vn = Ln, L0 = 2,L1 = 1), we get

L̃0 = 2h,

L̃1 = 1+3h.

A few hyperbolic Fibonacci numbers and hyperbolic Lucas numbers with positive subscript and
negative subscript are given in Table 3 and Table 4.

Table 3. Hyperbolic Fibonacci numbers

n F̃n F̃−n

0 h . . .

1 1+h 1

2 1+2h −1+h

3 2+3h 2−h

4 3+5h −3+2h

5 5+8h 5−3h

6 8+13h −8+5h

Table 4. Hyperbolic Lucas numbers

n L̃n L̃−n

0 2+h . . .

1 1+3h −1+2h

2 3+4h 3−h

3 4+7h −4+3h

4 7+11h 7−4h

5 11+18h −11+7h

6 18+29h 18−11h

Now, we will state Binet’s formula for the hyperbolic generalized Fibonacci numbers and in
the rest of the paper, we fix the following notations:

α̃= 1+αh,

β̃= 1+βh.
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Note that we have the following identities:

α̃= 1+αh,

β̃= 1+βh,

α̃β̃= h,

α̃2 =α+2+2αh,

β̃2 =β+2+2βh,

α̃2β̃=α+h,

α̃β̃2 =β+h,

α̃2β̃2 = 1.

Theorem 1 (Binet’s formula). For any integer n, the nth hyperbolic generalized Fibonacci
number is

Ṽn = Aα̃αn −Bβ̃βn

α−β . (2.3)

Proof. Using Binet’s formula

Vn = Aαn −Bβn

α−β
of the generalized Fibonacci numbers, we obtain

Ṽn =Vn +hVn+1

= Aαn −Bβn

α−β +h
Aαn+1 −Bβn+1

α−β
= A(1+αh)αn −B(1+βh)βn

α−β .

This proves (2.3).

As special cases, for any integer n, the Binet’s Formula of nth hyperbolic Fibonacci number is

F̃n = α̃αn − β̃βn

α−β (2.4)

and the Binet’s Formula of nth hyperbolic Lucas number is

L̃n = α̃αn + β̃βn. (2.5)

Next, we present generating function.

Theorem 2. The generating function for the hyperbolic generalized Fibonacci numbers is
∞∑

n=0
Ṽnxn = Ṽ0 + (Ṽ1 − Ṽ0)x

1− x− x2 . (2.6)

Proof. Let

g(x)=
∞∑

n=0
Ṽnxn

be generating function of the hyperbolic generalized Fibonacci numbers.
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Then, using the definition of the hyperbolic generalized Fibonacci numbers, and subtracting
xg(x) and x2 g(x) from g(x), we obtain (note the shift in the index n in the third line)

(1− x− x2)g(x)=
∞∑

n=0
Ṽnxn − x

∞∑
n=0

Ṽnxn − x2
∞∑

n=0
Ṽnxn

=
∞∑

n=0
Ṽnxn −

∞∑
n=0

Ṽnxn+1 −
∞∑

n=0
Ṽnxn+2

=
∞∑

n=0
Ṽnxn −

∞∑
n=1

Ṽn−1xn −
∞∑

n=2
Ṽn−2xn

= (Ṽ0 + Ṽ1x)− Ṽ0x+
∞∑

n=2
(Ṽn − Ṽn−1 − Ṽn−2)xn

= (Ṽ0 + Ṽ1x)− Ṽ0x

= Ṽ0 + (Ṽ1 − Ṽ0)x .

Note that we used the recurrence relation Ṽn = Ṽn−1+Ṽn−2. Rearranging above equation, we get

g(x)= Ṽ0 + (Ṽ1 − Ṽ0)x
1− x− x2 .

As special cases, the generating functions for the hyperbolic Fibonacci and hyperbolic Lucas
numbers are

∞∑
n=0

F̃nxn = h+ x
1− x− x2

and
∞∑

n=0
L̃nxn = (2+h)+ (−1+2h)x

1− x− x2

respectively.

3. Obtaining Binet Formula From Generating Function

We next find Binet formula of hyperbolic generalized Fibonacci number {Ṽn} by the use of
generating function for Ṽn.

Theorem 3 (Binet formula of hyperbolic generalized Fibonacci numbers).

Ṽn = d1α
n

(α−β)
− d2β

n

(α−β)
(3.1)

where

d1 = Ṽ0α+ (Ṽ1 − Ṽ0),

d2 = Ṽ0β+ (Ṽ1 − Ṽ0).

Proof. Let

h(x)= 1− x− x2.

Then for some α and β we write

h(x)= (1−αx)(1−βx)
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i.e.,

1− x− x2 = (1−αx)(1−βx) (3.2)

Hence 1
α

and 1
β

are the roots of h(x). This gives α and β as the roots of

h
(
1
x

)
= 1− 1

x
− 1

x2 = 0 .

This implies x2 − x−1= 0. Now, by (2.6) and (3.2), it follows that
∞∑

n=0
Ṽnxn = Ṽ0 + (Ṽ1 − Ṽ0)x

(1−αx)(1−βx)
.

Then we write
Ṽ0 + (Ṽ1 − Ṽ0)x
(1−αx)(1−βx)

= A1

(1−αx)
+ A2

(1−βx)
. (3.3)

So

Ṽ0 + (Ṽ1 − Ṽ0)x = A1(1−βx)+ A2(1−αx).

If we consider x = 1
α

, we get Ṽ0 + (Ṽ1 − Ṽ0) 1
α
= A1(1−β 1

α
). This gives

A1 = Ṽ0α+ (Ṽ1 − Ṽ0)
(α−β)

= d1

(α−β)
.

Similarly, we obtain

Ṽ0 + (Ṽ1 − Ṽ0)
1
β
= A2

(
1−α1

β

)
⇒ Ṽ0β+ (Ṽ1 − Ṽ0)= A2(β−α)

and so

A2 =− Ṽ0β+ (Ṽ1 − Ṽ0)
(α−β)

=− d2

(α−β)
.

Thus (3.3) can be written as
∞∑

n=0
Ṽnxn = A1(1−αx)−1 + A2(1−βx)−1.

This gives
∞∑

n=0
Ṽnxn = A1

∞∑
n=0

αnxn + A2

∞∑
n=0

βnxn =
∞∑

n=0
(A1α

n + A2β
n)xn.

Therefore, comparing coefficients on both sides of the above equality, we obtain

Ṽn = A1α
n + A2β

n

and then we get (3.1).

Note that from (2.3) and (3.1) we have

(V1 −V0β)α̃= Ṽ0α+ (Ṽ1 − Ṽ0),

(V1 −V0α)β̃= Ṽ0β+ (Ṽ1 − Ṽ0).

Next, using Theorem 3, we present the Binet formulas of hyperbolic Fibonacci and hyperbolic
Lucas numbers.

Communications in Mathematics and Applications, Vol. 12, No. 4, pp. 987–1004, 2021



On Hyperbolic Numbers With Generalized Fibonacci Numbers Components: Y. Soykan 995

Corollary 4. Binet formulas of hyperbolic Fibonacci and hyperbolic Lucas numbers are

F̃n = α̃αn − β̃βn

α−β
and

L̃n = α̃αn + β̃βn,

respectively.

4. Some Identities
We now present a few special identities for the hyperbolic generalized Fibonacci sequence {Ṽn}.
The following theorem presents the Catalan’s identity for the hyperbolic generalized Fibonacci
numbers.

Theorem 5 (Catalan’s identity). For all integers n and m, the following identity holds

Ṽn+mṼn−m − Ṽ 2
n = (−1)n−m+1((A+B)V2m−1 + (Aβ+Bα)V2m −2(−1)m AB)

5
h .

Proof. Using the Binet Formula

Ṽn = Aα̃αn −Bβ̃βn

α−β
and

Aαn =αVn +Vn−1,

Bβn =βVn +Vn−1,

we get

Ṽn+mṼn−m − Ṽ 2
n = (Aα̃αn+m −Bβ̃βn+m)(Aα̃αn−m −Bβ̃βn−m)− (Aα̃αn −Bβ̃βn)2

(α−β)2

=−ABα̃β̃
(αm −βm)2

(α−β)2 αn−mβn−m

= (−1)n−m+1AB(αm −βm)2

5
α̃β̃

= (−1)n−m+1((A+B)V2m−1 + (Aβ+Bα)V2m −2(−1)m AB)
5

h ,

where αβ=−1 and α̃β̃= h.

As special cases of the above theorem, we give Catalan’s identity of hyperbolic Fibonacci
and hyperbolic Lucas numbers. Firstly, we present Catalan’s identity of hyperbolic Fibonacci
numbers.

Corollary 6 (Catalan’s identity for the hyperbolic Fibonacci numbers). For all integers n and
m, the following identity holds

F̃n+mF̃n−m − F̃2
n = (−1)n−m+1F2

mh.
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Proof. Taking Vn = Fn in Theorem 5 and using the identity

F2
m = 2F2m−1 +F2m −2(−1)m

5
,

we get the required result.

Secondly, we give Catalan’s identity of hyperbolic Lucas numbers.

Corollary 7 (Catalan’s identity for the hyperbolic Lucas numbers). For all integers n and m,
the following identity holds

L̃n+mL̃n−m − L̃2
n = (−1)n−m(L2m −2(−1)m)h

= (−1)n−m(L2
m −4(−1)m)h.

Proof. Taking Vn = Ln in Theorem 5 and using the identity

L2
m = L2m +2(−1)m,

we get the required result.

Note that for m = 1 in Catalan’s identity, we get the Cassini’s identity for the hyperbolic
generalized Fibonacci sequence.

Corollary 8 (Cassini’s identity). For all integers n, the following identity holds

Ṽn+1Ṽn−1 − Ṽ 2
n = (−1)n ABh.

As special cases of Cassini’s identity, we give Cassini’s identity of hyperbolic Fibonacci
and hyperbolic Lucas numbers. Firstly, we present Cassini’s identity of hyperbolic Fibonacci
numbers.

Corollary 9 (Cassini’s identity of hyperbolic Fibonacci numbers). For all integers n,
the following identity holds

F̃n+1F̃n−1 − F̃2
n = (−1)nh .

Secondly, we give Cassini’s identity of hyperbolic Lucas numbers.

Corollary 10 (Cassini’s identity of hyperbolic Lucas numbers). For all integers n, the following
identity holds

L̃n+1L̃n−1 − L̃2
n = 5(−1)n+1h .

The d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities can also be obtained by using the
Binet Formula of the hyperbolic generalized Fibonacci sequence:

Ṽn = Aα̃αn −Bβ̃βn

α−β .

The next theorem presents d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of the hyperbolic
generalized Fibonacci sequence {Ṽn}.
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Theorem 11. Let n and m be any integers. Then the following identities are true:
(a) (d’Ocagne’s identity)

Ṽm+1Ṽn − ṼmṼn+1 = (VnVm−1 −VmVn−1)h.

(b) (Gelin-Cesàro’s identity)

Ṽn+2Ṽn+1Ṽn−1Ṽn−2 − Ṽ 4
n =−A2B2.

(c) (Melham’s identity)

Ṽn+1Ṽn+2Ṽn+6 − Ṽ 3
n+3 = (−1)n ABṼnh.

Proof. (a) Using (1.7) and (1.8) we obtain

Ṽm+1Ṽn − ṼmṼn+1 = ABα̃β̃(−αm+1βn −αnβm+1 +αmβn+1 +αn+1βm)
(α−β)2

= AB(αnβm −αmβn)
(α−β)

α̃β̃

= ((αVn +Vn−1)(βVm +Vm−1)− (αVm +Vm−1)(βVn +Vn−1))
(α−β)

h

= (VnVm−1 −VmVn−1)h .

(b) Ṽn+2Ṽn+1Ṽn−1Ṽn−2 − Ṽ 4
n =−A2B2α̃2β̃2 =−A2B2.

(c) Using (1.7), (1.8) and

α̃2β̃=α+h

α̃β̃2 =β+h

we obtain

Ṽn+1Ṽn+2Ṽn+6 − Ṽ 3
n+3 =

(−1)n+1AB(−Aα̃αn +Bβ̃βn)α̃β̃
(α−β)

= (−1)n+1AB(−(αVn +Vn−1)α̃2β̃+ (βVn +Vn−1)α̃β̃2)
(α−β)

= (−1)n ABṼnh.

As special cases of the above theorem, we give the d’Ocagne’s, Gelin-Cesàro’s and Melham’
identities of hyperbolic Fibonacci and hyperbolic Lucas numbers. Firstly, we present the
d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of hyperbolic Fibonacci numbers.

Corollary 12. Let n and m be any integers. Then, for the hyperbolic Fibonacci numbers,
the following identities are true:

(a) (d’Ocagne’s identity)

F̃m+1F̃n − F̃mF̃n+1 = (−1)mFn−mh.

(b) (Gelin-Cesàro’s identity)

F̃n+2F̃n+1F̃n−1F̃n−2 − F̃4
n =−1.

(c) (Melham’s identity)

F̃n+1F̃n+2F̃n+6 − F̃3
n+3 = (−1)n F̃nh.
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Secondly, we present the d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of hyperbolic
Lucas numbers.

Corollary 13. Let n and m be any integers. Then, for the hyperbolic Lucas numbers, the following
identities are true:

(a) (d’Ocagne’s identity)

L̃m+1L̃n − L̃mL̃n+1 = (LnLm−1 −LmLn−1)h.

(b) (Gelin-Cesàro’s identity)

L̃n+2L̃n+1L̃n−1L̃n−2 − L̃4
n =−25.

(c) (Melham’s identity)

L̃n+1L̃n+2L̃n+6 − L̃3
n+3 = 5(−1)n+1 Ṽnh.

5. Linear Sums
In this section, we give the summation formulas of the hyperbolic generalized Fibonacci
numbers with positive and negative subscripts. Now, we present the summation formulas
of the generalized Fibonacci numbers.

Proposition 14. For the generalized Fibonacci numbers, we have the following formulas:

(a)
n∑

k=0
Vk =Vn+2 −V1.

(b)
n∑

k=0
V2k =V2n+1 −V1 +V0.

(c)
n∑

k=0
V2k+1 =V2n+2 −V2 +V1.

Proof. For the proof, see Soykan [21].

Next, we present the formulas which give the summation of the hyperbolic generalized
Fibonacci numbers.

Theorem 15. For n ≥ 0, hyperbolic generalized Fibonacci numbers have the following formulas:

(a)
n∑

k=0
Ṽk = Ṽn+2 − Ṽ1.

(b)
n∑

k=0
Ṽ2k = Ṽ2n+1 − Ṽ1 + Ṽ0.

(c)
n∑

k=0
Ṽ2k+1 = Ṽ2n+2 − Ṽ0.

Proof. (a) Note that using Proposition 14(a) we get
n∑

k=0
Vk =Vn+2 −V1,

n∑
k=0

Vk+1 =Vn+3 − (V1 +V0).
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Then it follows that
n∑

k=0
Ṽk =

n∑
k=0

Vk +h
n∑

k=0
Vk+1

= (Vn+2 −V1)+h(Vn+3 − (V1 +V0))

= (Vn+2 +hVn+3)− (V1 +h(V0 +V1))

= Ṽn+2 − (V1 +hV2)

= Ṽn+2 − Ṽ1.

This proves (a).

(b) Note that using Proposition 14(b) and (c) we get
n∑

k=0
V2k =V2n+1 −V1 +V0,

n∑
k=0

V2k+1 =V2n+2 −V0.

Then it follows that
n∑

k=0
Ṽ2k =

n∑
k=0

V2k +h
n∑

k=0
V2k+1

= (V2n+1 −V1 +V0)+h(V2n+2 −V0)

= (V2n+1 +hV2n+2)+ ((−V1 +V0)+h(−V0))

= (V2n+1 +hV2n+2)+ ((V0 −V1)+h(V1 −V2))

= Ṽ2n+1 − (V1 +hV2)+ (V0 +hV1)

= Ṽ2n+1 − Ṽ1 + Ṽ0.

(c) Note that using Proposition 14(b) and (c) we get
n∑

k=0
V2k+2 =V2n+3 −V1.

Then it follows that
n∑

k=0
Ṽ2k+1 =

n∑
k=0

V2k+1 +h
n∑

k=0
V2k+2

= (V2n+2 −V0)+h(V2n+3 −V1)

= (V2n+2 +hV2n+3)+ ((−V0)+h(−V1))

= Ṽ2n+2 − (V0 +hV1)

= Ṽ2n+2 − Ṽ0.

As a first special case of the above theorem, we have the following summation formulas for
hyperbolic Fibonacci numbers:

Corollary 16. For n ≥ 0, hyperbolic Fibonacci numbers have the following properties:

(a)
n∑

k=0
F̃k = F̃n+2 − F̃1 = F̃n+2 − (1+h).

(b)
n∑

k=0
F̃2k = F̃2n+1 − F̃1 + F̃0 = F̃2n+1 −1.
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(c)
n∑

k=0
F̃2k+1 = F̃2n+2 − F̃0 = F̃2n+2 −h.

As a second special case of the above theorem, we have the following summation formulas
for hyperbolic Lucas numbers:

Corollary 17. For n ≥ 0, hyperbolic Lucas numbers have the following properties:

(a)
n∑

k=0
L̃k = L̃n+2 − L̃1 = L̃n+2 − (1+3h).

(b)
n∑

k=0
L̃2k = L̃2n+1 − L̃1 + L̃0 = L̃2n+1 + (1−2h).

(c)
n∑

k=0
L̃2k+1 = L̃2n+2 − L̃0 = L̃2n+2 − (2+h).

Now, we present the formula which give the summation formulas of the generalized Fibonacci
numbers with negative subscripts.

Proposition 18. For n ≥ 1 we have the following formulas:

(a)
n∑

k=1
V−k = −2V−n−1 −V−n−2 +V1.

(b)
n∑

k=1
V−2k =−V−2n−1 +V1 −V0.

(c)
n∑

k=1
V−2k+1 =−V−2n +V0.

Proof. This is given in Soykan [21].

Next, we present the formulas which give the summation of the hyperbolic generalized
Fibonacci numbers with negative subscripts.

Theorem 19. For n ≥ 1, hyperbolic generalized Fibonacci numbers have the following formulas:

(a)
n∑

k=1
Ṽ−k = −2Ṽ−n−1 − Ṽ−n−2 + Ṽ1.

(b)
n∑

k=1
Ṽ−2k =−Ṽ−2n−1 + Ṽ1 − Ṽ0.

(c)
n∑

k=1
Ṽ−2k+1 =−Ṽ−2n + Ṽ0.

Proof. We prove (a), (b) and (c) can be proved similarly. Note that using Proposition 14(a) we get
n∑

k=1
V−k =−2V−n−1 −V−n−2 +V1,

n∑
k=1

V−k+1 =−2V−n −V−n−1 +V1 +V0.

Then it follows that
n∑

k=1
Ṽ−k =

n∑
k=1

V−k +h
n∑

k=1
V−k+1

= (−2V−n−1 −V−n−2 +V1)+h(−2V−n −V−n−1 +V1 +V0)
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=−2(V−n−1 +hV−n)− (V−n−2 +hV−n−1)+ (V1 +h(V1 +V0))

=−2Ṽ−n−1 − Ṽ−n−2 + (V1 +hV2)

= −2Ṽ−n−1 − Ṽ−n−2 + Ṽ1.

This proves (a).

As a first special case of the above theorem, we have the following summation formulas for
hyperbolic Fibonacci numbers:

Corollary 20. For n ≥ 1, hyperbolic Fibonacci numbers have the following properties:

(a)
n∑

k=1
F̃−k = −2F̃−n−1 − F̃−n−2 + F̃1 =−2F̃−n−1 − F̃−n−2 + (1+h).

(b)
n∑

k=1
F̃−2k =−F̃−2n−1 + F̃1 − F̃0 =−F̃−2n−1 +1.

(c)
n∑

k=1
F̃−2k+1 =−F̃−2n + F̃0 =−F̃−2n +h.

As a second special case of the above theorem, we have the following summation formulas
for hyperbolic Lucas numbers:

Corollary 21. For n ≥ 1, hyperbolic Lucas numbers have the following properties.

(a)
n∑

k=1
L̃−k = −2L̃−n−1 − L̃−n−2 + L̃1 =−2L̃−n−1 − L̃−n−2 + (1+3h).

(b)
n∑

k=1
L̃−2k =−L̃−2n−1 + L̃1 − L̃0 =−L̃−2n−1 + (−1+2h).

(c)
n∑

k=1
L̃−2k+1 =−L̃−2n + L̃0 =−L̃−2n + (2+h).

6. Matrices Related with Hyperbolic Generalized Fibonacci Numbers
We define the square matrix C of order 2 as:

C =
(
1 1
1 0

)
such that detC =−1. Induction proof may be used to establish

Cn =
(
Fn+1 Fn
Fn Fn−1

)
(6.1)

and (the matrix formulation of Vn)(
Vn+1
Vn

)
=

(
1 1
1 0

)n (
V1
V0

)
. (6.2)

Now, we define the matrices CV as

CV =
(
Ṽ3 Ṽ2
Ṽ2 Ṽ1

)
.

This matric CV is called hyperbolic generalized Fibonacci matrix.
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As special cases, hyperbolic Fibonacci matrix and hyperbolic Lucas matrix are

CF =
(
F̃3 F̃2
F̃2 F̃1

)
and

CL =
(
L̃3 L̃2
L̃2 L̃1

)
respectively.

Theorem 22. For n ≥ 0, the following is valid:

CV

(
1 1
1 0

)n

=
(
Ṽn+3 Ṽn+2
Ṽn+2 Ṽn+1

)
. (6.3)

Proof. We prove by mathematical induction on n. If n = 0, then the result is clear. Now, we
assume it is true for n = k, that is

CV Ck =
(
Ṽk+3 Ṽk+2
Ṽk+2 Ṽk+1

)
.

If we use (2.1), then we have Ṽk+2 = Ṽk+1 + Ṽk. Then, by induction hypothesis, we obtain

CV Ck+1 = (CV Ck)C

=
(
Ṽk+3 Ṽk+2
Ṽk+2 Ṽk+1

)(
1 1
1 0

)
=

(
Ṽk+2 + Ṽk+3 Ṽk+3
Ṽk+1 + Ṽk+2 Ṽk+2

)
=

(
Ṽk+4 Ṽk+3
Ṽk+3 Ṽk+2

)
.

Thus, (6.3) holds for all non-negative integers n.

Remark 23. The above theorem is true for n ≤−1. It can also be proved by induction.

Corollary 24. For all integers n, the following holds:

Ṽn+2 = Ṽ2Fn+1 + Ṽ1Fn.

Proof. The proof can be seen by the coefficient of the matrix CV and (6.1).

Taking Vn = Fn and Vn = Ln, respectively, in the above corollary, we obtain the following
results.

Corollary 25. For all integers n, the followings are true.
(a) F̃n+2 = F̃2Fn+1 + F̃1Fn.

(b) L̃n+2 = L̃2Fn+1 + L̃1Fn.
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